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Abstract. Numerical implementation of the Abel transform for the construction of digital fluid holographic images is 
analyzed in this paper. Volumetric strains are obtained from the numerical calculations using the displacement formulation 
by the method of finite elements. Then the field of volumetric strain is obtained by using the procedure of conjugate 
approximation with smoothing. Numerical procedure is developed for the calculation of the Abel transform on the basis of 
the right rectangle numerical integration rule and thus the digital holographic image is constructed. The obtained digital 
holographic images are used in the hybrid experimental – numerical procedure for the determination of the correlation 
with the experimental holographic images. 
 
Keywords: directional smoothing, conjugate smoothing, fluid vibrations, axi-symmetric problem, block scanning 
procedure, numerical integration, Abel transform 
 
Introduction 
 

In engineering, the integral Abel transform is often 
used in the analysis of spherically symmetric or axially 
symmetric objects. Abel transform is used in different 
optical applications – from calculation of radial mass 
distribution of galaxies [1] up to sizing of microscopic 
droplets in emulsions [2]. Abel transform plays a primary 
role in optical problems dealing with interpretation of 
fluid, gas or even two phase flow in circular transparent 
and semi-transparent tubes [3, 4]. 

Development of hybrid numerical – experimental 
techniques is an important method of analysis used for 
interpretation and validation of experimental results [5, 6], 
especially when such experimental techniques as laser 
holography is applied for investigation of high frequency 
vibrations of fluid [7, 8]. If the fluid dynamics is 
investigated in a tube the problem becomes even more 
complicated due to the complex geometry of the system. 
Abel transform must be exploited for the reconstruction of 
interference fringes due to the fact that the laser beam 
travels different lengths through the fluid at different 
positions of the laser rays penetrating through the surface 
of the tube [9, 10]. 

Such problems of fluid dynamics in vibrating tubes are 
found in many engineering applications. Typical examples 

are pipeline vibrations induced by fluid fow [11], fluid 
flow control by tube vibrations [12, 13], or even 
application of ultrasonic fluid vibrations for cleaning of 
blocked blood vessels [14].  

The paper is comprised of several successive sections. 
First, numerical model for ideal compressible fluid without 
rotation is developed in axi-symmetric geometry. Next, 
fluid volumetric strains are obtained from the finite 
element model. Then, Abel transform is implemented and 
axi-symmetric geometry is evaluated. After that, the 
relationship between the intensity of laser beam in 
hologram plane and volumetric strains in vibrating fluid is 
developed. Finally, the results are discussed and 
conclusions are made. 
 
Model of the system 
 

The numerical model of fluid is developed on the basis 
of conventional finite element model based on the 
displacement formulation [15, 16]. Alternatively, the 
model of fluid could be developed using the velocity 
potential. But the displacement formulation has definite 
advantages over the velocity potential formulation as 
displacements are primary variables used in hybrid 
numerical – experimental techniques. Displacements 
become secondary variables in the velocity potential 
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formulation and should be determined in the secondary 
stage of analysis what would decrease the accuracy of the 
results. The main stages of the hybrid numerical – 
experimental procedure are presented in Fig. 1.  

 

 
Fig. 1. Main stages of hybrid numerical – experimental procedure 
 

First of all the finite element model for ideal 
compressible fluid without rotation is developed in axi-
symmetric geometry. The mass matrix of the fluid is: 
 

[ ] [ ] [ ]∫= xdxdyNNM T πρ 2 ,   (1) 

 
where ρ is the density of the fluid in the status of 
equilibrium, x is radial co-ordinate; y is vertical co-ordinate 
(the axis of symmetry); [N] is matrix of the shape functions 
determined by the following relationship: 
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where u, v denote displacements of the fluid in the 
directions of x- and y-axes in the domain of appropriate 
finite element; {δ} is vector of nodal displacements. 
Explicitly: 
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where Ni are the shape functions of the analyzed finite 
element. The stiffness matrix of the fluid takes the 
following form: 
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where c is the speed of sound in the fluid; λ is the penalty 

parameter for the condition of non-rotation. Matrix [ B ] 
relates volumetric strain with displacements and is defined 
from: 
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Explicitly: 
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Matrix [ B
~

] is used to characterize rotation and is defined 
by the following equality: 
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Conventional finite element analysis techniques are 

based on the approximation of nodal displacements via the 
shape functions. But volumetric strains (not nodal 
displacements) are involved in the relationships governing 
the intensity of illumination in the hologram. Thus the field 
of volumetric strain must be determined using the 
procedure of conjugate approximation with smoothing 
[17]. This procedure is adapted for calculation of 
volumetric strains for axi-symmetric problem of fluid 
vibrations. 

