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Abstract. Vertically mounted and cantilevered homogeneous rod with a constant cross section is considered. At the 
unstrained state, the rod’s axis is straight. It is supposed that lateral stiffness is such that the rod buckles in static conditions 
only under gravity and its axis bends. Flexural oscillations of the rod are investigated when its base vibrates vertically. 
Stabilization circumstances of the rectilinearity of the rod’s axis are determined depending on excitation parameters, 
internal and external damping, and rod flexibility.  
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Introduction 
 

The rectilinear homogeneous elastic cantilevered rod 
with a constant cross section is considered. At the 
unstrained state, the rod’s axis coincides with vertical axis 
x  of the rectangular coordinate system xOy  with origin 

placed in the rigid support of the rod (Fig. 1). In the 
absence of external forces the flexible rectilinear rod 
buckles under uniformly distributed along rod length 
gravity and its axis bends (Fig. 1) if lateral stiffness 

parameter 

3

7.839
m g L

EI
>  ( m  - mass of rod length unit, 

L  - length of the rod, E I  - flexural stiffness, g  - 

gravitational acceleration) [1]. 
It is known if the base of the rod subject to vertical 

oscillation when it is possible to back up (stabilize) origin 
rectilinearity of the rod’s axis due to parametric excitation 
at certain frequency and amplitude [2, 3]. In other words, 
the lateral stiffness of such rod increases under parametric 
excitation.  

The purpose of this work is to investigate parametric 
oscillation of the flexible rod and to determine stabilization 
conditions of the rectilinear form of the rod’s axis under 
vertical vibration of its base depending on parameters of 
excitation, internal and external damping, and rod 
flexibility parameter. 
 

 

 
 
Analytical model 
 

It is considered continual model of the flexible rod 
taking into account internal and external (relative to 
absolute space) friction. Behavior of stability domain 
boundaries and parametric resonances are determined on 
the basis of numeric simulation for the purpose to obtain 
obvious and simple results (for next verification). 
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Differential equation describing behavior of the flexible 
rod under parametric excitation was derived in our 
previous paper [2]. At that, it was assumed following:  
 

− the base of the rod oscillates harmonically in vertical 
direction under the law cosU b t= ω , where b - 
amplitude, ω  - frequency of oscillations. 

− the rod’s axis is inextensible; 
− finite rotations of sections are taken into account; 
− rotary inertia of cross sections isn’t considered; 
− expressions for axle curvature κ  and axial 

displacement u  as functions of deflection v  are taken 
into account relative to geometrical nonlinearity of the 
third infinitesimal order, i.e.:  
 

( ) ( )( )

( )

1 22 2 4
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2
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O
−

′′ ′ ′′ ′ ′κ= − = + + ≈

′′ ′ ′ ′ ′≈ + = − − ≈
            (1) 

− external friction is proportional to absolute velocity 

V of the rod’s section with damping coefficient d  

(linear-viscous damping model): 

( )sinV b t u t i v t j=− ω ω +∂ ∂ +∂ ∂ ,   (2) 

where { },i j  – unit vector of the coordinates{ },x y ; 

− Foight’s model is applied to take account of internal 
friction; according to model internal moment  

 

( ) ( )
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, , I
z

t S
M t S E I t S d

t

⎡ ⎤∂κ⎢ ⎥= κ +⎢ ⎥∂⎣ ⎦
, (3) 

where S - angular position of the rod’s section setting from 

the base, Id  - coefficient of internal friction; 

− boundary conditions:  
 

0: 0 , 0 ; : 0 , 0S v v S L v v′ ′′ ′′′= = = = = =  

Nonlinear equation of the third infinitesimal order 
relative to displacements in dimensionless form is given by 
[2]: 
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∫ ∫
  (4) 

 (4) 

where points denote dimensionless time differentiation τ , 
strokes - dimensionless angular position differentiation ζ ; 

boundary conditions:  
 

0: 0 , 0; 1: 0 , 0′ ′′ ′′′ζ= ξ= ξ = ζ= ξ = ξ = . 
 

