
726  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716  

988. A new algorithm for finding the k shortest 

transport paths in dynamic stochastic networks 
Shuijian Zhang, Xuejun Liu 

988. A NEW ALGORITHM FOR FINDING THE K SHORTEST TRANSPORT PATHS IN DYNAMIC STOCHASTIC NETWORKS.  

SHUIJIAN ZHANG, XUEJUN LIU 

Shuijian Zhang1, Xuejun Liu2 
Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Nanjing, China  

E-mail: 1zsjsouth@163.com, 2xuejunliu6@163.com 

(Received 11 February 2013; accepted 3 June 2013) 

Abstract. The static 𝐾 shortest paths (KSP) problem has been resolved. In reality, however, most 

of the networks are actually dynamic stochastic networks. The state of the arcs and nodes are not 

only uncertain in dynamic stochastic networks but also interrelated. Furthermore, the cost of the 

arcs and nodes are subject to a certain probability distribution. The KSP problem is generally 

regarded as a dynamic stochastic optimization problem. The dynamic stochastic characteristics of 

the network and the relationships between the arcs and nodes of the network are analyzed in this 

paper, and the probabilistic shortest path concept is defined. The mathematical optimization model 

of the dynamic stochastic KSP and a genetic algorithm for solving the dynamic stochastic KSP 

problem are proposed. A heuristic population initialization algorithm is designed to avoid loops 

and dead points due to the topological characteristics of the network. The reasonable crossover 

and mutation operators are designed to avoid the illegal individuals according to the sparsity 

characteristic of the network. Results show that the proposed model and algorithm can effectively 

solve the dynamic stochastic KSP problem. The proposed model can also solve the network flow 

stochastic optimization problems in transportation, communication networks, and other networks.  

Keywords: 𝐾 shortest paths, dynamic stochastic network, genetic algorithm, loopless path. 

1. Introduction 

Transportation is the lifeline of the national economy, and is the main carrier of pedestrian 

flow, material flow, capital flow and information flow in the socio-economic activities. In modern 

society, it is impossible to sustain economic development without efficient operation of the 

transportation system. However, with the dramatic increase of the amount of vehicles and the road 

traffic volume, the traffic congestion problem is increasingly serious, which has a serious impact 

on people’s daily travel and becomes a bottleneck restricting urban social and economic 

development. Traffic congestion and frequent traffic accidents have become increasingly common 

phenomena, which cause huge economic losses every year. How to make travel more efficiently 

has become the world’s problem. However, for the urban space is limited, in the face of the 

contradiction between the rigid supply of transport infrastructure and the flexible travel demand, 

it can’t completely solve the problem of traffic congestion through increasing investment in the 

construction of the transport infrastructure. So traffic guidance has become an effective way to 

solve traffic congestion problem. It can reduce blindness in travel, optimize traffic flow 

distribution and improve the efficiency of the urban road network through the selection of the 

shortest path, thus traffic congestion is eased. 

Research on shortest path problem can be found in several existing literature, such as the 

literature [1-3]. The 𝐾 shortest paths (KSP) problem is a more general problem, wherein the KSP 

are calculated between a given source and destination node in a weighted graph [4]. The shortest 

path (lowest cost path) would normally be the preferred method from a given node to the 

destination node. When the shortest path between the two nodes is blocked, the second, the third, 

and the Kth shortest path must be determined as alternative paths. Several optimization problems 

can be expressed as the problem of calculating the shortest path between two nodes in a graph. 

The 𝐾 optimal solution is to calculate the KSP between two nodes. KSP algorithms for finding 

the KSP have been applied in various fields, such as transportation and communication systems 

as well as robot path planning [5-8]. A detailed discussion of the applications of the KSP 

algorithms was provided by Eppstein [4]. The KSP problem is attracting increasing attention in 
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research. 

