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Abstract. Recently, navigation technology based on satellite navigation system has got more and 

more attention in international society because of its great values for both military and civil 

application. While navigation signal simulator which can generate satellite navigation signals and 

simulate different scenarios, not only satisfy cooperating test requirements of ground operation 

control system, test of the signal receivers, but also been playing a very important role in the 

development, test and evaluation of different navigation receiver, such as radio determination 

satellite system (RDSS) receiver, radio navigation satellite system (RNSS) receiver and dual-

mode receivers. It is an indispensable tool for the design of the receivers．Compared to other 

satellite navigation systems, such as Global Positioning System (GPS) and GLobal Navigation 

Satellite System (GLONASS), BeiDou Navigation Satellite System (Compass/BDS) have some 

different unique characteristics, especially in RDSS determination. Firstly, the principle of 

comprehensive RDSS position and report is presented. Then function architecture of Compass 

signal simulator and requirements of the dynamic navigation signal simulation are analyzed. 

Finally, two key mathematical models are established to simulate the signals arriving at the 

receiver antenna for dual-mode receiver test, which are: the transmitting time iterative model and 

efficient satellite orbit approximation model. The results show that the Compass dual-mode 

simulator can satisfy dual-mode receiver’s test requirements.  

Keywords: BeiDou navigation satellite system (Compass/BDS), signal simulator, Hermit 

interpolation, dual-mode receiver, test. 

1. Introduction 

Beidou satellite navigation system (Compass/BDS) has been providing accurate and 

continuous three-dimensional (3-D) position, communication and time services since 27th, 

December, 2012. During the past few years there has been growing interest in Compass, and in 

navigation receivers that use radio navigation satellite system (RNSS) and a combination of radio 

determination satellite system (RDSS) and RNSS signals. The most important reasons for this 

interest are the advantages of quick position fixing and position report. Navigation from both two 

subsystems provides a better more robust solution than that with either subsystem by itself. So 

combination technologies of RDSS and RNSS in the commercial world appear very promising. 

The dual-mode receivers have three work modes, which are RDSS, RNSS and combination of 

the two. RDSS is an active positioning subsystem, which provides short message communication 

and two-dimensional positioning service, needs to transmit burst signal, whereas RNSS differs 

significantly from RDSS, is a passive positioning subsystem like GPS and GLONASS [1], which 

provides PNT service, needs not to transmit signal. And the most important mode is the 

combination, which contains fast RNSS signal acquisition depending on RDSS which can reduce 

the time uncertainty, comprehensive position and  report technology which has high-security, 

precise point positioning, dual-frequency ionospheric delay correction. 

Navigation signal simulator can simulate and generate the standard navigation signal. 

Comparing to the signal acquired from the navigation system, the signals generated by a simulator 

is repeatable and controllable and as a result they can be applied to support more flexible and 

configurable test scenarios. For this reason, signal simulator technology has been widely applied 

in testing and verifying Compass receiver performance. 
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Some companies have started research earlier. At present, there are some types of commercial 

GPS or GNSS simulator in the market [2-6]. However, due to the complete specific details of 

signal in space interface control document (ICD) of Compass has not yet provided by the Chinese, 

research of simulators for Compass lagging behind [7, 8]. Even more importantly, there are no 

commercial simulator which can satisfy the verification and assessment of the receiver combining 

measurements from RDSS and RNSS for position fixing and report now. The simulator in [7] is 

designed only for the active receiver. [8] briefly introduces the principles and the structures of the 

RDSS system, but not establishes simulation models. 

This paper is concerned with the test requirements of the dual-mode receiver. By analyzing 

and establishing the key models such as the transmitting time iterative model, satellite orbit 

approximation model, a kind of Compass dual-mode simulator is designed and implemented, 

which can simulate satellite dynamic signals arriving at the antenna simultaneously. Compared 

with the traditional simulator, it can provide navigation signal for the function evaluation and 

validation of RDSS and RNSS receiver, especially for dual-mode receivers. This paper focuses 

on the simulation modeling and the test result analysis. 