     The following dimensionless parameters and complexes 
are used here:  
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Solution of motion equation 
 

Possibility in principle of stabilization of the rectilinear 
form of the rod’s axis in case of parametric excitation for 
particular values of the system parameters was shown in 
[2]. At that, single-mode approximation was found with use 
of Galerkin’s technique. In that case, analysis is equivalent 
to research of Kapitsa’s pendulum and results are adduced 
for nonlinear case of finite oscillations amplitude. In this 
paper, domains of excitation parameters are determine 
depending on flexibility parameter and damping (external 
and internal) that provides stabilization of the rod’s vertical 
axis. With purpose to extend analyzable frequency region it 
is used multimodal approximation of the solution:  
 

( ) ( ) ( )
1

,
n

i i
i

q
=

ξ ζ τ ≈ τ ϕ ζ∑  ,                                   (6) 

where ( )iq τ - amplitude functions, ( )iϕ ζ  - coordinate 

functions. 
Let us consider linearized Eq. (4) for determination of 

stability domains of the rod vertical position. After 
substitution Eq. (6) to the linearized equation and 
following orthogonalizaiton with coordinate functions 

( )iϕ ζ  in the range [ ]0,1ζ ∈ , we deduce system of n  

ordinary differential equations for amplitude functions 

( )iq τ  (in Cauchy form): 
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where 1 2x , xq q= = , [ ]1, ... , ...T
i nq q q q= , N and 

Е – accordingly null and unit quadratic matrices with 

dimension n , { } 1,3| , 1, ,k k i j ki j nJ= ==I  - quadratic 

symmetric matrix with dimension n  (matrix 1I  should be 

normalized, 1 EI = ), kijJ  are numbers – definite integrals 

of coordinate functions ( )iϕ ζ  and their derivatives: 

 

( )

1 1

1 2

0 0

1

3

0

, ,

1

ij j i ij j i

ij j i

J d J d

J d

′′ ′′= ϕ ϕ ζ = ϕ ϕ ζ

′ ′=− ϕ ϕ −ζ ζ

∫ ∫

∫
. (8) 

Forms of rod transverse oscillations determining from 
equation 4 0IVϕ −α ϕ=  and respective boundary conditions 

are taken as coordinate functions. Solution of the 
eigenmodes problem of the cantilevered rod is produced 
with help of Krylov’s functions [4]:  

 

( ) ( ) ( ) ( ) ( )2 3 1 4 , 1,i i i i iK K K K i nϕ ζ = α α ζ − α α ζ = . 

 (9) 
Let us limit parameter domain until third main 

resonance for that we take into account first six modes 
6n =  in approximate solution (6). 

Thus, we have five variable parameters for system of 
equations: frequency and amplitude of excitation; 
parameter of rod flexibility; external and internal damping. 

 
Modeling results 
 

Two-parameter domains where stabilization of 
rectilinear form of the rod’s axis is possible were obtained 
as the result of numeric simulation. Stability analysis is 
performed according to Floquet - Lyapunov’s theory. As a 
stability criterion it is taken inequality 

max 1, 1, 2i i nµ < = , where iµ  are multipliers. 

Evolution of multipliers for fixed parameters of 
flexibility 8 critγ γ= > (supercritical rod), external and 

internal damping 0, 0.01iψ ψ= =  and amplitude of 

excitation 0.25β =  for frequency intervals 

[ ] [ ] [ ] [ ]3, 5 ; 15, 20 ; 20, 25 ; 25, 27ω∈  near unit circle on 

complex plane is shown at Fig. 2.  
     At first frequency interval (Fig. 2a), initial magnitude of 
one of the multipliers (solid circles at figure) sets out of the 
unit circle that corresponds to static unstable state (black 
color) when rod is bended under its own weight. With 
increase of excitation magnitude the multiplier crosses unit 
circle at the point { }1,0+ , its end position (star at figure) 

corresponds to the case when vertical form of the rod’s axis 
is stable (grey color). Amplitude – frequency of excitation 
parameter domain corresponding to similar behavior of 
multipliers is shown at Fig. 3a (white regions – stable 

state). Low boundary of stability domain (Fig. 3a – black 
curve) satisfies next inequality: 
 

