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Abstract. This paper presents a two-dimensional approximately harmonic projection (2DAHP) 

algorithm for gait recognition. 2DAHP is originated from the approximately harmonic projection 

(AHP), while 2DAHP offers some advantages over AHP. 1) 2DAHP can preserve the local 

geometrical structure and cluster structure of image data as AHP. 2) 2DAHP encodes images as 

matrices or second-order tensors rather than one-dimensional vectors, so 2DAHP can keep the 

correlation among different coordinates of image data. 3) 2DAHP avoids the singularity problem 

suffered by AHP. 4) 2DAHP runs faster than AHP. Extensive experiments on gait recognition 

show the effectiveness and efficiency of the proposed method. 

Keywords: dimensionality reduction, approximately harmonic projection, matrix representation, 

gait recognition. 

1. Introduction 

Recently, the average silhouettes-based human gait recognition has received extensive 

attention due to its potential applications in many fields [1-4], such as identity authentication and 

video surveillance. In general, a binary silhouette image of size 128×88 in the USF HumanID gait 

database is represented as a vector in the image space ℝ128×88. Consequently, a major challenge 

of gait recognition is that the captured gait image often lies in a high-dimensional image space. 

Due to the consideration of the curse of dimensionality, a common way to resolve this problem is 

to use dimensionality reduction techniques. Once we obtain lower-dimensional representations of 

the original gait images, the traditional classification methods can be applied in the reduced feature 

space. Therefore, the main objective of this paper is to find techniques that can introduce lower-

dimensional feature representations of gait images with enhanced discriminatory power. 

The most representative algorithms for dimensionality reduction are principal component 

analysis (PCA) and linear discriminant analysis (LDA) [5]. Although PCA and LDA have been 

successfully applied to face recognition, image retrieval, and gait recognition, they are designed 

for discovering only the global Euclidean structure, whereas the local manifold structure is  

ignored. In fact, the global statistics such as variance is often difficult to compute when there are 

no sufficient samples. In addition, a number of research efforts have shown that the images 

possibly reside on a nonlinear submanifold and the representation of image is fundamentally 

related to the problem of manifold learning [6-9]. Given a set of high-dimensional data points, 

manifold learning techniques aim to discover the geometric properties of the data space. In the 

past years, a number of manifold learning algorithms have been developed, representative 

algorithms include locally linear embedding (LLE) [10], ISOMAP [11], and Laplacian eigenmaps 

(LE) [12]. LLE is designed to maintain the local linear reconstruction relationship among 

neighboring points in the lower-dimensional space. ISOMAP aims to preserve global geodesic 

distances of all pairs of samples. LE aims to preserve proximity relationships by manipulations on 

an undirected weighted graph, which indicates neighbor relations of pairwise samples. These 

nonlinear methods do yield impressive results on some artificial benchmarks and several real 

applications. However, they suffer from the out of sample problem, i.e., they can only obtain 

mappings that are defined on the training data points and how to explicitly calculate the mappings 

on novel testing data points remains unclear. Therefore, these nonlinear manifold learning 

algorithms might not be suitable for gait recognition. To cope with the out of sample problem, 
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locality preserving projection (LPP) [13] applies a linearization procedure to construct explicit 

mappings over new samples. In the recent research, Lin et al. [14] point that utilizing the affine 

hulls of the manifold and the connected components is more effective for preserving the local 

geometrical structure and cluster structure of original data, and propose a new algorithm termed 

approximately harmonic projection (AHP) for dimensionality reduction. AHP is a linear manifold 

learning method based on the harmonic framework, and the optimal transformation can be 

obtained by approximating the Dirichlet integral. It is worth noting that all these methods unfold 

input data into vectors before dimensionality reduction. But images are naturally in the form of 

second-order or higher-order tensors [15-17]. For example, gray-level images represent second-

order (matrix), and Gabor-filtered image represents third-order tensors. Consequently, such kind 

of vectorization largely increases the computational costs and seriously destroys the intrinsic 

tensor structure of images. To cope with these issues, multilinear extensions of PCA, LDA, and 

LPP, namely 2DPCA [18], 2DLDA [19], and 2DLPP [20] are proposed, respectively. These 

methods aim to conduct subspace analysis by directly encoding images as two-dimensional image 

matrices rather than one-dimensional vectors. The advantages of using image-as-matrix 

representation have been indeed consistently pointed out in a number of recent research efforts 

[15-20], especially when the number of training samples is small. Nevertheless, the multilinear 

(tensor) extension of AHP and its application to gait recognition are still a research area where 

few people have tried to explore. 