2. Comprehensive RDSS position and report theory 

Compass satellite navigation system is a hybrid constellation navigation with 

GEO/IGSO/MEO [9]. A major difference is that GEO satellites carry RDSS and RNSS payloads 

simultaneously. Like GPS, RNSS signals are generated on satellites, while RDSS signals are 

constructed and disseminated on the ground, and the satellites only transfer the signals to the 

ground by transponders. As would be expected, considerations for the advantage of GEO, a new 

method for position fixing and report is proposed [10], which is shown in Fig. 1.  

 
Fig. 1. The theory of comprehensive RDSS position and report 

In order to determine user position (𝑥𝑢, 𝑦𝑢 , 𝑧𝑢) in three dimensions, measurements are made 

to at least three satellites S1, S2 and S3 by user receiver. More specifically, at any epoch 𝑡𝑘, the 

pseudorange difference 𝛥𝜌𝐿
𝑖,𝑗
(𝑡𝑘) = 𝜌𝐿

𝑖 (𝑡𝑘) − 𝜌𝐿
1(𝑡𝑘) (𝑖  and 𝑗  are the satellite PRN number of 

Compass, 𝑖 ≠ 𝑗, and 𝑗 is limited to a visible GEO PRN number, for example, 𝑗 = 1 is assumed 

here), and 𝜌𝑠
1(𝑡𝑘)  are measured. Meanwhile, 𝜌𝑠

1(𝑡𝑘)  is assumed to be consistent with the 

pseudorange 𝜌𝐿
1(𝑡𝑘) after calibrated ionosphere errors caused by different frequencies between 

RDSS S and RNSS L using MCC precision ephemeris, ionosphere model parameters. As soon as 

observations are accomplished, the user receiver transmits to MCC using a transmission burst 

through inbound channel in response to a message request. The transmission parameters would 

include all the 𝛥𝜌𝐿
𝑖,1(𝑡𝑘). It is noted that the actual measurements are 𝜌𝐿𝐷

1  and 𝛥𝜌𝐿
𝑖,1

. Hence, in the 
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absence of measurement errors, the basic set of positioning equations and the geometry matrix 𝑯 

can be expressed as: 

{
 

 
𝜌𝐿𝐷
1 = 𝑓(𝜌𝐶𝑈

1 + 𝜌𝑆
1 + 𝜌𝐿𝑈

1 + 𝜌𝐶𝐷
1 ) = 𝑓(𝑥𝑢 , 𝑦𝑢 , 𝑧𝑢),

𝛥𝜌𝐿
2,1 = 𝜌𝐿𝐷

2 − 𝜌𝐿𝐷
1 ,

…
𝛥𝜌𝐿

𝑛,1 = 𝜌𝐿𝐷
𝑛 − 𝜌𝐿𝐷

1 ,

 (1) 

𝑯 =

[
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−
𝜕𝐹1
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, (2) 

where 𝐹1(·) in Eq. (2) is the nonlinear observation function, 𝜌𝐿𝐷
𝐼  is the pseudorange to the 𝑖 th 

satellite, 𝛥𝜌𝐿
𝑖,1

 is the RNSS pseudorange difference between the 𝑖th satellite and GEO satellite. The 

sum of 𝜌𝐶𝑈
1 , 𝜌𝑆

1, 𝜌𝐿𝑈
1  and 𝜌𝐶𝐷

1  are MCC-satellite-user back and forth pseudorange measurements. 
(𝑥𝑢, 𝑦𝑢 , 𝑧𝑢) and (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) denote the user position and 𝑖th satellite 3-D position, respectively.  