( ) ( )2 1 2
,

311 311
Crit Crit CritJ J

βΩ> γ−γ β = γ−γ
Ω

 

                                                                                      (10) 
 
(this boundary can be determined with use of asymptotic 
approximation [3] or technique of movement averaging 
[5]).  
     At further increase of excitation frequency, transition 
between stable-unstable values of trivial solution is 
observed on pattern of evolution of multipliers (Fig. 2b, c, 
d). This cases correspond to subresonance at excitation 
frequency 2 22sub pω = =  and to main parametric 

resonance at 2 22 44pω = =  (where eigen frequency of 

bending vibration 2
2 1i i ii iip J Jα= = , 1 3.5,p =  

2 22p = ). 

 
 
 

 
                    a) [ ]3, 5ω∈                      b) [ ]15, 20ω∈  

 
 

 
                 с) [ ]20, 25ω∈                           d) [ ]25, 27ω∈  

 
Fig. 2. Evolution of multipliers, 
8 critγ γ= > , 0, 0.01iψ ψ= = , 0.25β =  

 
 

 
    Multipliers cross unit circle through points { }±1,0  on 

boundaries. Wider instability domain for excitation 
parameters is shown at Fig. 3 b. 
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Let us consider the influence of damping on the 
stabilization of rectilinear form of the rod’s vertical axle. 
Adding of linear damping increases stability regions. It is 
evident on comparison of instability diagrams at 0.01Iψ =  

(Fig. 2a) and 0.025Iψ =  (Fig. 3a).  Presence of external 

friction (Fig. 4,b - 0.31, 0Iψ ψ= = ) relative to internal  

(Fig. 3,b - 0, 0.01Iψ ψ= = ) confines the stable region of 

parameters distinctly (with equivalence of friction: 
4

1 211I I Jψ ψ α ψ≈ = ). External friction provides destabilize 

influence. 
One can analyze influence of the flexibility parameter 

γ    on   stabilization   in   consideration   of   flexibility  –  

 

excitation frequency parameters domain (Fig. 5). Unstable 
value of trivial solution is observed near resonance 
( 1 27, 44ω ω= = ) and subresonance ( 22subω = ) 

frequencies. At that, multipliers at instability boundaries 
cross unit circle at the points { }±1,0 . It is available one 

more tongue at excitation frequency 25ω = . At this case, 
multipliers behave as at Fig. 5 b, namely, they cross unit 
circle at nonzero real and imaginary value points. Such 
type of bifurcation corresponds to combination resonance. 
Note, the rod in the absence of external excitation (static 
condition) buckles at critical value of flexibility parameter 

7,8critγ =  (Fig. 5a), that complies with known analytical 

solution [1]. 

 

 
a)                                                                                                                    b) 

Fig. 3. Instability domains of the supercritical rod 
 

 
a)                                                                                                              b) 

Fig. 4. Instability domains of the supercritical rod 
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Conclusion 
 

Stabilization conditions of rectilinear form of the rod’s 
axis were determined on the research of continual model of 
the flexible rod under parametric excitation. Stability 
domains were showed up, behavior of their boundaries was 
investigated and values of parametric resonances were 
determined.  

Influence of damping on stabilization of rectilinearity of 
the rod’s vertical axis was ascertained. Presence of external 
friction relative to internal limits stability domain of 
excitation parameters distinctly. 
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Fig. 5: a) instability domain of the rod vertical position, 
b) evolution of multipliers on boundaries of resonance-tongue interaction 
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