This paper represents a gray-level average silhouette image of size 𝑛1 × 𝑛2 as the matrix (or 

second-order tensor) in the tensor space ℝ𝑛1 × ℝ𝑛2 . Then a two-dimensional approximately 

harmonic projection (2DAHP) is proposed by tensorizing AHP. Compared with the original AHP, 

2DAHP can directly process gait images in their original matrix form and utilize correlations 

among pixels within different dimensions (i.e., rows and columns). Moreover, the smaller number 

of data entries along each data dimension facilitates subspace learning with limited training data. 

2DAHP is much more computational efficient since the decomposed matrices are of size 𝑛1 × 𝑛1 

or 𝑛2 × 𝑛2, which is much smaller than that of size 𝑛 × 𝑛 (𝑛 = 𝑛1 × 𝑛2) in AHP. 2DAHP can 

avoid the singularity problem. In addition, the trace ratio optimization technique is also applied to 

efficiently solve 2DAHP. 

The remainder of this paper is organized as follows. Section 2 briefly reviews AHP. Section 3 

introduces our proposed 2DAHP algorithm. Experimental results on gait recognition are presented 

in Section 4. The concluding remarks are provided in Section 5. 

2. Brief review of approximately harmonic projection (AHP) 

AHP is a recently proposed linear manifold learning method for dimensionality reduction [14]. 

It is based on the approximate affine hull and explicitly utilizes the edge length to reflect the 

geometrical structure of the manifold structure of the data space. 

Given a set of data points {𝑥1, ⋯ , 𝑥𝑛} ⊂ ℝ𝑚 , let 𝑋 = [𝑥1, ⋯ , 𝑥𝑛]. Let 𝑊𝑐  and 𝑊𝑏  be two 

weight matrices defined on the data points. The optimal projection of AHP can be obtained by 

solving the following minimization problem: 

𝑎𝑜𝑝𝑡 = argmin
𝑎

1

2
∑ ∫ ‖𝛻𝑓𝑒𝑖𝑗

‖2𝑑𝑡
𝑒𝑖𝑗𝑖∼𝑗

= argmin
𝑎

1

2
∑ ∫ (

𝑎𝑇𝑥𝑖 − 𝑎𝑇𝑥𝑗

𝑑𝑖𝑗

)

2𝑑𝑖𝑗

0𝑖∼𝑗

𝑑𝑡

= argmin
𝑎

𝑎𝑇𝑋(𝐷𝑐 − 𝑊𝑐)𝑋𝑇𝑎, 

(1) 

with the constraint: 
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3 ∑ ∫ (𝑎𝑇𝑥𝑖 +
𝑡

𝑑𝑖𝑗

(𝑎𝑇𝑥𝑖 − 𝑎𝑇𝑥𝑗))

2

𝑑𝑡
𝑑𝑖𝑗

0𝑖∼𝑗

= 𝑎𝑇𝑋(2𝐷𝑏 + 𝑊𝑏)𝑋𝑇𝑎 = 1, (2) 

where 𝑒𝑖𝑗 = 𝑥𝑗 − 𝑥𝑖  represents an edge vector that has an orientation from 𝑥𝑖  to 𝑥𝑗 ,  

𝑑𝑖𝑗 = ‖𝑥𝑗 − 𝑥𝑖‖ denotes the length of the edge between 𝑥𝑖 and 𝑥𝑗, 𝑡 is the arc length of 𝑒𝑖𝑗. 𝑊𝑐 

and 𝑊𝑏  are two matrices defined as follows: if 𝑥𝑖  and 𝑥𝑗  are connected, then 1
c

ij ij
W d  and 

𝑊𝑖𝑗
𝑏 = 𝑑𝑖𝑗;  otherwise, 𝑊𝑖𝑗

𝑐 = 𝑊𝑖𝑗
𝑏 = 0.  𝐷𝑐  and 𝐷𝑏  are two diagonal matrices defined as  

𝐷𝑖𝑖
𝑐 = ∑ 𝑊𝑖𝑗

𝑐
𝑗 , 𝐷𝑖𝑖

𝑏 = ∑ 𝑊𝑖𝑗
𝑏

𝑗 . 𝛻𝑓𝑒𝑖𝑗
 denotes the gradient on each edge, its definition is as follows: 

𝛻𝑓𝑒𝑖𝑗
=

𝑎𝑇𝑥𝑗 − 𝑎𝑇𝑥𝑖

𝑑𝑖𝑗

. (3) 

Unlike the standard spectral graph methods which mainly consider the connectivity of graph, 

AHP explicitly makes use of the edge length and edge orientation which reflect the geometrical 

structure of the manifold. Therefore, AHP can precisely model multiple connected components of 

the data manifold, which is especially important for discriminating data with different submanifold 

(cluster) structure. 