To date, several research results have been obtained on the KSP problem [9-23]. The earliest 

literature on KSP dates back to Hoffman and Pavley (1959) [9]. Dreyfus (1969) [3] developed an 

efficient algorithm for solving KSP with a time complexity of 𝑂(𝐾𝑛log𝑛). Yen (1971) [10] 

proposed an algorithm with a time complexity of 𝑂(𝐾𝑛3). Lawler (1972) [11] proposed an 

algorithm with a time complexity of 𝑂(𝑘𝑛(𝑚 + 𝑛log𝑛)) . Katoh et al. (1982) [12], whose 

algorithm has a time complexity of 𝑂(𝐾(𝑚 + 𝑛log𝑛)) , improved Yen’s algorithm. Eppstein 

(1998) [4] proposed an algorithm with 𝑂(𝑚 + 𝑛log𝑛 + 𝑘𝑛), which significantly improved the 

efficiency of the KSP algorithm. However, the data structures adopted in his algorithm are 

complex. More literature related to the KSP can be found in the website established by Eppstein 

(http://liinwww.ira.uka.de/bibliography/Theory/k-path.html). 

Studies on the KSP problem are limited to the static KSP problem. In real networks, the costs 

of network arcs and nodes are often dynamic and stochastic. The states of the arcs and nodes 

always change over time. The states cannot be determined before arriving at the arcs and nodes. 

Therefore, the costs of the shortest path are a function of stochastic events, which are subject to a 

certain probability distribution. Each arc and node is interrelated with neighboring arcs and nodes 

in a dynamic stochastic network. The events, which happen somewhere in the network, do not 

only affect an arc or a node of the network; they also tend to affect the arcs and nodes of 

neighboring regions. For example, in a traffic network, one unexpected traffic accident would not 

only block the traffic flow at the location of the accident, but it would also affect the traffic 

situations of neighboring regions or even block the neighboring intersections. Traditional KSP 

algorithms can solve the static KSP problem, but not the dynamic stochastic KSP problem.  

The purpose of this paper is to study further the dynamic stochastic KSP problem (the paper 

is only concerned with the 𝐾 simple shortest path, i.e., loopless path), and to examine the use of 

genetic algorithm in solving the problem. The remaining parts of the paper are organized as 

follows. Section 2 provides the network symbols and the description of the KSP problem. The 

dynamic stochastic KSP problem is analyzed in Section 3. Section 4 explores a genetic algorithm 

for solving the dynamic stochastic KSP problem. The genetic operators are designed according to 

the characteristics of the network. Section 5 discusses the Nanjing City transportation network as 

the experimental object, and then verifies the KSP algorithm proposed in this paper. The last 

section summarizes the paper and discusses the future applications of the algorithm. 

2. Notation 

The network is described with graph 𝐺 = {𝑉, 𝐸, 𝑊}, which comprises three parts: a non-null 

node set 𝑉 = {1,2, . . . , 𝑛}, one arc set 𝐸𝑣×𝑣 (|𝐸| = 𝑚), and the set of cost (weight) functions 𝑊. 

Each node in the graph has a cost 𝑊𝑖, and each arc 𝑒𝑖𝑗 = (𝑖, 𝑗) ∈ 𝐸 in the graph is endowed with 

a cost 𝑊𝑖𝑗. The value of the cost is non-negative. Loops and multiple arcs are not allowed in the 

graph. 
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Fig. 1. Network model 
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Definition 2.1 A path is an alternating sequence of limited nodes and arcs. A path from source 

node 𝑠 to destination node 𝑑can be expressed as 𝑟(𝑠 = 𝑖, 𝑒𝑖𝑗 , 𝑗, 𝑒𝑗𝑘, 𝑘, ⋯ , 𝑛 = 𝑑). Circles are not 

allowed in the path. 

The 𝐾  paths from the source node 𝑠  to destination node 𝑑  are denoted by 

𝑟1(𝑠, 𝑑), 𝑟2(𝑠, 𝑑), … , 𝑟𝑘(𝑠, 𝑑). The set 𝑅(𝑠, 𝑑) represents the collection of all paths from the source 

node 𝑠 to destination node 𝑑. The total cost of the path 𝑟(𝑠, 𝑑) is the sum of the costs of the nodes 

and the arcs through which the path passes. This cost is denoted by  

𝑙𝑟 = ∑ 𝑤𝑖𝑗(𝑖,𝑗)∈𝑟 + ∑𝑤𝑖 + ∑𝑤𝑗. If 𝑤 denotes stochastic variables, then 𝑙𝑟  is a stochastic variable 

as well. 