If measurements can be modeled accurately and there are no other measurement errors, the 

linearized equations for CRDSS can be written as follows. For convenience, two new variables 

are defined as follows: 

𝛥𝐎 = [

𝛥𝜌𝐿𝐷
1

𝛥(𝛥𝜌𝐿
2)

𝛥(𝛥𝜌𝐿
3)

] ,    𝛥𝐱 = [

𝛥𝑥𝑢
𝛥𝑦𝑢
𝛥𝑧𝑢

], (3) 

where (𝛥𝑥𝑢 , 𝛥𝑦𝑢, 𝛥𝑧𝑢) are perturbations in (𝑥𝑢 , 𝑦𝑢 , 𝑧𝑢), and the 𝛥𝐎 are the resulting perturbations 

in the pseudoranges. Therefore, Eq. (1) can be rewritten using matrix notation as: 

𝛥𝐎 = 𝐇𝛥𝐱, (4) 

where (𝛥𝑥𝑢 , 𝛥𝑦𝑢, 𝛥𝑧𝑢)  is displacedment in (𝑥𝑢 , 𝑦𝑢, 𝑧𝑢) , and the 𝛥𝐎  are the resulting 

displacedments in the pseudoranges. 

If the pseudorange errors are Gaussian and the covariance of UEREs for the visible satellites 

is given by the matrix 𝐑𝜌, then the optimal solution for user position is obtained by iterating: 

𝛥𝐱 = [𝐇𝑇𝐑𝜌
−1𝐇]−1𝐇𝑇𝐑𝜌

−1𝛥𝛒, (5) 

where 𝐑𝜌  is the covariance matrix associated with the measurement errors, the resulting error 

covariance matrix 𝐏𝑥 for 𝛥𝐱 is: 

𝐏𝑥 = [𝐇
𝑇𝐑𝜌

−1𝐇]−1𝜎𝑈𝐸𝑅𝐸
2 . (6) 

3. Simulation model 

3.1. Architecture of simulator 

Consider the architecture and the simulation algorithm. Compass dual-mode simulator 

simulates satellite and receiver trajectories, signal measurement errors and receiver measurement 

errors. The simulator consists of two main parts. The first one is the signal parameter calculation 
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unit which calculates observation data according to the satellite orbit model, the target trajectory 

calculation model and the signal propagation error model. The second one is signal generator unit, 

which uses observation data to generate RF navigation signal. 

 signal parameter 

calculation unit Signal generator unit

Observation data

System command

 
Fig. 2. A schematic graph show Compass dual-mode simulator’s composing 

 

 

 
Fig. 3. Compass dual-mode simulator flowchart Fig. 4. Pseudorange calculation flowchart 

Fig. 3 and Fig. 4 further describe the details on the architecture and flowchart of the simulator. 

The GUI interface allows the user to set/input various parameters, such as constellation parameters, 

simulation start time, receiver trajectory, environment error, effects, etc. The simulator uses 

special orbit integration or interpolation techniques for the computation of the satellite positions. 

For a realistic modelling of the measurements, signal propagation effects, such as ionosphere, 

troposphere and delays due to errors caused by the satellites are simulated. As an output either 

pseudorange and navigation data or a RF signal is provided to the user receiver.  

The Compass dual-mode simulator designed in the paper consist of four simulation models, 

signal transmitting time iterative model, satellite orbit approximation model, signal propagation 

delay model and the target trajectory calculation mode, which are summarized in Table 1. For a 

limited length of the paper, the first two models would be analyzed and established in the 

following sections. 

Table 1. Error models of passive location 

Model The reason for simulation 

Signal transmitting time iterative model 
Determine the signal transmitting time for RNSS, and the 

signal transmitting and retransmitting time for RDSS. 

Satellite orbit approximation model 
Calculate satellite orbit parameter (position, velocity, 

acceleration) at the transmitting or retransmitting time. 

Signal propagation delay model 
Generate pseudorange errors using ionosphere 

troposphere and relativistic effect modes, respectively. 