The objective function in AHP aims to use the approximate affine hull of the graph to separate 

data points sampled from different components. Therefore, minimizing it is to ensure that if 𝑥𝑖 

and 𝑥𝑗 lie in the multiple connected components, then 𝑦𝑖(= 𝑎𝑇𝑥𝑖) and 𝑦𝑗(= 𝑎𝑇𝑥𝑗) are made close 

by the optimal projection. Finally, the projection vector 𝑎 that minimizes (1) is given by the 

minimum eigenvalue solution to the generalized eigenvalue problem: 

𝑋(𝐷𝑐 − 𝑊𝑐)𝑋𝑇𝑎 = 𝜆𝑋(2𝐷𝑏 + 𝑊𝑏)𝑋𝑇𝑎. (4) 

Note that, in the appearance-based image analysis, one is often confronted with the fact the 

dimension of image vector is much smaller than the number of images. Thus, the matrix 𝑋(2𝐷𝑏 +
𝑊𝑏)𝑋𝑇 is singular. To avoid the singularity problem, one may first apply PCA to remove the 

components corresponding to zero eigenvalues. Thus, the projection vector of AHP can be 

considered as the eigenvectors of the matrix (𝑋(2𝐷𝑏 + 𝑊𝑏)𝑋𝑇)−1𝑋(𝐷𝑐 − 𝑊𝑐)𝑋𝑇  associated 

with the smallest eigenvalues. In addition, since (𝑋(2𝐷𝑏 + 𝑊𝑏)𝑋𝑇)−1𝑋(𝐷𝑐 − 𝑊𝑐)𝑋𝑇  is not 

usually symmetric, the AHP projection axes are not orthogonal. 

Let the column vector of 𝑎1, 𝑎2, ⋯ , 𝑎𝑑  be the solution of (4) ordered according to their 

eigenvalues 𝜆1 < 𝜆2 < ⋯ < 𝜆𝑑. Thus, the embedding is given by 𝑥𝑖 → 𝑦𝑖 = 𝐴𝑇𝑥𝑖 , where 𝑦𝑖  is a 

𝑑-dimensional vector and 𝐴 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑑) is an 𝑛 × 𝑑 matrix. 

3. Two-dimensional approximately harmonic projection (2DAHP) 

Given a set of data points {𝑋𝑖}𝑖=1
𝑛  in the second-order tensor (or matrix) space ℝ𝑛1 ⊗ ℝ𝑛2 , let 

{𝑢𝑖}𝑖=1
𝑛1  be an orthonormal basis of ℝ𝑛1  and {𝑣𝑗}𝑗=1

𝑛2  be an orthonormal basis of ℝ𝑛2 , it has been 

shown that {𝑢𝑖 ⊗ 𝑣𝑗} forms a basis of the tensor space ℝ𝑛1 ⊗ ℝ𝑛2 [20]. Thus, a second-order 

tensor 𝑋 can be uniquely defined as 𝑋 = ∑ (𝑢𝑖
𝑇𝑋𝑣𝑗)𝑢𝑖𝑣𝑗

𝑇
𝑖,𝑗 . 

Given a set of data points {𝑋𝑖}𝑖=1
𝑛  in ℝ𝑛1 ⊗ ℝ𝑛2 , two-dimensional approximately harmonic 

projection (2DAHP) aims to find two projection matrices 𝑈 ∈ ℝ𝑛1×𝑙1  and 𝑉 ∈ ℝ𝑛2×𝑙2  that maps 

each data point 𝑋𝑖(𝑖 = 1, ⋯ , 𝑛)  to a lower-dimensional matrix representation 𝑌𝑖 ∈ ℝ𝑙1 × ℝ𝑙2  
(𝑖 = 1, ⋯ 𝑛, 𝑙1 < 𝑛1, 𝑙2 < 𝑛2) by 𝑌𝑖 = 𝑈𝑇𝑋𝑖𝑉 such that 𝑌𝑖 represents 𝑋𝑖. 