3. Problem definition 

The costs of arcs and nodes are deterministic in traditional KSP problems. However, the state 

of the arcs and nodes cannot be determined in advance. In the network 𝐺, the state of the nodes 

and arcs passed through by one path always changes over time, and the arcs and nodes are likely 

to be blocked under a certain probability. The arcs and nodes have two possible states, namely, 

blocked or unblocked. All arcs and nodes are interrelated. One blocked arc (or node) may cause 

other arcs (nodes) to be blocked. In such a case, using the probability model is more appropriate. 

Definition 3.1 In a given network 𝐺 = {𝑉, 𝐸, 𝑊𝑒(𝑡), 𝑊𝑖(𝑡)}, 𝑉 is a non-empty set of nodes, 𝐸 

is a set of arcs, 𝑊𝑒(𝑡) is the set of the cost functions of arcs, the arc cost is a stochastic process, 

𝑊𝑖(𝑡) is the set of the cost functions of nodes, node cost is a time-dependent discrete stochastic 

variable, and the network 𝐺 is the dynamic stochastic network. 

In a dynamic stochastic network, the arc cost can be modeled as a continuous stochastic 

process, which is denoted by {𝑊𝑒(𝑡), 𝑡 ∈ 𝑇}, where 𝑊𝑒(𝑡) denotes the cost of arc 𝑒, 𝑡 is the time 

spent to arrive at the tail node of arc 𝑒, and 𝑇 is a continuous time parameter set. In 𝑇 = [𝑡0, 𝑡𝑚], 
i.e., [𝑡0, 𝑡𝑚] is a closed interval of the interest time and 𝑡 ∈ [𝑡0, 𝑡𝑚], 𝑡0 is the earliest departure 

time in the network, and 𝑡𝑚 is the endpoint of the interval. In 𝑊𝑒(𝑡) = ∞, 𝑡 > 𝑡𝑚, 𝑊𝑒(𝑡) is a 

continuous stochastic variable for each instance 𝑡, and its probability density function is expressed 

as 𝑓𝑤𝑒
(𝑤𝑒 , 𝑡). When the flow of the arc rises to a certain level, the neighboring nodes may be 

blocked at a certain blockage probability, which is time-dependent. When one node 𝑖 is blocked, 

the cost of the node 𝑊𝑖(𝑡) is a positive value, whereas when the node is unblocked, its cost is 0. 

When the volume and velocity of the arc flow rises, the volume and velocity of the node flow 

will also rise, and the blockage probability of nodes will become larger. The flow of the 

neighboring arc will be reassigned if one node is blocked. The arcs that are connected with the 

node will be blocked, and the cost of the arcs adjacent to the node will also change. These analyses 

indicate that the arcs and nodes in the network are interrelated. The 𝑊𝑒(𝑡) and 𝑊𝑖(𝑡) constitute a 

stochastic vector (variable):  𝑉 = {𝑊𝑒1
(𝑡), ⋯ , 𝑊𝑒𝑚

(𝑡), 𝑊1(𝑡), ⋯ , 𝑊𝑛(𝑡)} . The joint probability 

density function of this vector can be expressed as: 

 𝑓{𝑤𝑒1
(𝑡), ⋯ , 𝑤𝑒𝑚

(𝑡), 𝑤1(𝑡), ⋯ , 𝑤𝑛(𝑡)}. 

The problem of calculating the KSP in a dynamic stochastic network is called the dynamic 

stochastic KSP problem. The main difference between dynamic stochastic KSP problems and the 

traditional KSP problems is the non-deterministic cost of arcs and nodes in the dynamic stochastic 

network. Only their statistic and probability distributions are known, i.e., 𝑙𝑟  is a stochastic variable. 

Solving the dynamic stochastic KSP problem involves finding the KSP among all the paths from 

the source node 𝑠 to the destination node 𝑑. 

Given a path from the source node 𝑠 to the destination node 𝑑: 𝑟(𝑠 = 𝑖, 𝑒𝑖𝑗 , 𝑗, 𝑒𝑗𝑘, 𝑘, … , 𝑛 = 𝑑). 

