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Abstract 

Natural frequencies and mode shapes of a structure change whenever a structure has any kind of damage.  
However, detection of location and magnitude of damage has always been difficult.  This paper presents a technique to 
locate and quantify the damage when the natural frequencies and mode shapes of undamaged and damaged structure are 
known.  First, the structure is modeled using finite element formulation. Each element is assigned a damage index that is 
initially zero for undamaged condition. Modal analyses of undamaged and damaged structures are performed. The damage 
indices are computed using non-negative least squares method. Results based on aluminum beams are presented to 
establish the effectiveness of this method. 

 
Keywords:  Damage detection; Modal parameters; Finite Element Analysis; Experimental Modal Analysis, Non-negative 
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NOTATION 
 
K   Global stiffness matrix of undamaged structure 
M  Global mass matrix of undamaged structure 
K   Global stiffness matrix of damaged structure 
M   Global mass matrix of damaged structure 

ek   Element stiffness matrix of undamaged structure 

ek   Element stiffness matrix of damaged structure 

em  Element mass matrix of structure 

Φ    Eigenvector matrix of undamaged structure 
Φ   Eigenvector matrix of damaged structure 

eα   Damage index of the eth element 

λ   Eigenvalue of undamaged structure 

λ   Eigenvalue of damaged structure 
 
1. INTRODUCTION 
 
         Identification of damage in a structure is always of 
paramount importance because an early detection may 
help prevention of catastrophic failure when the damage 
reaches certain critical value. Non-destructive damage 
identify-cation methods using vibration modal parameter 
(i.e. natural frequencies, mode shapes, transfer functions, 
change in frequency response function curvatures) have 
attracted extensive interest in the past.  Some researchers 

explored change in natural frequencies due to damage as 
reviewed by Salawu [1]. However, detection of damage by 
just variation of natural frequencies would require large 
damage before it could be detected. Friswell [2] proposed 
a damage identification method based on catalog of likely 
damage scenarios.  He introduced a power law relation 
between frequency shifts of first several modes of 
undamaged and all possible damage scenario.  However, 
this approach requires prior knowledge and cataloging of 
all possible damage scenarios, which may not be possible 
always.  Stubbs and Oseguenda [3] proposed a method in 
which an error function for each structural member is 
computed assuming only one member is damaged.  
However, in case more than one member is damaged, this 
approach may not be used. 
 West [4] used change in modal assurance criteria to locate 
the damage. Pandey et al [5] used the absolute change in 
mode shape curvature as indicator of damage.  Pandey and 
Biswas [6] proposed damage detection based on changes in 
measured flexibility of the structure. However, for 
structures with rigid body modes, flexibility matrices are 
not available.  Maia et al [7], Silva et al [8], and Davis and 
Wicks [9, 10] proposed usage of curvature of frequency 
response functions. Moslehy [11] showed how modal 
parameters change for damaged beams but did not present 
any theoretical basis as to how the damage will be located 
i.e. how to solve the inverse problem. Zhou [12] studied for 
his MS thesis how modal parameters of damaged and 
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undamaged beams can be used to locate and quantify the 
damage. This paper is based on that thesis work.  Damage 
detection based on frequency measurements continues to 
be of interest to the researchers as evident by the recent 
paper by Kannappan et al [13] where they studied damage 
in cantilever beams. 

Here in this paper a method is proposed which utilizes 
only the modal parameters (natural frequencies and mode 
shapes) of damaged structures obtained from experiment 
and modal parameters and stiffness and mass matrices of 
undamaged structures from finite element analysis of 
original or undamaged structures.  It may be noted that 
even for structures where modal analysis is difficult to 
perform due to ambient excitation; operational modal 
analysis can be performed to obtain the modal properties.  
However, operational modal analysis should not be 
performed unless the excitation force Gaussian white as 
shown by Rudroju et al [14]. 
      Application of the damage quantification method 
presented in our paper is demonstrated using aluminum 
beams though the concept is applicable for any general 
structure. First in finite element analysis the structure is 
discretized into n elements and a damage index eα  (which 

represents the magnitude of damage) is assigned to the eth 
element, e∈[0, n]. The magnitude of α  varies form 0 to 1 
where 0 indicates no damage and 1 indicates complete loss 
or removal of the element. The subscript e denotes the 
element number. Thus, knowledge of eα for all the 