Let 𝑈 and 𝑉 be the projection matrices, according to (1) and (2), the optimal objective function 

of 2DAHP with the matrix representation can be rewritten as follows: 
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(𝑈∗, 𝑉∗) = argmin
𝑈,𝑉

1

2
∑

1

𝑑𝑖𝑗

(𝑈𝑇𝑋𝑖𝑉 − 𝑈𝑇𝑋𝑗𝑉)2

𝑖∼𝑗

, (5) 

with the constraint: 

3 ∑ ∫ (𝑈𝑇𝑋𝑖𝑉 +
𝑡

𝑑𝑖𝑗

(𝑈𝑇𝑋𝑖𝑉 − 𝑈𝑇𝑋𝑗𝑉))2𝑑𝑡
𝑑𝑖𝑗

0𝑖∼𝑗

= 1, (6) 

where 𝑑𝑖𝑗  is similarly defined as AHP. 

Let 𝑌𝑖 = 𝑈𝑇𝑋𝑖𝑉 and 𝐷𝑐 be a diagonal matrix, 𝐷𝑖𝑖
𝑐 = ∑ 𝑊𝑖𝑗

𝑐
𝑗 . Since ‖𝐴‖2 = Tr(𝐴𝐴𝑇), we have: 

1

2
∑

1

𝑑𝑖𝑗

(𝑈𝑇𝑋𝑖𝑉 − 𝑈𝑇𝑋𝑗𝑉)
2

𝑖∼𝑗

=
1

2
∑ Tr ((𝑌𝑖 − 𝑌𝑗)(𝑌𝑖 − 𝑌𝑗)

𝑇
) 𝑊𝑖𝑗

𝑐

𝑖∼𝑗

=
1

2
∑ Tr(𝑌𝑖𝑌𝑖

𝑇 + 𝑌𝑗𝑌𝑗
𝑇 − 𝑌𝑖𝑌𝑗

𝑇 − 𝑌𝑗𝑌𝑖
𝑇)𝑊𝑖𝑗

𝑐

𝑖∼𝑗

= Tr (∑ 𝐷𝑖𝑖
𝑐

𝑖

𝑌𝑖𝑌𝑖
𝑇 − ∑ 𝑊𝑖𝑗

𝑐𝑌𝑖𝑌𝑗
𝑇

𝑖,𝑗

)

= Tr (𝑈𝑇
(∑ 𝐷𝑖𝑖

𝑐

𝑖

𝑋𝑖𝑉𝑉𝑇𝑋𝑖
𝑇 − ∑ 𝑊𝑖𝑗

𝑐𝑋𝑖𝑉𝑉𝑇𝑋𝑗
𝑇

𝑖,𝑗

) 𝑈) = Tr(𝑈𝑇(𝑃𝑉
𝑐 − 𝑄𝑉

𝑐 )𝑈), 

(7) 

where 𝑃𝑉
𝑐 = ∑ 𝐷𝑖𝑖

𝑐
𝑖 𝑋𝑖𝑉𝑉𝑇𝑋𝑖

𝑇 and 𝑄𝑉
𝑐 = ∑ 𝑊𝑖𝑗

𝑐 𝑋𝑖𝑉𝑉𝑇𝑋𝑗
𝑇

𝑖,𝑗 . Similarly, ‖𝐴‖2 = Tr(𝐴𝑇𝐴), so we can 

also obtain: 

1

2
∑

1

𝑑𝑖𝑗

(𝑈𝑇𝑋𝑖𝑉 − 𝑈𝑇𝑋𝑗𝑉)
2

𝑖∼𝑗

=
1

2
∑ Tr ((𝑌𝑖 − 𝑌𝑗)

𝑇
(𝑌𝑖 − 𝑌𝑗)) 𝑊𝑖𝑗

𝑐

𝑖∼𝑗

=
1

2
∑ Tr(𝑌𝑖

𝑇𝑌𝑖 + 𝑌𝑗
𝑇𝑌𝑗 − 𝑌𝑖

𝑇𝑌𝑗 − 𝑌𝑗
𝑇𝑌𝑖)𝑊𝑖𝑗

𝑐

𝑖∼𝑗

= Tr (∑ 𝐷𝑖𝑖
𝑐

𝑖

𝑌𝑖
𝑇𝑌𝑖 − ∑ 𝑊𝑖𝑗

𝑐𝑌𝑖
𝑇𝑌𝑗

𝑖,𝑗

)