The joint probability density function of this path is  

𝑓𝑟 = ∫ ⋯ ∫ 𝑓(𝑤𝑒1
, ⋯ , 𝑤𝑒𝑚

, 𝑤1, ⋯ , 𝑤𝑛)𝑑𝑤𝑒𝑞
⋯ 𝑑𝑤𝑣, where 𝑒𝑞 and 𝑣 are the arcs and nodes that 

the path does not pass through. Given 𝑢 paths from node 𝑠 to node 𝑑, the probability of the total 

costs of the path 𝑟𝑖 less than the other paths is 𝑝𝑟𝑖
(𝑙𝑟𝑖

≤ 𝑙𝑟1
, ⋯ , 𝑙𝑟𝑖

≤ 𝑙𝑟𝑘
, ⋯ , 𝑙𝑟𝑖

≤ 𝑙𝑟𝑢
), 𝑘 ≠ 𝑖. The 
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following definition is derived from this equation. 

Definition 3.2 The path 𝑟, which meets the condition,  

𝑝r = 𝑀𝑎𝑥
𝑖=1,2,⋯,𝑢

𝑝𝑟𝑖
(𝑙𝑟𝑖

≤ 𝑙𝑟1
, ⋯ , 𝑙𝑟𝑖

≤ 𝑙𝑟𝑘
, ⋯ , 𝑙𝑟𝑖

≤ 𝑙𝑟𝑢
), is defined as the dynamic stochastic shortest 

path. 

This path is the probabilistic shortest path with a probabilistic advantage over other paths. This 

path has the least expected cost and the lowest blockage probability among all paths.  

𝑝𝑟𝑖
= ∫ ⋯

𝐺(𝑙𝑟𝑖
≤𝑙𝑟1 ,⋯,𝑙𝑟𝑖

≤𝑙𝑟𝑢)
∫ 𝑓(𝑙𝑟𝑖

, ⋯ , 𝑙𝑟𝑢
)𝑑𝐿, 𝑓(𝑙𝑟1

, ⋯ , 𝑙𝑟𝑢
) is the joint probability density function 

of paths 𝑟1, ⋯ , 𝑟𝑢. 

The dynamic stochastic KSP problem determines a set of 𝐾 (given an integer 𝐾 > 1) paths. 

The set is denoted as 𝑅𝐾 = {𝑟1(𝑠, 𝑑), 𝑟2(𝑠, 𝑑), ⋯ , 𝑟𝑘(𝑠, 𝑑)}, where 𝑅𝐾 is a subset of the set 𝑅(𝑠, 𝑑), 

i.e., 𝑅𝐾 ⊂ 𝑅(𝑠, 𝑑). The set 𝑅𝐾 meets the following conditions: 

(1) 𝑝𝑟𝑘−1
> 𝑝𝑟𝑘

, 𝑘 ∈ {1, ⋯ , 𝑘}; 

(2) 𝑝𝑟𝑘
> 𝑝𝑟 , 𝑟𝑘 ∈ 𝑅𝐾 and 𝑟 ∈ 𝑅 − 𝑅𝑘; 

(3) In turn, these conditions determine the elements of the set 𝑅𝐾 , i.e., the path 𝑟𝑘−1  is 

determined before the path 𝑟𝑘. 

Calculating 𝑝𝑟 is extremely complex because large-scale complexity requires a large amount 

of computations. Thus, a compromise between accuracy and computability should be obtained. 

One cost (𝑊) of the network at a certain moment always distributes in one continuous interval, 

not in different intervals. So we can derive the following property based on the knowledge of 

probability theory [24]: 

Property 3.1 Given two stochastic variables 𝑋 and 𝑌, 𝑋 distributes in one continuous interval, 

and the expectations of 𝑋 is 𝐸(𝑋); 𝑌 distributes in one continuous interval, and the expectations 

of 𝑌 is 𝐸(𝑌). Then, 𝐸(𝑋) ≤ 𝐸(𝑌) ⇔ 𝑝(𝑋 ≤ 𝑌) ≥ 0.5  𝐸(𝑋). 

