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Abstract. A new method for suppressing vibration in a rotating beam system of a helicopter is 

presented. The method uses a non-linear dynamics equation to compute actual natural frequencies 

using FFT, not based on nominal natural frequencies of linear dynamics. A design based on linear 

coupling may not take account of the effect of non-linear coupling in the system, so a conceptual 

controller design is also presented, and a detailed control algorithm is developed. In fact, this is a 

non-linear dynamics optimization problem.In a gyroscopic system, tuning of the flywheel allows 

a commensurable relationship to be established between the natural frequencies of the system, 

resulting in a strong coupling between the vibrating modes. Having established a strong coupling 

within the system, damping is introduced in the flywheel via an actuator, resulting in rapid 

vibration suppression. Numerical simulation demonstrates the efficiency of the modification. 

Keywords: parameter optimization, vibration active suppression control, gyroscopic system, 

Internal Resonance (IR).  

1. Introduction  

Gyroscopic coupling arises naturally in many types of system. The purpose of this paper is 

first to establish a strong coupling by tuning of the flywheel that allows a commensurable 

relationship between the natural frequencies of the non-linear gyroscopic system, and then to 

suppress vibration by velocity feedback. The focus is on a particular type of gyroscopic system-the 

rotor. Some examples of rotors are: helicopters, propellers, wind turbines, turbo machinery, auto 

gyros, flexible manipulator, and vortex rings [1, 8-9].  

Controlling a multi-degree of freedom dynamic system normally requires an actuator for each 

degree of freedom. However, if the oscillations in one mode are strongly coupled to the remaining 

main modes in the system, an actuator applied in one direction can directly regulate vibrations in 

that mode and indirectly in the remaining modes. Normal gyroscopic coupling in rotors is usually 

not strong enough to accomplish such a task. However the system can be tuned to make the 

coupling strong and then damping can be introduced in one of the modes resulting in vibration 

suppression in all the coupled modes. 

Coupling in a system can be strengthened using Internal Resonance (IR). Internal resonance is 

established by making natural frequencies in the system commensurable. In studies conducted by 

Golnaraghi [1, 2], a sliding mass was used to introduce non-linear coupling and to control 

vibrations in a flexible cantilever beam. By slightly damping the sliding mass motion, control was 

effected when the natural frequencies were tuned to a state of 2:1 IR. Experimental investigations 

were conducted by Tuer et al. [3] and Duquette et al. [4] using a flexible cantilever beam, further 

reinforcing results resorted in [1, 2]. 

The motivation for this paper stems from an earlier work [5, 6], in which a discrete flexible 

two-degree of freedom cantilever beam is rotated at a constant angular velocity about the vertical 

axis. It was shown in [5, 6], numerically and using a perturbation method, that IR can be used to 

suppress vibrations in gyroscopic systems. This however required modifying the physical 

characteristics of an existing system, which may not be always possible. 

To make the application of IR-based vibration suppression more practical, and to accomplish 

this without tuning any existing stiffness in the system, in this paper we present a tunable flywheel 

mechanism. The tunable flywheel mechanism attaches to the rotating axis of the rotor. The 
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coupling in the system can then be enhanced by tuning the flywheel mechanism and does not 

require modifying any existing stiffness in the system. 

 In this paper, equations of motion are derived for an idealized model of a rotating beam with 

the tunable flywheel mechanism. The rotating beam’s angular velocity is allowed to vary about 

an equilibrium value. The angular velocity and gyroscopic effects non-linearly couple the flywheel 

with the rotating beam. Using a simple linear control scheme, like a PD controller on the flywheel, 

allows an IR based control strategy to be implemented. The flywheel is tuned such that a 1:1 state 

of IR is established, thereby, aiding in the transfer of vibrational energy between the flywheel and 

the beam. Damping introduced in the flywheel dissipates the energy from the system, thus 

suppressing vibrations. Application of this strategy is verified through numerical simulations. The 

numerical simulations show that rapid vibration suppression occurs in the system. 

2. Mathematical model 

The system model is shown in Figure 1. The model is an idealization of a flexible beam of 

length � and mass �, attached to a rotating shaft. The flexibility of the beam is model using linear 

rotational springs of stiffness �� and �� in the vertical and horizontal planes respectively. 

 
Fig. 1. System model 

Equations of motion are obtained by the Lagrangian approach using the following 

non-dimensional parameters: 

�∗ = �� �⁄ �,  �∗ = �� �⁄ �, ���
∗
�

= �� ���⁄ , ���
∗
�

= �� ���⁄ , ���
∗
�

= �� ���⁄ , 	�
∗ = �� �⁄ 	�, 
�∗ = 
� ���⁄ , 
�∗ = 
� ���⁄ , ���∗ = ��� ���⁄ , ��∗ = �� ���⁄ . 

(1)

In (1), 
�   is moment of inertia, 	� represents constant average angular velocity of the rotating 

shaft. The � 
∗ on the variables indicate a non-dimensional quantity. In the rest of the paper only 

non-dimensional parameters are used, therefore for convenience the � 
∗ is dropped. The non-

dimensional rates for ��, ��, �� and �� are denoted as ���, ���, ���, ���, ���, ���, ���, and ���, where the 

(˙)  and (¨)  represent first and second derivatives with respect to non-dimensional time, 

respectively. 