= Tr (𝑉𝑇
(∑ 𝐷𝑖𝑖

𝑐

𝑖

𝑋𝑖
𝑇𝑈𝑈𝑇𝑋𝑖 − ∑ 𝑊𝑖𝑗

𝑐𝑋𝑖
𝑇𝑈𝑈𝑇𝑋𝑗

𝑖,𝑗

) 𝑉) = Tr(𝑉𝑇(𝑃𝑈
𝑐 − 𝑄𝑈

𝑐 )𝑉), 

(8) 

where 𝑃𝑈
𝑐 = ∑ 𝐷𝑖𝑖

𝑐
𝑖 𝑋𝑖

𝑇𝑈𝑈𝑇𝑋𝑖  and 𝑄𝑈
𝑐 = ∑ 𝑊𝑖𝑗

𝑐𝑋𝑖
𝑇𝑈𝑈𝑇𝑋𝑗 .𝑖,𝑗  Consequently, we should 

simultaneously minimize Tr(𝑈𝑇(𝑃𝑉
𝑐 − 𝑄𝑉

𝑐 )𝑈) and Tr(𝑉𝑇(𝑃𝑈
𝑐 − 𝑄𝑈

𝑐 )𝑉). 

In addition, similar to the above derivation process, the left side of constraint function 

equation (6) can be converted to: 

3 ∑ ∫ (𝑈𝑇𝑋𝑖𝑉 +
𝑡

𝑑𝑖𝑗

(𝑈𝑇𝑋𝑖𝑉 − 𝑈𝑇𝑋𝑗𝑉))2𝑑𝑡
𝑑𝑖𝑗

0𝑖∼𝑗

= Tr(𝑈𝑇(2𝑃𝑉
𝑏 + 𝑄𝑉

𝑏)𝑈)

= Tr(𝑉𝑇(2𝑃𝑈
𝑏 + 𝑄𝑈

𝑏 )𝑉), 

(9) 

where 𝑃𝑉
𝑏 = ∑ 𝐷𝑖𝑗

𝑏 𝑋𝑖𝑉𝑉𝑇𝑋𝑖
𝑇 ,𝑖  𝑄𝑉

𝑏 = ∑ 𝑊𝑖𝑗
𝑏𝑋𝑖𝑉𝑉𝑇𝑋𝑗

𝑇 ,𝑖              𝑃𝑈
𝑏 = ∑ 𝐷𝑖𝑗

𝑏 𝑋𝑖
𝑇𝑈𝑈𝑇𝑋𝑖 ,𝑖  

𝑄𝑈
𝑏 = ∑ 𝑊𝑖𝑗

𝑏𝑋𝑖
𝑇𝑈𝑈𝑇𝑋𝑗𝑖 ,  and 𝐷𝑏  is a diagonal matrix, 𝐷𝑖𝑖

𝑏 = ∑ 𝑊𝑖𝑗
𝑏

𝑗 . 

Finally, the optimal objective function (5) subject to (6) can be transformed as: 

min
𝑈,𝑉

Tr(𝑈𝑇(𝑃𝑉
𝑐 − 𝑄𝑉

𝑐 )𝑈)

Tr(𝑈𝑇(2𝑃𝑉
𝑏 + 𝑄𝑉

𝑏)𝑈)
, (10) 

min
𝑈,𝑉

Tr(𝑉𝑇(𝑃𝑈
𝑐 − 𝑄𝑈

𝑐 )𝑉)

Tr(𝑉𝑇(2𝑃𝑈
𝑏 + 𝑄𝑈

𝑏)𝑉)
. (11) 
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Because of difficulty in solving the optimal 𝑈 and 𝑉 simultaneously, we follows the similar 

computational methods as [20] to compute 𝑈  and 𝑉  iteratively. We first initialize 𝑈  with an 

identity matrix, then 𝑉  can be approximately computed with generalized eigenvalue 

decomposition (GED) by transforming the optimal objective function (11) into the tractable ratio 

trace form Tr((𝑉𝑇(2𝑃𝑈
𝑏 + 𝑄𝑈

𝑏 )𝑉)−1(𝑉𝑇(𝑃𝑈
𝑐 − 𝑄𝑈

𝑐 )𝑉)) . That is, 𝑉  can be regarded as the 

eigenvectors associated with the minimum eigenvalues of the following generalized eigenvector 

problem: 

(𝑃𝑈
𝑐 − 𝑄𝑈

𝑐 )𝑉 = 𝜆(2𝑃𝑈
𝑏 + 𝑄𝑈

𝑏 )𝑉. (12) 

Once 𝑉  is obtained, similarly, we can update 𝑈  by solving the following generalized 

eigenvector problem: 

𝑈𝑇(𝑃𝑉
𝑐 − 𝑄𝑉

𝑐 )𝑈 = 𝜆(2𝑃𝑉
𝑏 + 𝑄𝑉

𝑏)𝑈. (13) 

Therefore, we can obtain the final optimal 𝑈  and 𝑉  by iteratively solving the generalized 

eigenvector problems (12) and (13). 