Proof: Assuming 𝐸(𝑋) ≤ 𝐸(𝑌), the result 𝑝(𝑋 ≤ 𝑌) ≤ 0.5 is correct. However, this result is 

impossible. For example, given two independent stochastic variables 𝑋 and 𝑌 with the following 

probability density functions: 

𝑓𝑋(𝑥) = {
1 2,⁄ 6 < 𝑥 < 8,
0, else,

   𝑓𝑌(𝑦) = {
1 8⁄ , 4 < 𝑦 < 12,
0, else,

   

the joint probability density function of (𝑋, 𝑌) is then given as: 

𝑓(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) = {
1 16⁄ , 6 < 𝑥 < 8, 4 < 𝑦 < 12,
0, else.

 

We can determine 𝐸(𝑋) = 7 < 𝐸(𝑌) = 8, but 𝑝(𝑋 ≤ 𝑌) = ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝛺

= 0. 625 > 0.5 

(𝛺 is the area that is composed of 6 < 𝑥 < 8, 4 < 𝑦 < 12 and 𝑥 ≤ 𝑦). This result is contradictory 

to 𝑝(𝑋 ≤ 𝑌) ≤ 0.5.  Thus, the conclusion 𝐸(𝑋) ≤ 𝐸(𝑌) ⇒ 𝑝(𝑋 ≤ 𝑌) ≥ 0.5  is obtained. 

Similarly, 𝑝(𝑋 ≤ 𝑌) ≥ 0.5 ⇒ 𝐸(𝑋) ≤ 𝐸(𝑌) is obtained. 

Therefore, 𝐸(𝑋) ≤ 𝐸(𝑌) ⇔ 𝑝(𝑋 ≤ 𝑌) ≥ 0.5.  

The property shows that the path 𝑋 has probabilistic advantage over the path 𝑌 because the 

expected cost of 𝑋 is less than that 𝑌. Thus, we can find the path with maximum probabilistic 

advantage by comparing the expected costs of the paths. However, finding the path with 

probabilistic advantage in large-scale networks remains difficult because of the huge volume of 

computation. The analyses in the introduction indicate that the traditional KSP algorithms cannot 

find the KSP in dynamic stochastic networks. The dynamic stochastic KSP problem is an NP-hard 

problem. Thus, no existing polynomial time algorithm can be used. A new algorithm should be 

proposed to solve the problem. The genetic algorithm has excellent performance in searching 

spaces with large solutions, and can compromise between efficiency and accuracy. The genetic 

algorithm has been used in the shortest path problem and has achieved robust results [25-27]. The 

superiority of the genetic algorithm is proven in such problems. In this paper, we propose a 

dynamic stochastic KSP algorithm based on the genetic algorithm to solve the dynamic stochastic 

KSP problem. 
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4. Dynamic stochastic KSP genetic algorithm 

4.1. Rules in chromosome encoding  

Chromosome encoding involves two modes: binary and real number encoding. The orderly 

aligned connected nodes in the network form a path. Adopting the ordered real number encoding 

mode to denote the paths in network is more reasonable. Therefore, the chromosome is naturally 

composed of a positive integer sequence that represents the nodes of a path. The genes of the 

chromosome are the nodes of the path, and each gene position represents a node position in the 

path. 

The first gene of the chromosomes is the source node, whereas the last gene is the destination 

node. The lengths of the chromosomes are between 2 and 𝑁, where 𝑁 is the total number of the 

nodes in the network. The number of nodes of a path is not more than 𝑁 because loops are not 

allowed in the path. The length of the chromosome is variable because the numbers of the nodes 

of different paths are not the same. Thus, adopting the real number encoding mode, whereby the 

length is variable according to the number of the nodes of the path, is reasonable. This encoding 

mode is suitable when the number of nodes of different paths that connect the same source node 

and destination node are different. In such a situation, the fixed-length chromosome encoding 

mode will occupy a huge search space, which will reduce the efficiency of the algorithm. Figure 2 

is given as an example. This figure shows a path from node 1 to node 5: 1 → 2 → 7 → 10 → 4 

→ 5 (directed network is used as an example to illustrate the KSP algorithm in this paper. The 

algorithm can be easily transplanted to the undirected network). Figure 3 shows the chromosome 

code.  