elements in a structure provides complete information 
about the magnitude and location of the damage. 
     Typically whether by measurement or by computation, 
either way only first few natural frequencies and mode 
shapes are obtained (instead of all natural frequencies or 
mode shapes equaling the degrees of freedom).  Thus, 
computation of damage indices involves solving linear 
algebraic equations simultaneously with more unknowns 
than equations (a case of underdetermined problem) and to 
overcome this difficulty non-negative least squares method 
(Lawson and Hanson [15]) is used.  Theoretical details of 
how natural frequencies and mode shapes of damaged and 
undamaged structures and stiffness and mass matrices of 
undamaged structures are used to apply non-negative 
squares to solve for damage location and quantification are 
presented next. 

 
THEORY: 

 
In finite element analysis, a structure is discretized into 

a finite number of elements of small size. In this particular 
case, beam elements with two degrees of freedom 
(transverse displacement and slope) are chosen. The 
structure is discretized into n elements and the stiffness 

matrix ek  and mass matrix em of the eth element (Gupta 

and Foster [16]} are: 
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where E = the Young’s modulus, I = the moment of inertia of 
the cross section, h = length of the element, ρ  = the density 

of the aluminum beam, and A = the cross section area of the 
aluminum beam.   

If there is a damage located in the eth element, it is 
modeled as an effective decrease of the bending stiffness EI 
to ĒĪ.  Consequently, the stiffness matrix of the eth element of 

the damaged structure ek  is given by: 
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      Global stiffness matrices K, K  and global mass 
matrices M, M  are obtained by assembling all discretized 
elements where K and M  are stiffness and mass matrices 
of the undamaged structure and K , M  are stiffness and 
mass matrices of the damaged structure.  For an 
undamaged structure, the eigenvalue and the associated 
eigenvector matrices satisfy the equation: 
 

              0)( =Φ− MK λ                                                (4)   
 

        For the damaged structure, the resulting eigenvalue 
problem becomes: 
 

       0)( =Φ− MK λ                                                        (5) 
 

        The change in the stiffness of the eth element due to 
the damage is defined as: 
 

       ekeekekek α=−=∆                                  (6) 
 

where eα is the damage index of the eth element (Araujo 

dos Santos et.al, [17]), eα ∈[0, 1].  When eα = 0, there is 

no loss of stiffness on the eth element (i.e. there is no 

damage).  When eα = 1, the eth element completely fails.  

     The global stiffness matrices for both undamaged and 
damaged structure are available by assembling elemental 
stiffness matrices: 
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The global mass matrix is assumed unchanged before and 
after damage, which is a reasonable assumption in most 
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real applications leading to MM = . Premultiplying 

equation (5) by TΦ and taking transpose of consequent 

equation on both sides will result in: 
 

ΦΦ=ΦΦ TMTTKT λ ΦΦ= TMTλ                        (7) 
 

Stiffness and mass matrices being symmetric matrices 
(Ewins, [18]), the equation above becomes: 
 

     ΦΦ=ΦΦ MTKT λ  
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                             ( ) ΦΦ−ΦΦ= MTMT λλ  

                             ( ) ΦΦ−= MTλλ                               (8) 
 

The equation (8) also can be written as: 
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     Let us assume that i and j  are the number of 

eigenvalues (and eigenvectors) obtained for the 

undamaged and damaged structure.  Since the total 
number of degrees of freedom is 2n+2, it may be noted 
that i ≤ 2n+2 and j ≤ 2n+2.  Equation (9) involves n 

damage indices as variables. Next the coefficients of these 
damage indices are collected and put into a matrix A that 
has the dimension of nm× , where )( jim ×= . Solution 

of equation (9) implies solution of a set of linear algebraic 
equations of the form: 
    

           { } { } 11 ×=×× mbnnmA α                                     (10) 

 
where { }b comes from the right hand side of the equation 

(9).  If nm =  and mArank =)( , the equation (10) is 

consistent.  If nm >  and nArank ≤)( , the equation (10) is 

overdetermined. Also if mn >> and mArank ≤)( , which 

is the case with most applications, the equation (10) is 
underdetermined. Non-negative least squares method 
(Lawson and Hanson, [15]) is used to solve these algebraic 
equations. The solution vector is based on minimization of 