Target trajectory calculation model Simulate receiver position, velocity, acceleration, jerk. 

javascript:void(0)
javascript:void(0)
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3.2. Signal transmitting time iterative model 

According to the principle of position determination, the signal received by the receiver at time 

𝑡𝑟 is transmitted by the satellite at time 𝑡𝑡. In order to simulate the signal appropriately, the satellite 

position and the delay should be calculated iteratively. Therefore, obtaining the time 𝑡𝑡 when the 

satellite transmits the signal is the key point of the algorithm. As an example of how to use the 

model to calculate time, the process of calculating 𝑡𝑡 is given as follows. 

Assuming 𝑡𝑡  is expressed in BDT. 𝑟 is the geometric satellite-to-receiver distance. 𝑐 is the 

speed of light in vacuum. Then the transmitting time is calculated as: 

𝑡𝑡 = 𝑡𝑟 −
𝑟

𝑐
− 𝐼 − 𝑇 − 𝜏𝑠𝑎𝑔 , (7) 

where 𝐼 is the ionospheric delay, 𝑇 is the tropospheric delay, and 𝜏𝑠𝑎𝑔 is the delay caused by the 

earth rotation.  

Given the geometric range 𝑟 is computed in a CGCS2000 coordinate frame. 𝑡𝑡 (𝑘 + 1) is the 

transmitting time calculated iteratively by 𝑘 + 1 times. The initial value is 𝑡𝑡 = 𝑡 and the iteration 

finishes when Eq. (8) condition is satisfied: 

|𝑟(𝑡𝑠(𝑘 + 1)) − 𝑟(𝑡𝑠(𝑘))| < 𝜀, (8) 

where 𝜀 denotes the precision, and it is always equal to or less than 10e-10. Simulation shows that 

in the condition of 𝜀 = 1e-10, the calculation will converge in 3 ~ 4 iterative times and, therefore, 

𝑡𝑡 (𝑘 + 1) is the signal transmitting time. 

3.3. Efficient satellite orbit approximation model 

Since the broadcast ephemeris is used to determine satellite positions, orbital errors must be 

simulated, which would affect the navigation accuracy directly.  

Given ephemeris, the best estimate is achieved by directly calculating the satellite’s position 

and velocity from the model. Howerver, a major issue for a realistic signal modelling is the 

computation of the Keplerian orbit parameters including their correction terms based on the 

simulated orbits is a crucial task, since they have to fulfill specific accuracy of navigation solution. 

So in order to speed up position and velocity computation and get good quality of satellite position 

and velocity estimates, orbit interpolation is an appropriate method. Among many interpolation 

methods, the 3rd-order Hermit interpolation has high efficiency in both position and velocity [11]. 

For a detailed description of the Hermit interpolation algorithm refer to [12]. In general, Hermit 

interpolation can be set up as: 

𝐻(𝑡) = 𝑎𝑖 + 𝑏𝑖(𝑡 − 𝑡𝑖) + 𝑐𝑖(𝑡 − 𝑡𝑖)
2 + 𝑑𝑖(𝑡 − 𝑡𝑖)

3, (9) 

𝑎𝑖 = 𝑓(𝑡𝑖), 
𝑏𝑖 = 𝑓′(𝑡𝑖), 

𝑐𝑖 =
3𝑓[𝑡𝑖 , 𝑡𝑖+1] − 2𝑓

′(𝑡𝑖) − 𝑓
′(𝑡𝑖+1)

𝑡𝑖+1 − 𝑡𝑖
, 

𝑑𝑖 =
𝑓′(𝑡𝑖) − 2𝑓[𝑡𝑖, 𝑡𝑖+1] + 𝑓′(𝑡𝑖+1)

(𝑡𝑖+1 − 𝑡𝑖)
2

, 

(10) 

where 𝑡𝑖  is the sample instants, and they are assumed to be in strictly increasing order, i.e.,  
𝑡𝑖 < 𝑡𝑖 + 1 for all 𝑖. 𝐻(𝑡) is the function evaluated at value 𝑡. 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 are the coefficients 

of the polynomial. 𝑓(𝑡) is Hermite polynomial and 𝑓′(𝑡) is the derivative of 𝑓(𝑡), in our case is 

the ECEF satellite position and velocity coordinate 𝑋, 𝑌 or 𝑍, respectively. 
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Here 1-min interval sampled data for the time span from 04 h through 24 h of 2007-09-06 is 

calculated from RNSS navigation message ephemeris. Then sampled data is subdivided into two 

2-minute interval observation data. One is used for sampling instants, the other is developed as 

the reference sampled data.  