1

8 9

5
12 10

2

11 3 6

7

4

 

1

2

7

4

5
10

1 2 7 4 510

path

encoding
 

Fig. 2. One directed network Fig. 3. Example of chromosome encoding 

4.2. Population initialization  

Genetic algorithm has strong robustness that is based on the diversity of the initial population. 

In a genetic algorithm, the quality of the initial population directly affects the convergence speed 

and results of the algorithm. 

A number of arcs are usually connected to a node (the node out-degree is more than 2), and 

finding a potential path from the source node to destination node is difficult in a large-scale 

network composed of thousands of nodes and arcs. From the source node, an adjacent node is 

stochastically selected as the next node, and this operation is continued until the destination node 

is reached. Finding a path via this method is time-consuming and not feasible given the low 

efficiency. Hence, the following heuristic method is designed to carry out the population 

initialization; this method has higher efficiency, and can avoid the loops and the dead point. The 

steps in this method are briefly described as follows. 

Step 1: Assign a weight to each arc based on prior knowledge. 

Step 2: Set the source node as the first gene of the chromosome, excluding arcs with an out-

degree of 1 among arcs whose tail node is the source node. Then, mark the head node of the arc, 

which has minimum weight, as the next node (second gene) of this path. 
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Step 3: Step 2 is continued, to seek the third node (unmarked node) as the third gene. This 

process is repeated, to seek other genes until the destination node is reached and an initial 

chromosome is obtained. 

Step 4: When the required population is obtained, the initialization process is terminated; 

otherwise, Steps 2 and 3 are repeated to calculate the succeeding chromosome. 

4.3. Selection operation 

Selection allows high-quality chromosomes to have more opportunities for replication in the 

next generation and thereby improve the quality of the entire population. Selection operation 

allows the algorithm to search for solutions in a space of promising solutions. The normal selection 

mechanisms are roulette wheel selection, (𝜇 + 𝜆) selection, and competition selection. 

The fitness function is used to evaluate the potential optimal solutions; selection operation 

chooses chromosomes based on their fitness value. In this paper, a low fitness value is regarded 

as a viable solution. We define the fitness function as the sum of the expected costs of the nodes 

and arcs of the path from source node 𝑠  to destination node 𝑑 . The fitness value of the 𝐾 th 

chromosome can be expressed as follows: 

𝑒𝑣𝑎𝑙(𝑘) = ∑𝐸(𝑊𝑖(𝑡)) + ∑𝐸(𝑊𝑒(𝑡)). (1) 

This paper adopts the roulette wheel selection method proposed by Holland to select 

individuals [28]. The basic principle is that the probability of an individual being selected is 

determined according to the proportion of the fitness value of each chromosome to the sum of 

fitness values of all chromosomes. 

4.4. Crossover operation 

Another highly important component of the genetic algorithm is the crossover operation. A 

robust crossover operator can improve the search efficiency of a genetic algorithm. The path 

crossover operation exchanges two sub-paths of parent chromosomes. Population initialization 

causes the chromosomes to have the same source and destination nodes. The crossover operation 

is performed in selected chromosomes in two situations. First, when identical nodes are present in 

the two parent chromosomes (except the source and destination nodes), and the second, when no 

identical nodes are present. 

In the first situation, the crossover operation is performed between identical nodes. In case of 

multiple identical nodes, one identical node is stochastically selected as the cross-location. 

Figure 4(a) illustrates the crossover operation (the network in Figure 2 is used as example).  

 
(a) 

1 8 910

1 2 3 7 4

5

1 8 10

1 2 3 9 510

1

2

1

2

6 5

7 4 6 5

7

Parent 

Parent 

Offspring 

Offspring 
 

(b) 

Fig. 4. Example of a crossover operation 

Most real networks are incomplete networks in the second situation because illegal individuals 

can be generated in the crossover operation. Hence, the crossover operator needs to be improved 
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to alter the illegal individuals. Further, using the network in Figure 2 as an example, given two 

paths (1 → 8 → 10 → 9 → 5 and 1 → 2 → 3 → 7 → 4 → 6 → 5) from source node 1 to destination 

node 5 selected as parent chromosomes, a pair of gene positions, e.g., {10, 3}, are stochastically 

selected as the location for the crossover operation. The offspring chromosome 2 that is generated 

during the crossover operation is an invalid path because no arc exists between nodes 3 and 9. 