Using standard techniques, the following expressions are obtained for the kinetic energy � and 

potential energy � of the system: 

� = 1 2 ����� + ���� + �����cos��� + 
����� + 
����� + ������� , � = 1 2⁄ ����
� ��� + ���

� ��
� + ���

� ��
� − 2sin��
. 

(2)
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Here we note that each term in (2) is multiplied by a constant factor ��� that is obtained when 

non-dimensionalizing. Since this factor divides out from the final equations of motion it is not 

shown in the energy terms. 

Using the system energies we get the Lagrangian � as: 

� = � − �. (3)

Using the Lagrangian method the following non-dimensional equations of motion are obtained: 

��� +
1

2
���� + ��� + 	��� sin�2��
 + ���

� �� − cos���
 + ��� = 0, 

cos���
����� + ���� − ������� + ��� + 	�� sin�2��
 + ���
� �� = 0, 
����� + ���� + ���� + ���

� �� = 0, 

cos���
���� + 
���� + �
� + 
� + cos���
�
���, 

−������� + ��� + 	�� sin�2��
 = 0. 

(4)

In (4), ��, ��� and ��� are actually transformed variables ��∗, ���∗ and ���∗, where the asterisks have 

been dropped as we will be using the transformed variables from this point in the analysis. The 

transformation is given by: 

��∗ = �� + 	��, ���∗ = ��� + 	�, ���∗ = ���, 

(5)

where 	� represents the constant part of the angular velocity of the shaft. 

Also in (4), the control torque �� has been incorporated by redefining ���
�  as ���

� − ��. 

This ��� represents tuned natural frequency of the flywheel. 

3. The parameter optimization algorithm 

The strength of the technique for vibration suppression depends upon how strong the coupling 

can be made between the different degrees of freedom. When 1:1 IR is used for enhancing the 

coupling we are relying upon enhancing the linear coupling in the system. When the coupling in 

the system is predominantly non-linear then 1:1 ratio may not work and other approaches such as 

1:2 and 1:3 are required depending upon the type of non-linear coupling [7]. So a design method 

based on linear coupling does not take effect to non-linear coupling in the system. Now we present 

a new following design method based on an actual non-linear system. 

Optimization index: 

min
	��
���

‖��� − ����‖, 

s.t. ��� +
1

2
���� + ��� + 	��� sin�2��
 + ���

� �� − cos���
 + ��� = 0, 

cos���
����� + ���� − ������� + ��� + 	�� sin�2��
 + ���
� �� = 0, 
����� + ���� + ���� + ���

� �� = 0, 

cos���
���� + 
���� + �
� + 
� + cos���
�
���, 

−������� + ��� + 	�� sin�2��
 = 0, �� = ������, ��, ��
, �� = ������, ��, ��
, � = 1, 2, 3, ��� = 0, 

(6)
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where ��, �� are the nature frequencies. ���(�
) is tuning parameter. � is the ratio of �� to �� 

for setting up 1:1 IR, 1:2 IR and 1:3 IR. 

Rewrite above eq. (6) into following form: 

min
	��
���

‖��� − ����‖, 

s.t. �1 0 0 0

0 cos���
� 0 cos���
�
0 0 
� 
�
0 cos���
� 
� 
� + 
� + cos���
�� ���

� ������������!""
"#

+ 

         

���
� 0 1 2��� sin�2��
⁄ 0 �1 2��� + ���⁄ � sin�2��

−���� + ���� sin�2��
 0 0 0

0 0 0 0

−���� + ���� sin�2��
 0 0 0 !""
"#
���
� ������������!""

"#
+ 

         � 0 	 sin�2��
 0 	 sin�2��

−	 sin�2��
 0 0 0

0 0 0 0

−	 sin�2��
 0 0 0

�
���
� ������������!""

"#
+ 

         ���
 ���

� 0 0 0

0 ���
� 0 0

0 0 ���
� 0

0 0 0 0!""
# ���������� + �1 2⁄ sin�2��
 	� − cos���
 + ���

0��
0

� = �0

0

0

0

�, 

�� = ������, ��, ��
, �� = ������, ��, ��
, � = 1, 2, 3, ��� = 0. 

(7)

4. IR suppression control strategy 

In this section, the optimization algorithm of IR control strategy is presented first. The 

principle of control is shown in Figure 2. The actuator is a tunable flywheel. 

The control law is shown in Figure 2. Control variable $ is summation of $1 and $2. 

