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Abstract.  The prediction of stochastic crack growth accumulation is important for the reliability analysis of structures as 
well as the scheduling of inspection and repair/replacement maintenance. Because the initial crack size, the stress, the 
material properties and other factors that may affect the fatigue crack growth are statistically distributed, the first-order 
second-moment technique is often adopted to calculate the fatigue reliability of industrial structures. In this paper, a 
second-order third-moment technique is presented and a three-parameter Weibull distribution is adopted to reflect the 
influences of skewness of the probability density function. The second-order third-moment technique that has more 
characteristics of those random variables that are concerned in reliability analysis is obviously more accurate than the 
traditional first-order second-moment technique. 
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Introduction 
 

The prediction of stochastic crack growth accumulation 
is important in the reliability and durability analyses of 
fatigue critical components. Stochastic crack growth 
analysis is useful for scheduling inspection and 
repair/replacement maintenance of structures. Various 
stochastic crack growth models have been proposed and 
studied in the literature for metallic materials and 
superalloys. No attempt is made herein to review the 
literature in this important subject area. 

In practical applications of the stochastic crack growth 
analysis, either one of the following two distribution 
functions is needed: the distribution of the crack size at any 
service time or the distribution of the service time to reach 
any given crack size. Unfortunately, when the crack growth 
rate is modeled as a stochastic process, these two 
distribution functions are not amenable to analytical 
solutions, because the solution is equivalent to that of the 
first passage time problem. As a result, numerical 
simulation procedures have been used to obtain accurate 
results. The simulation approach is a very powerful tool, in 
particular with modern high-speed computers. However, in 
some situations, such as the preliminary analysis or design, 
simple approximate analytical solutions are very useful. 
The accuracy of such solutions depends on the 
sophistication of the approximation. Among attractive 
features of such an approximation are as follows: (i) it is 
mathematically simple to obtain the analytical solution for 
the distribution of the crack size at any service time; (ii) it 
is conservative in predicting the stochastic crack growth 
damage accumulation; (iii) it can account for the effects of 
variations in material crack growth resistance, usage 

severity and other random phenomena; and (iv) it can be 
implemented using a deterministic crack growth computer 
program.  

The purpose of this paper is to present a more accurate 
stochastic crack growth analysis technique that is obviously 
more accurate than the traditional first-order second-
moment technique [1] which only considers the means and 
variances of random variables. But probabilistic fracture 
mechanics problems generally involve non-normal 
distributions such as the lognormal, the exponential or the 
Weibull distribution. The skewness of a probability density 
function is sometimes used to measure the asymmetry of a 
probability density function about the mean. The second-
order third-moment technique considers not only the mean 
and variance of a probability density function, but also the 
influence of skewness (which is represented by the third 
moment) of a probabilistic distribution. Because more 
characteristics of random variables are concerned with 
reliability analysis, the precision of reliability analysis can 
be increased. Particularly when random variables are not 
normally distributed. It is very important for industrial 
structures with high reliability requirement. 

Paris-Erdogan Crack Growth Law as a Starting Point 

 
The analysis of fatigue crack growth is one of the most 

important tasks in the design and life prediction of aircraft 
fatigue-sensitive structures and their components. 

An example of in-service cracking from B727 aircraft 
(year of manufacture 1981; flight hours not available; flight 
cycles 39,523) [2] is given on Fig. 1. 
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Fig. 1. Example of in-service cracking from B727 aircraft 
 
 
 
Several models based on the principles of fracture 

mechanics for the prediction of fatigue crack growth in 
components and structures under dynamic loads have been 
proposed, one of the best known is the Paris–Erdogan law 
[3], 

2/)(
d
d υυυυ ϑ aSCKC
N

a
=∆= ,                      (1)                                      

where da/dN is the crack growth rate, aSK  ϑ=∆ , the 

range of the stress intensity factor, S, the stress range, ϑ, a 
constant that depends on the type of load and geometry of 
the crack, C and υ are material constants.  

If we assume all parameters in Eq. (1) are constants and 
deterministic, then the crack length, a(N), after N cycles of 
stress can be obtained directly from Eq. (1). Integrating Eq. 
(1) from a deterministic initial crack size, a(0), to crack 
size a(N), one obtains 

 

( ) )2/1/(12/1 )2/1()]0([)(
υυυυ ϑυ −− −+= NSCaNa     

(υ ≠ 2),                            (2)   
 
                                       

( ) ( )NSCaNa 22exp)0( ϑ=    (υ = 2).             (3) 

 
However, a(0), C, ϑ and S may be all random variables 
with prescribed probability density functions in 
probabilistic fracture mechanics analysis. In practical 
applications of the stochastic crack growth analysis, either 
one of the following two distribution functions is needed: 
the distribution of the crack size at any given number of 

load cycles or the distribution of the number of load cycles 
to reach any given crack size. 
 
Approximation Technique 
 

Let us assume that the random variable Y is the function 
of several mutually independent random variables, X1, X2, 
…, Xn, as follows: 
 

), ..., , ,( 21 nXXXfY =               (4) 

 
where vector µ=(µ1, µ2, …, µn) denotes the mean of vector 
X=(X1, X2, …, Xn), namely µi is the mean of random 
variable Xi. 