Thus, the offspring needs to be altered. This procedure is accomplished through the heuristic 

method described in Section 4.2, whereby an effective path is established from node 3 to node 9 

to turn offspring chromosome 2 into a legal path (shown in Figure 4(b)). 

4.5. Mutation operation  

Path mutation operation generates another chromosome from one chromosome through 

mutation. Given the constraints of the topological relations in an incomplete network, operation 

mutation may generate illegal individuals. The mutation operator needs to be improved, thus, we 

designed the following mutation operator. 

Step 1: The gene position to be mutated at a certain probability is stochastically selected. 

Step 2: The selected gene and its adjacent genes compose a subpath, and another subpath is 

used to replace this subpath. 

In illustrating the above steps, we continue to use the network in Figure 2 as example. Given 

node 4 as the gene selected for mutation in the chromosome, 1 → 8 → 10 → 7 → 4 → 6 → 5 is 

generated in the crossover operation described above, then node 4 is removed from the path, and 

another legal subpath is identified between nodes 7 and 6, as shown in Figure 5.  

1 8 10 7 4 6 5

1 8 10 7 3 6 5

Parent 

Offspring 
 

Fig. 5. Example of a mutation operation 

4.6. Proposed algorithm  

The following is a formal description of the 𝐾 shortest paths genetic algorithm: 

Begin 

Step 1: input 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒, 𝑝𝑐, 𝑝𝑚, 𝑀𝑎𝑥𝑔𝑒𝑛, 𝐾, 𝑝(𝑘).  

Step 2: Initialize the population. 

Step 3: Calculate each chromosome’s fitness value 𝑒𝑣𝑎𝑙(𝑘) using 𝑝(𝑘) to save the first 𝐾 

shortest paths. 

𝑔𝑒𝑛 ← 1  

do 

Step 4: Execute selection operation. 

Step 5: Execute crossover operation. 

Step 6: Execute mutation operation. 

Step 7: Calculate the fitness value of each chromosome: 𝑒𝑣𝑎𝑙(𝑘). 

Step 8: Compare the shortest path generated during the last iteration operation 

with the 𝐾 shortest paths saved in 𝑝(𝑘) during the previous iteration operation. If better than any 

of the 𝐾 shortest paths, then the worst path in 𝑝(𝑘) is replaced with the shortest path generated 

during the last iteration operation. 

𝑔𝑒𝑛 + +  

while (𝑔𝑒𝑛 <= 𝑀𝑎𝑥𝑔𝑒𝑛) 

Step 9: Output 𝐾 shortest paths. 

End 
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5. Computational experiment  

We consider a transportation network described by a directed graph that is composed of a finite 

set of nodes and a finite set of arcs (Nanjing transportation network, Figure 6). In the Nanjing 

transportation network, each arc and node whose out-degrees are not zero are associated with a 

generalized cost, such as the travel-time or the distance or delay caused by blockage, and so on. 

This paper considers the travel-time of the arcs and the delay of the nodes as generalized cost 

without loss of generality. We assume that the travel-time of each arc is a continuous stochastic 

process and whose probability distribution depends on when to arrive at the tail node of the arc; 

further, we assume that the delay of each node is a discrete stochastic process and whose 

probability distribution depends on when to arrive at the node. 

  
Fig. 6. Nanjing traffic network (the right figure is one enlarged area) 

The Nanjing transportation network has 2,668 arcs and 1,677 nodes. The rush hour (6:30 am 

to 8:30 am) was selected as the time interval for research. Due to the lack of statistical data on 

real-time traffic conditions, this paper built a simple dynamic stochastic network. The travel-time 

of the arcs and the delay of the nodes are expressed discretely; the selected time extent is divided 

into 10 sections, each composed of a 12 minute interval. The travel-time of each arc is subject to 

a certain normal distribution [29]. For instance, between 8:00 am and 8:30 am, the travel time of 

the arc from Jiuhua hotel to White Horse Park is subject to a normal distribution 𝑁(3, 22) (in 

minutes). The delay of each node is subject to a certain discrete distribution, e.g., the blockage 

probability of the intersection where Beijing East Road and Taiping Road intersects is 0.1, which 

causes a 4 minute delay, and thus, the expected delay of the intersection is 0.4 minute. 