It can be seen in Fig. 5 that for reasonable position error of 5-15 mm and velocity error of 

4-6 mm/s, the shorter interpolation time span, the more efficient of Hermit interpolation algorithm. 

In Fig. 6, a comparison with 40 hour RDSS observation data are provided, which has larger errors. 

So piecewise polynomial interpolation is needed for long interpolation area [11]. In order to 

validate the precison, the comparisons among GEO, IGSO and MEO with above data for time 

span from 04 h through 05 h are made, as shown in Fig. 7 and Fig. 8.  

From the summary in Table 2, for either satellite type, the precision is less than 1e-2 m and 

1e-5 m/s. Therefore, the effect on navigation solution can be neglected. 

 
(a) postion error 

 
(b) velocity error 

Fig. 5. Max. error of MEO satellite position and velocity vs. different time span,  

using RNSS ephemeris from navigation message 

As a conclusion, Hermit interpolation reduces the cost of satellite location and velocity 

determination remarkably, also satisfies orbit approximation curevs’s continuity, precision 

requirements. So the Hermit interpolation is appropriate for navigation satellite orbit calculating, 

also a compromise between computational burden and precision. 

 
(a) postion error 

 
(b) velocity error 

Fig. 6. Max. error of GEO satellite position and velocity vs. different time span,  

using RDSS broadcast information  
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Fig. 7. Position error vs. different satellite types Fig. 8. Velocity error vs. different satellite types 

 
Fig. 9. A schematic graph shows Compass dual-mode simulation system 

Table 2. Precision of different type satellite with Hermit interpolation (m) 

Sat. Type 
Max error Min error RMS error 

Position Velocity Position Velocity Position Velocity 

GEO 6.303e-3 1.097e-6 1.424e-4 1.355e-8 3.512e-5 5.114e-9 

IGSO 2.913e-3 2.678e-5 1.431e-3 1.736e-6 2.113e-5 2.452e-8 

MEO 8.604e-3 6.916e-5 6.850e-4 1.6534e-5 3.692e-5 4.784e-7 

4. Experiments and analysis 

4.1. System design and implementation 

Considering the dual-mode receiver test requirements, the Compass dual–mode simulator 

integration with evaluation function shows in Fig. 9 is designed and implemented to support all 

types of BD receivers. The key performance for user is shown here: 

1. Pseudorange accuracy: ±0.003 m. 

2. Rate of pseudorange accuracy change rate: ±0.003 m/s. 

3. Channel delay stability: 0.167 (code) ≤ 0.001 m (carrier). 

4. Equipment delay stability: 1 ns/month. 
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4.2. Experimental results 

In evaluating the performance of the dual-mode receiver, we are interseted in two simulator-

based experiments, the dynamic position accuracy and the difference pseudorange, are carried out. 

Experiments are conducted in cable connect environment based on the above navigation receiver 

integrated test system, as shown in Fig. 9, which consists of Compass dual simulator and a 

prototype receiver with CRDSS.  

In the experiment, the simulation beginning time of scenarios is at 314 BD week number and 

3.6e4 second of week, the constellation configure is Compass (Phase I), the rate of observation 

data is set to 1 Hz, and the average number of visible satellites is 7. It should be noted that the 

second experiment’s observation data is the difference pseudorange measurement only, without 

MCC-satellite-user back and forth pseudorange measurements. For the receiver is unable to 

simulate the signal arriving at MCC’s antenna with actual pseudorange in the simulation 

environment. If pseudorange measured from the receiver inbound signal, large error will be caused 

which, furthermore, affected the navigation solution’s reality. Therefore, limited the simulation 

environment, the position fixing and report of the receiver can be only assessed indirectly by 

measuring difference pseudorange. 