In the preceding section, we approximately computed the the optimal objective functions of 

(10) and (11) by converting them into ratio trace problems, which are solved by GED. However, 

the obtained solutions may deviate from the original objectives, which may lead to uncertainty in 

subsequent classification [21]. To address these problems, we describes how to directly solve (10) 

and (11) with the Iterative algorithm for the Trace Ratio (ITR) optimization problem introduced 

in [21]. To compute 𝑈, we first fix 𝑉 and initialize 𝑈0 as an arbitrary columnly orthogonal matrix. 

In each iterative step, we solve a trace difference problem 

𝑈𝑡 = arg min
𝑈𝑇𝑈=𝐼

Tr(𝑈𝑇((𝑃𝑉
𝑐 − 𝑄𝑉

𝑐 ) − 𝜆𝑡(2𝑃𝑉
𝑏 + 𝑄𝑉

𝑏))𝑈) , where 𝜆𝑡  is the trace ratio value 

calculated from the projection matrix 𝑈𝑡−1  of the previous step, i.e.,  

𝜆𝑡 = Tr(𝑈𝑡−1𝑇
(𝑃𝑉

𝑐 − 𝑄𝑉
𝑐 )𝑈𝑡−1) Tr(𝑈𝑡−1𝑇

(2𝑃𝑉
𝑏 + 𝑄𝑉

𝑏)𝑈𝑡−1)⁄ . Once 𝑈 is obtained, similarly, we 

can update 𝑉  by solving 𝑉𝑡 = arg min
𝑉𝑇𝑉=𝐼

Tr(𝑉𝑇((𝑃𝑈
𝑐 − 𝑄𝑈

𝑐 ) − 𝜆𝑡(2𝑃𝑈
𝑏 + 𝑄𝑈

𝑏 ))𝑉)  where  

𝜆𝑡 = Tr(𝑉𝑡−1𝑇
(𝑃𝑈

𝑐 − 𝑄𝑈
𝑐 )𝑉𝑡−1) Tr(𝑉𝑡−1𝑇

(2𝑃𝑈
𝑏 + 𝑄𝑈

𝑏)𝑉𝑡−1)⁄ . Finally, output the final 𝑈  and 𝑉 

when the iterative algorithm converges to optimal solutions. The detailed iteration algorithm for 

solving (10) and (11) can be presented as follows: 

Algorithm1: The iteration algorithm for directly solving the optimal problem (10) and (11) in 

2DAHP. 

Step 1: Initialize 𝑈0 and 𝑉0 as two arbitrary column-wise orthogonal matrices. 

Step 2: For 𝑡 = 1,2, ⋯ 𝑇max, do 

Step 2.1: Calculate the trace ratio value 𝜆𝑡  according to the projection matrix 𝑈𝑡−1: 

𝜆𝑡 =
Tr((𝑈𝑡−1)𝑇(𝑃𝑉

𝑐 − 𝑄𝑉
𝑐 )𝑈𝑡−1)

Tr((𝑈𝑡−1)𝑇(2𝑃𝑉
𝑏 + 𝑄𝑉

𝑏)𝑈𝑡−1)
. (14) 

Step 2.2: Obtain the new 𝑈𝑡 by solving the following eigen-decomposition problem: 

((𝑃𝑉
𝑐 − 𝑄𝑉

𝑐 ) − 𝜆𝑡(2𝑃𝑉
𝑏 + 𝑄𝑉

𝑏)) 𝑈𝑖
𝑡 = 𝜏𝑖

𝑡𝑈𝑖
𝑡 . (15) 

Step 2.3: For the given 𝑈𝑡, calculate the trace ratio value 𝜆𝑡  according to the projection matrix 

𝑉𝑡−1: 

𝜆𝑡 =
Tr((𝑉𝑡−1)𝑇(𝑃𝑈

𝑐 − 𝑄𝑈
𝑐 )𝑉𝑡−1)

Tr((𝑉𝑡−1)𝑇(2𝑃𝑈
𝑏 + 𝑄𝑈

𝑏)𝑉𝑡−1)
. (16) 
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Step 2.4: Obtain the new 𝑉𝑡 by solving the following eigen-decomposition problem: 

((𝑃𝑈
𝑐 − 𝑄𝑈

𝑐 ) − 𝜆𝑡(2𝑃𝑈
𝑏 + 𝑄𝑈

𝑏)) 𝑉𝑖
𝑡 = 𝜏𝑖

𝑡𝑉𝑖
𝑡, (17) 

where 𝜏0
𝑡 ≤ 𝜏1

𝑡 ≤ ⋯ ≤ 𝜏𝑑−1
𝑡  are the 𝑑 smallest eigenvalues, and 𝑉𝑖

𝑡 is the eigenvector associated 

with eigenvalue 𝜏𝑖
𝑡, which constitutes the ith column vector of the matrix 𝑉𝑡. 