{ } { }bA −α  subject to the constraint that 0≥eα  

 
3. RESULTS 

 
To verify the usefulness and accuracy of this method to 

quantify damage, three aluminum 6061-T6 beams 
(undamaged or case 1 as shown in Figure.1, beam with a 
short through crack or case 2 as shown in Figure 2 and beam 
with a larger through crack at the same location or case 3 as 
shown in Figure 3) were used. Impact modal testing on these 
beams was conducted.  All beams had the same dimensions 
and same material properties. There was no damage in case 1 
and this beam was used as the baseline.  All beams were 
discretized into 5 elements, each with width of 80 mm. It may 
be noted that since the damage (crack) was located at 298 mm 
from left (4 inches from right), it was located in the 4th 
element (for both case 2 and case 3) i.e. between 240 mm and 
320 mm. 
 

 
All dimensions are in mm 

 

       
Fig. 1. Case 1 (Undamaged beam) 

 

 
Fig. 2. Case 2 (Beam with short crack) 
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Fig.  3.  Case 3 (Beam with long crack) 

 
 

Since closed form theoretical solution is available for 
the undamaged beam, natural frequencies obtained from 
experiment (impact hammer modal testing) were compared 

with the theoretical values and the results are presented in  
table 1. Errors were less than 1% indicating satisfactory 
experimental procedure. 

 
 

      Table 1. The experimental and theoretical natural frequencies of undamaged beam 
  

First Four Bending Natural Frequencies (Hz) 
Method 

1 2 3 4 

Experiment 210,9 582,5 1143,2 1875,2 

Theoretical 211,3 582,6 1142,1 1888,0 

Error in % 0.23 0.02 0.09 0.67 

 
 

It may be noted that in experiment by impact hammer 
testing, since response transducer (accelerometer) provides 
only the transverse displacement and not the slope whereas 
in beam finite element formulation slope is also needed; 
cubic spline interpolation was used to obtain the slopes.  
Next, these natural frequencies and mode shapes 
(displacements and interpolated slopes) from the 

experiment along with original stiffness matrices of 
undamaged beams from the finite element were utilized in 
the proposed method to compute the damage indices. 
        Table 2 presents the experimental natural frequencies 
for the three cases.  As expected natural frequencies 
decreased with damages (cuts) because reduction in 
stiffness is more pronounced than reduction in mass.   

 
 

Table 2. The experimental natural frequencies of three aluminum beams 
      

 First Four Bending Natural Frequencies (Hz) 
 1 2 3 4 

Undamaged (Case 1) 210,9 582,5 1143,2 1875,2 

Beam with short Crack (Case 2) 209,0 573,7 1130,3 1856,1 

Beam with Long Crack (Case 3)  207,8 565,5 1116,1 1829,3 

    
 

Table 3 presents the damage indices obtained for case 2 
and table 4 presents damage indices obtained for case 3.  
Damage indices of all elements other than element 4 
(where the crack was located) were found to be zero 
indicating that the damage was located only within 4th 

element and thus validated the proposed method.  The 
magnitude of damage index for case 3 was higher than that 
obtained for obtained for element 4 of case 2 indicating (as 
expected) larger damage for case 3. 

 
 
        Table 3.  Damage indices for damaged beam case 2 
 

Element number Actual Presence of Crack Damage Index Computed Crack Detection by Proposed  Method 

1 No Crack 01 =α  No crack 

 
2 

No Crack 02 =α  No crack 

3 No Crack 03 =α  No crack  

4 Crack Present 1,04 =α  Crack present 

5 No Crack 05 =α  No crack 
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         Table 4.  Damage indices for damaged beam case 3 
 

Element number 
Actual Presence of 

Crack 
Damage Index 

Crack Detection by Proposed 
Method 

1 No crack 01 =α  No crack 

2 No crack 02 =α  No crack 

3 No crack 03 =α  No crack  

4 Longer crack present 17,04 =α  Longer Crack present 

5 No crack 05 =α  No crack 

 
 
 
 
4. CONCLUSIONS 
 
    A non negative least squares method using modal 
parameters of damaged beams obtained through experiment 
and modal parameters as well as stiffness matrices of 
undamaged beam from finite element analysis has been 
developed.  The proposed method was used successfully to 
identify the location and the severity of the damage in the 
aluminum beams.  Since finite element results are easily 
available for undamaged structures and experimental modal 
results are available for damaged structures, this method 
has vast potential for damage detection. 
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