Equation (11) is the trajectory expression of the dynamic position accuracy scenario, which is 

a sinusoidal movement curve in the altitude direction of geodetic coordinates. The center position 

is set to (40°N, 112°E, 1000 m), which is shwon in Fig. 10.  

𝑠 = 𝑠0 + 𝐴sin(𝑤𝑡 + 𝜙), (11) 

where 𝑠 is the real time pseudorange from satellites. 𝑠0 is the initial pseudorange determined by 

the initial user receiver position. 𝐴  is a constant amplitude with a value 2296 m. Angular 

frequency 𝜔 is set to 0.1307 rad/s. The initial phase 𝜑 is zero rad. 

 
Fig. 10. Experimental receiver true trajectory 

Furthermore, Fig. 11, Fig. 12, Fig. 13, Fig. 14 and Table 3 present the test result of the 

dynamic position and velocity accuracy in different direction by RNSS alone solution, which is in 

accordance with the one provided by Compass. It can be noted that there is a pseudorange jump 

during the test, which is caused by the receiver itself through comparion test with other receivers 

under the same scenario. 

As shown in Fig. 15, Fig. 16, Fig. 17 and Table 4, the accuracy of the difference pseudorange 

and double zero value is less than 0.1 ns and 1 ns, respectively. That is, the accuracy of 

comprehensive RDSS position fixing and report would be improved when compared with RDSS 

standalone solutions and, also better than RNSS by using MCC precision ephemeris, ionosphere 

model parameters. Furthermore, all the test result proves the signal simulator can satisfy dual-

mode receiver’s test requirements completely. 
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Fig. 11. Horizontal positioning errors Fig. 12. Vertical positioning errors 

  
Fig. 13. Positioning errors in distance Fig. 14. 3-D dimensional velocity error 

Table 3. Accuracy of dynamic position and velocity test 

Item 
RMS error (m) 

Horizontal Vertical Distance Max Min 

Position error 4.374 8.217 9.309 10.446 8.877 

Velocity error -- -- 0.099 0.210 0.002 

 

  
Fig. 15. Different pseudorange vs. time Fig. 16. Different pseudorange vs. time 

 
Fig. 17. RDSS double zero vs. time, with mean value of 1.001e6 ns and variance of 1.1787 ns 

Table 4. Difference pseudorange accuracy of CRDSS position fixing and report 

Difference pseudorange 𝛥𝜌𝐿
3,1

 𝛥𝜌𝐿
4,1

 𝛥𝜌𝐿
5,1

 𝛥𝜌𝐿
6,1

 𝛥𝜌𝐿
7,1

 𝛥𝜌𝐿
8,1

 𝛥𝜌𝐿
12,1

 

RMS error (ns) 0.0360 0.095 0.122 0.0856 0.0968 0.107 0.165 
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5. Conclusions 

As a conclusion, the simulation models are proposed and analyzed based on the dual-mode 

receiver’s test requirements. The discussion here focuses on the transmitting time iterative model, 

satellite orbit approximation model and the ways to improve model accuracy. Finally, the 

implementation of the simulator and the analysis of the two simulator-based experimental result 

with the prototype receiver are given. Compared with the existing simulator, the Compass dual-

model simulator can simulate the RDSS and RNSS signal simultaneously to support all types of 

BD receiver’s performance evaluation, such as RDSS, RNSS and dual-mode receiver. The test 

results indicate that the accuracy of position and velocity is 9.3 m and 0.099 m/s, respectively. 

Even more importantly, the function of CRDSS can also be validated, with the accuracy of 

difference pseudorange and double zero value less than 0.1 ns and 1 ns. Therefore, the Compass 

dual-model’s design completely meets the test requirements. 
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