Step 2.5: If ‖𝑈𝑡 − 𝑈𝑡−1‖ < √𝑑𝜀 and ‖𝑉𝑡 − 𝑉𝑡−1‖ < √𝑑𝜀, then break. 

Step 3: Output the projection matrices 𝑈 = 𝑈𝑡  and 𝑉 = 𝑉𝑡. 

From the above algorithemic procedure, it can be easily observe that the obtained projection 

matrices 𝑈  and 𝑉  are orthogonal. In addition, following the conclusions in [21], the above 

iteration algorithm will converge to an optimal value. For more details about proof of convergence, 

please refer to [21]. 

4. Experimental results 

In this section, to investigate the performance of our proposed 2DAHP algorithm for gait 

recognition, we compare the 2DAHP algorithm with 2DPCA [18], 2DLDA [19], 2DLPP [20], and 

the original AHP [14] algorithms for gait recognition on the well-known USF HumanID gait 

database, where 2DPCA, 2DLDA, and 2DLPP are three popular tensor methods in face 

recognition and gait recognition, and the original AHP algorithm is a vector-based algorithm. The 

settings of these compared algorithms are identical to the description in the corresponding papers. 

In addition, to cope with the singular problem existed in the original AHP, we apply PCA to 

remove the components corresponding to zero eigenvalues before carrying out AHP. For 2DAHP, 

we empirically set the optimal iteration number 𝑇max  as 5 for each probe set, since the latter 

experimental results show that the 2DAHP algorithm converges quite quickly. 

The USF HumanID gait database is constructed by Sarkar et al. [1], it contains 1870 sequences 

from 122 individuals walking on an elliptical path in front of two cameras. This database provided 

one gallery set containing the sequences from 122 individuals and 12 probe sets containing 

different numbers of individuals varying from 33 to 122 for algorithm training and testing, 

respectively. More details information about the USF HumanID gait database can be found in [1]. 

In this gait database, we consider sequences of binary silhouette images. As in [22] and [23], we 

construct the average silhouette-based gait image representation: First, a complete sequence is 

partitioned into several subsequences according to the gait period length 𝑁𝑔𝑎𝑖𝑡  provided by Sarkar 

et al. [1]. Then, the binary silhouette images within each gait cycle of a sequence are averaged to 

acquire several gray-level average silhouette images according to: 

𝐴𝑇𝑖 =
1

𝑁𝑔𝑎𝑖𝑡

∑ 𝑇(𝑘)

𝑘=𝑖𝑁𝑔𝑎𝑖𝑡

𝑘=(𝑖−1)𝑁𝑔𝑎𝑖𝑡+1

, 𝑖 = 1, ⋯ , ⌊𝐹 𝑁𝑔𝑎𝑖𝑡⁄ ⌋, (18) 

where {𝑇(1), ⋯ , 𝑇(𝐹)} represents the binary images for one sequence with 𝐹 frames, ⌊𝐹 𝑁𝑔𝑎𝑖𝑡⁄ ⌋ 

denotes the largest integer less than or equal to 𝐹 𝑁𝑔𝑎𝑖𝑡⁄ . Since numerous researches have 

experimentally shown that the average silhouette image is more effective and efficient than the 

original binary silhouette image for human gait recognition, we also utilize the average silhouette 

image for gait recognition. Fig. 1 shows some original binary images and the average silhouette 

images of two different individuals, where the first seven images and the last image in each row 

denote the binary silhouette images and the average silhouette images, respectively. As can be 

seen, different individuals have different average silhouette images. 

To perform gait recognition, we first obtain the average silhouette image subspaces by 

dimensionality reduction algorithms. Then, all the averaged images from both the gallery set and 
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probe sets are projected into the image subspaces. Finally, the nearest-neighbor classifier is 

adopted to identify new average silhouette images, where the distance measure uses the median 

operator for its robust to noise [1, 23]: 

Dist(𝐿𝑆𝑃 , 𝐿𝑆𝐺) = Median
𝑖=1

𝑁𝑝 (Min
𝑗=1

𝑁𝑔 ‖𝐿𝑆𝑃(𝑖) − 𝐿𝑆𝐺(𝑗)‖2), (19) 

where 𝐿𝑆𝑃(𝑖) , 𝑖 = 1, ⋯ , 𝑁𝑝  and 𝐿𝑆𝐺(𝑗) , 𝑗 = 1, ⋯ , 𝑁𝑔  are the lower representations from one 

probe sequence and one gallery sequence, respectively, 𝑁𝑝  and 𝑁𝑔  denote the total number of 

average silhouette images. For each dimensionality reduction algorithm, we only show its 

performance in the 𝑙 − or (𝑙 × 𝑙) − dimensional subspace. For each case, we average the results 

over 20 random splits of training and testing sets. 