To obtain a better approximation, Y is expanded about 
µ to second order 
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Taking the first, the second and the third moment of both 
sides of Eq. (5) respectively, one obtains 
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where µY and 2
Yσ  are the mean and variance of the random 

variable Y, and γY is the third moment of the random 
variable Y, which measures the amount of skewness of the 

distribution, 2
iσ  is the variance of the random variable Xi 

and γi is the third moment of the random variable Xi. When 
γ > 0, the distribution is skewed to the right such as the 
lognormal and exponential distributions. When γ < 0, the 
distribution is skewed to the left. When γ = 0, the 
distribution is a symmetrical distribution such as the 
normal distribution.  

In this paper, Y may denote the crack length a(N), and 
X1, X2, X3 and X4 may denote a(0), C, ϑ and S, respectively. 

Finding a Probabilistic Assessment of the Fatigue 
Reliability 

 
The Weibull distribution is one of the most widely used 

distributions in reliability calculations. The great versatility 
of the Weibull distribution stems from the possibility to 
adjust to fit many cases where the hazard rate either 
increases or decreases. Further, of all statistical 
distributions that are available the Weibull distribution can 
be regarded as the most valuable because through the 
appropriate choice of parameters (the location parameter, 
the shape parameter and the scale parameter), a variety of 
shapes of probability density function can be modeled [4] 
which include the cases of γ > 0, γ = 0 and γ < 0. 

The three-parameter Weibull distribution pertains to a 
continuous variable Y that may assume any value µ < y < 
∞, and is defined in terms of its density function or 
distribution function as follows: 
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where µ is the location parameter, δ and σ are the shape 
parameter and the scale parameter respectively; δ, σ and µ 

are related to the mean value µY, the variance 2
Yσ and third 

moment γY through the following: 
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where Γ(·) is the gamma function. 

If a variable X is normally distributed, the third moment 
of the random variable X is γX = 0 and its density function 
is 
 

[ ].)2/()(exp
2

1
)( 22 σµ

πσ
−−= xxf           (14) 

 
Then the mean and variance of the random variable X are 
given by 
 

 ,µµ =X               (15) 

 

.22 σσ =X               (16) 

 
If a variable X is exponentially distributed and its 

density function is given by 
 

 [ ],/)(exp)( 1 σµσ −−= − xxf            (17) 

 
then the mean, the variance and the third moment of the 
variable is given by 
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.2 3σγ =X               (20) 

 
If a variable X is lognormally distributed and its density 

function is given by 
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then the mean, the variance and the third moment of the 
variable is given by 
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If a variable X follows the Weibull distribution and its 

density function is defined by Eq. (9), then the mean, the 
variance and the third moment of the variable X is 
calculated from Eqs. (11)–(13). 

Thus, procedure for finding a probabilistic assessment 
of the fatigue reliability can be summarized as follows. If, 
a(0), C, ϑ and S in Eqs. (2) and (3) may be all random 
variables with prescribed probability density functions such 
as the normal, the lognormal, the exponential and the 
Weibull distributions, in which the means, the variances 
and the third moments can be calculated from Eqs. (14)–
(24) (the Weibull distribution calculated from Eqs. (11)–
(13)), then the mean, the variance and the third moment of 
the crack length a(N) at any given N cycles of stress can be 
calculated from Eqs. (6)–(8). The parameters δ, σ and µ of 
the Weibull distribution are solved from Eqs. (11)–(13) 
and the reliability of the cracked structure after N cycles of 
stress is obtained from Eq. (10). 

Numerical Example 

 
Let us assume that a cracked structure with the fatigue 

crack growth rates da/dN = 5 × 10-5 mm/cycle is 
researched. The probability density function of the initial 
crack size a(0) is exponential distribution function,  
 
  f(x)=exp[−(x−2)].             (25) 
 

The critical crack length is a•=10 mm. The reliability of the 
cracked structure after N=105 cycles of stress is obtained as 
follows: 

(i) Suppose that the constant of the Paris–Erdogan law 
is υ=0 and only a(0) is random variable. From Eq. (2), one 
can obtain the crack size after N=105 cycles of stress: 

 

5)0(105)0()( 5 +=×+= − aNaNa   (mm).  (26) 

 
(ii) From Eqs. (17)–(20), the mean, the variance and the 

third moment of the initial crack size a(0) is calculated in 
which σ=1, µ=2 mm. Then from Eqs. (6)–(8), one can 
obtain the mean, the variance and the third moment of the 
crack size a after N=105 cycles of stress as follows: 

 

,0.8)( =Naµ    ,0.12
)( =Naσ    .0.2)( =Naγ       (27) 

 

(iii) Substituting µa(N), ,2
)( Naσ  and γa(N) into Eq. (11), 

Eq. (12) and Eq. (13), respectively, these simultaneous 
equations for δ, σ and µ can be solved to obtain three 
parameters of the Weibull distribution as follows: 

 
 δ=1.0,   σ=1.0,   µ=7.0.             (28) 
 

(iv) As the density distribution of the crack length a(N) 
is defined as Eq. (9), the reliability of the cracked structure 
after N=105 cycles of stress is calculated by Eq. (10) as 
follows: 
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Let us assume that we use the above technique to 

calculate the reliability of the cracked structure, where only 

the mean 0.8)( =Naµ  and the variance 0.12
)( =Naσ  of 

the crack size a(N) are considered. The distribution of the 
crack size a(N) is assumed to be a normal distribution. One 
can obtain 
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where Φ(·) is the standard normal distribution function.  

Actually the problem discussed has an analytical 
solution, which is given as follows: 
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where the result is the same as the one of (29). 

Conclusion 

 
From the case discussed above, the second-order third-

moment technique is obviously more accurate than the 
traditional first-order second-moment technique. 
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