Control: $ = $1 + $2. $1 shows the control efforts applied to the non-linear gyroscopic system using D feedback 

control technique based on IR state. The control signal to the system is issued in the form of force 

by the tunable flywheel. The accelerometer can be used to measure the output acceleration  % = [��� ��� ���]�. By integrating % once the corresponding velocity & = [��� ��� ���]� can be 

obtained. Here velocity feedback (D controller) is sent to the actuators to suppress vibrations in 

all the three directions. Finally, integrating & can give us the displacement ' = [�� �� ��]� 

that can be used as the displacement feedback (P controller) to the actuator and as input to compute 

the response frequencies of the non-linear gyroscopic system. $2 indicates the tuning process for obtaining P gain and establishing IR state as well. Taking 

an assumed �
  and angular velocity 	�  as input, it first computes the 2 nominal natural 

frequencies (��, ��) of the (linear gyroscopic system) gyroscopic system around the equilibrium 

point [0, 0, 0] . Meanwhile the computer also takes the displacements as input signals and 

computes the real response frequencies of the non-linear gyroscopic system using FFT, which 

contains many frequencies. In the vicinity of the two nominal natural frequencies, the computer 

will choose the two dominant real response frequencies ��� , ���  and compute the difference 

between ���  and ��� , where �  is IR ratio (� = 1 for 1:1 IR and � = 2 for 1:2 IR, etc.). By 
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minimizing the difference between ���  and ��� , the computer can thus tune �
  and use the 

updated �
 as input to compute the new nominal natural frequencies. At the same time, the �
 

can serve as the P gain in gyroscopic system to obtain new displacement ' = [�� �� ��]�. 

Using this new ' as input, the computer can compute the new real response frequencies of the 

gyroscopic system. The above iteration process goes on until the difference between ���  and ���� is minimized and the IR state is thus established. Then through u1 velocity feedback control 

involved in the gyroscopic system, the vibration in ��, �� and ��directions can be effectively and 

rapidly suppressed. 

 
Fig. 2. Control law using IR. � is displacement vector, �

�
 stands for angular velocity 

Optimization algorithm for the control law is as following: 

Step 1: Setting initial value �
 , IR ratio �  (� = 1 for 1:1 IR and � = 2 for 1:2 IR, etc.), 

parameter 	� and ��� = 0. 

Step 2: Computing the nominal natural frequencies �� and ��. 

Step 3: Computing the plant response frequencies ���, ��� by using FFT. 

Step 4: Computing the difference between ��� and ����, and get the parameter: ( = ��� − ����. 

Step 5: Turning gain �
 slightly by using follow computation: �
(�) = �
(� − 1) + )*+�,�(
. 

Step 6: Minimizing the difference between ��� and ����. 

If %-*�(
 is the minimum, the optimum gain �
 is obtained, and go to Step 7. Else go to Step 2. 

Note: ) is a very small positive coefficient. 

Step 7: Computing the control variables $2 = �
 × �(�) and $1 = �� × ��(�). 

Step 8: Summation of control variables $ = $1 + $2. 
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5. Vibration suppression simulation 

As was mentioned earlier, suppression of vibrations within all the degrees of freedom is 

accomplished by applying a linear actuator in the ��  direction. The actuator applies direct 

damping to ��, and tunes the value of ��� through position feedback by applying a torque of the 

form �� � ����� � ��	�. Tuning is accomplished by adjusting the feedback gain ��. 

Coupling between motion in ��, �� and �� directions is enhanced by establishing an internal 

resonance ratio of 1:1 between the natural frequencies. In this gyroscopic system, natural 

frequencies ��� � 0, ��� can be tuned to be equal to ��� or ���, ������� is selected as the value 

that minimizes the difference between ��� or ���. 

    
Fig. 3. Output �� time response: ��� � 2, ��� � 5, �� � 5, ��� � 0, 	 � 1.5 

 
Fig. 4. Output �� time response: ��� � 2, ��� � 5, �� � 5, ��� � 0, 	 � 1.5 

    
Fig. 5. Output �� time response: ��� � 2, ��� � 5, �� � 5, ��� � 0, 	 � 1.5 
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We show the results of vibration suppression using numerical simulations of the non-linear 

dynamics equations of motion (4). The vibration control principle frame is shown in Figure 1. Its 

displacement output vibrations in all the degrees of freedom are suppressed as shown in Figure 3, 

Figure 4 and Figure 5. 

Variation of the system parameter leads to equilibrium positions change. The specific value 

for parameters in figure is determined by equilibrium points. With the help of MATLAB software, 

computation simulation of the system model is made. The result of simulation demonstrated that 

parameter optimization and active vibration suppression control integration techniques that we 

presented in gyroscopic system are practical, and there are good vibration suppression 

performance. 

6. Conclusions 

This paper presents a new method to implement an internal resonance based vibration 

suppression technique for a multi-degree of freedom gyroscopic system. The technique is based 

on enhancing the natural gyroscopic coupling that exists in the system via Internal Resonance. 

The principle of a controller design is presented, and detail control algorithm is developed. At the 

same time, the concept of a tunable flywheel mechanism has been also proposed. The advantage 

of this approach is that it does not require modifying any existing stiffness in the system either 

directly or through any control mechanism. It was demonstrated numerically how the tunable 

flywheel mechanism can be used for vibration suppression. The modifications that can be made 

for application of the proposed technique for vibration suppression to more complex models is the 

use of nonlinear techniques to enhance the existing coupling in the system. This is a new highlight. 
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