Using GIS software ArcGIS 10 as platform, the proposed algorithm is realized by simulation 

programming using C# development tools under the development environment VS. NET. The 

following genetic algorithm parameters are selected: population size 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 = 50, crossover 

probability  𝑝𝑐 = 0.85, mutation probability  𝑝𝑚 = 0.02, maximum evolution generations 

𝑀𝑎𝑥𝑔𝑒𝑛 = 200, and 𝐾 = 5 (the five shortest paths are calculated). Nine pairs of source-

destination nodes are selected stochastically from the transportation network to calculate the KSP. 

Experiment results are shown in Table 1. These results demonstrate convergent computational 

results, robust performance by the algorithm in convergence, and the average calculation time of 

less than 3 seconds, indicating high efficiency of the algorithm. 
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Table 1. Experimental results 

Sequence 

number 

Pairs of source-destination nodes 𝐾 shortest paths (min) Average 

computation 

time (s) 
Source node Destination node First Second Third Forth Fifth 

1 Suiyuan Xianhe  35.6 38.5 42.1 44.8 46.2 2.1 

2 Battery plant Xiazhang village 51.8 54.3 56.3 59.5 62.7 4.2 

3 Audit college Qingma village 37.3 38.6 41.2 43.3 45.0 2.8 

4 Xingrong village Xichang lane 42.5 43.6 44.4 47.4 49.9 3.7 

5 
Nanjing railway 

station 
Kazimen plaza 30.5 31.7 32.2 35.7 38.1 2.2 

6 
Nanjing west 

railway station 
Sci & Tech college  36.2 37.9 39.4 40.8 42.6 2.8 

7 Chaotian palace Yaohua new village  34.9 36.5 37.2 40.7 42.3 2.3 

8 Forestry college Dianyaju 25.5 26.2 27.8 29.4 32.2 1.2 

9 Zhangjiawan Wulongshan park 68.3 70.6 73.2 76.8 81.4 4.5 

6. Conclusions 

This paper studied the dynamic stochastic KSP problem. The dynamic and stochastic 

characteristics of a network were analyzed. The costs of the arcs and nodes were modeled as 

stochastic processes, and based on these, the concept of probabilistic KSP was proposed. The basic 

methods and strategies of applying the genetic algorithm to the KSP problem were explored; one 

dynamic stochastic KSP genetic algorithm was proposed to solve the dynamic stochastic KSP 

problem. The following conclusions were drawn: 

1) The dynamic and stochastic characteristics of a network were not considered in the 

traditional deterministic KSP algorithms. However, most real networks, as well as the costs of 

arcs and nodes, are dynamic and stochastic. The principle of optimality proposed by Bellman is 

not suitable for solving the dynamic stochastic KSP problem. 

2) The states of the arcs and nodes in the network are always interrelated. The interrelation of 

the arcs and nodes are more significant to the probabilistic shortest path model than to the 

traditional network model. Due to the complexity of large-scale networks, the amount of 

computation is too huge to calculate directly the 𝐾  probabilistic shortest paths. Based on the 

relation between the expected and the probabilistic advantage of the stochastic variable, we can 

find the probabilistic advantage shortest path by comparing the expectations. 

3) The genetic algorithm has the ability to search a space of large solutions efficiently, and is 

very suitable in solving large-scale network combinatorial optimization problems. However, 

genetic operators should be improved according to the characteristics of the network. 

Experimental results demonstrate viable convergence and high efficiency of the proposed 

algorithm, which effectively solved the dynamic stochastic KSP problem. Thus, the genetic 

algorithm is an effective tool for solving such problems. 

4) The model and algorithm proposed in this paper can be applied to communication networks, 

transportation networks, goods flow networks, and so on. For example, the algorithm can be used 

in intelligent transportation systems to guide vehicles dynamically, thus helping travelers reach 

their destinations quickly and easily. Therefore, the length of time that vehicles stay in the traffic 

network is reduced. The algorithm can significantly guide traffic flow and ease congested 

transportation. 
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