 
Fig. 1. Some original binary images and the average silhouette images  

of two different individuals in the USF HumanID gait database 

The recognition accuracies are shown in Table 1 and Table 2, where Rank-1 indicates that the 

correct subject is ranked as the top candidate, Rank-5 means that the correct subject is ranked 

among the top five candidates, and Average denotes the recognition rate among all the probe sets. 

Moreover, we also plot the recognition rate variance with different numbers of iterations for probe 

sets A, B, C, D, E, F, G, H, I, J, K and L in Fig. 2. Finally, we report the running times of 2DAHP 

and AHP in Table 3. 

From the experimental results listed in Table 1-3 and Fig. 2, we can have the following 

observations: 

1) Our proposed 2DAHP consistently outperforms the 2DPCA, 2DLDA, 2DLPP, and AHP 

algorithms, which demonstrates that it is beneficial to use simultaneously two-dimensional matrix 

representation as well as the local geometrical structure and cluster structure for gait recognition. 

2) 2DPCA performs the worst among the compared algorithms. A possible explanation is as 

follows: similar to the traditional PCA, the 2DPCA is simply achieves object reconstruction and 

it is not necessarily useful for discriminating gait images with different subjects which is the 

ultimate goal of gait recognition. 

3) The 2DLDA performs comparatively to 2DLPP. This demonstrates that it is hard to evaluate 

whether local manifold structure or class label information is more important, which is consistent 

with existing studies. 

4) The 2DAHP algorithm converges quite quickly for probe sets A, B, C, D, E, F, G, H, I, J, 

K and L, and recognition rates changes slightly with different iteration numbers. After about 5 

iterations, 2DAHP can converge to the optimal solution in all 12 probe sets. 

5) 2DAHP achieves significant speed up comparing to AHP. Theses results are consistent with 

the theoretical analysis of the efficiency, i.e., 2DAHP can utilize the intrinsic tensor structure of 

gait images to improve running efficiency. 

Table 1. Performance comparison in terms of Rank-1 recognition results (%) 

Probe A B C D E F G H I J K L Average 

2DPCA 86 87 75 26 27 18 19 56 61 53 10 11 44.1 

2DLDA 89 91 82 33 33 23 25 67 78 67 19 19 52.2 

2DLPP 90 92 81 34 36 22 24 69 82 65 18 20 52.8 

AHP 88 90 78 32 40 21 20 64 79 61 13 15 50.1 

2DAHP 93 94 85 45 48 26 33 84 84 69 27 22 59.2 
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Fig. 2. Some original binary images and the average silhouette images  

of two different individuals in the USF HumanID gait database 

Table 2. Performance comparison in terms of Rank-5 recognition results (%) 

Probe A B C D E F G H I J K L Average 

2DPCA 89 94 88 51 53 44 42 80 79 64 22 17 60.3 

2DLDA 97 99 95 58 57 50 50 86 93 77 43 40 70.5 

2DLPP 95 98 93 59 60 48 51 88 91 75 45 41 70.3 

AHP 91 95 89 60 59 49 48 85 82 69 29 26 65.2 

2DAHP 99 100 96 75 77 56 60 94 94 83 46 38 76.4 

Table 3. Running time(s) comparison on the USF HumanID gait database 

Probe A B C D E F G H I J K L 

AHP 2.51 1.17 1.18 2.64 1.29 2.48 1.32 2.41 1.31 2.40 1.06 1.08 

2DAHP 0.32 0.15 0.15 0.34 0.21 0.30 0.19 0.30 0.18 0.28 0.10 0.11 

5. Conclusions 

This paper introduces a tensor dimensionality reduction algorithm called two-dimensional 

approximately harmonic projection (2DAHP). Compared with the original AHP, 2DAHP can 

directly conducts subspace analysis by encoding an image as a two-dimensional matrix and has 

higher computational efficiency. Experimental results on gait recognition have demonstrated the 

effectiveness and efficiency of our proposed approach. 
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