First of all, theoretical field of volumetric strains 
( )yxS ,0  in the domain of appropriate finite element is 

calculated in the usual way: 
 

( ) [ ]{ }00 , δByxS = ,                        (9)  

 
where { }0δ  is the vector of nodal displacements 

corresponding to vibration of the fluid according to its 
eigenmode. Linear system of algebraic equations for the 
determination of smoothed nodal volumetric strains is 
constructed in analogy with the numerical technique 
developed in [17], but smoothing coefficient λ is replaced 
by matrix of orthotropic directional smoothing coefficients 

[ ]D̂ : 
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where double integral stands for the procedure of direct 
stiffness [18]; { }vδ  is the vector of smoothed nodal values 

of the volumetric strains ( )yxS ,0 ; [ ]N̂  is the row of the 

shape functions of a successive finite element:  
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[ ] [ ]...ˆ
21 NNN = ,                 (11) 

 

 [ ]B̂  is the matrix of the first derivatives of the shape 
functions: 
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 [ ]D̂  is the matrix of orthotropic directional smoothing 
coefficients: 
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 where xλ  is the radial smoothing coefficient and yλ  is 

the axial smoothing coefficient.  
Calculation of the Abel transform comprises integration 

in the radial direction [9, 10]. It is determined that the 
radial smoothing coefficient can be much smaller than the 
axial smoothing coefficient due to this integration. 
Nevertheless, axial smoothing is essential in order to 
obtain holographic interferograms of acceptable quality for 
realistic finite element meshings. Thus the procedure of 
orthotropic directional smoothing enables to perform 
smoothing in the axial direction without unnecessary over-
smoothing (with unavoidable distortions) in the radial 
direction.  

The obtained volumetric strains are used in the 
procedure of numerical calculation of the Abel transform. 

 
Numerical implementation of the Abel transform 
 

Abel transform performs the projection of an axi-
symmetric function to a plane [7, 9]: 
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Change of variables: 
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yields: 
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The notation used is explained in detail in Fig. 2, where 

r is the radial coordinate. The upper integration limit is 

denoted as infinity in [7], but it is understood that the 
integration is performed only over the fluid domain. 
 

 
Fig. 2. Schematic diagram of the Abel transform 
 

Numerical implementation of the calculation of the 
Abel transform is performed in three steps. 

Step 1. The column number and the row number of a 
pixel with the corresponding value of the volumetric strain 
is obtained for all the analyzed values of the local 
coordinates for each finite element. 

The calculations are performed for a sequential number 
of values of the local coordinates (ξ, η) of the finite 
element: 
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The plane orthogonal Cartesian coordinates x and y of 

these points are calculated using the shape functions of the 
analyzed finite element. 

The digital image consists of the matrix of pixels where 
the columns are indexed from 0 to mx and the rows are 
indexed from 0 to my. Thus a point (x, y) is mapped to the 
pixel (ix, iy): 
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Here the subscripts min and max denote the minimum and 
maximum values of the coordinates x and y. The procedure 
performing the shift to the coordinates of the center of the 
pixel (ix, iy) is performed: 
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As the analyzed point of the structure does not 

necessarily coincide with the center of the pixel, further 
calculations are performed for the location of a point of the 
structure corresponding to the center of the pixel. The 
derivatives of the shape functions with respect to the local 
coordinates are multiplied by the nodal coordinates of the 
finite element: 
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where xi, yi are the coordinates of the i - th node. The L – 
coordinates of the center of the pixel are obtained from: 
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Then the calculations are performed for the corrected 

local coordinates (ξ+L2, η+L3). 
Step 2. For each scan line of the digital image the 

averaged volumetric strain for each pixel of the scan line is 
obtained. Schematic representation of this step of analysis 
is given in Fig. 3. 

The implementation of this procedure is illustrated in 
Fig. 4. 
 

 
Fig. 3. Determination of volumetric strains for a scan line 
 

 
Fig. 4. Numerical implementation of the scanning procedure 
 

The scanning of the file obtained in step 1 for each scan 
line of the digital image would be numerically rather not 
effective. In order to increase the numerical effectiveness 
of the procedure the block scanning procedure is 
implemented: the volumetric strains for a block of 
sequential scan lines are obtained while scanning the file 
from step 1. In our applications the block of 16 sequential 
scan lines was used. Thus the number of scans through the 
file obtained in step 1 is reduced. 

Step 3. For each scan line of the digital image by using 
the right rectangle numerical integration rule the Abel 
transform is calculated and then the digital holographic 
image is produced. 

Thus the Abel transform for the analyzed scan line is 
calculated in the following way: 
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ji
vij
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where Φj is the phase of the laser beam at the pixel j of the 
scan line, εvi is the volumetric strain at the pixel i of the 
scan line, xmin is the minimum value of the radial 
coordinate in the digital image, ∆ is the radial distance 
between the adjacent pixels. 
 
Numerical results  
 

Axi-symmetric problem in a rectangular domain is 
analyzed. The right boundary is rigid and the 
displacements normal to it are set to zero. The left 
boundary is the axis of symmetry and the displacements 
normal to it are set to zero also. Periodic boundary 
conditions on the upper and lower boundaries are assumed: 
the displacements on those surfaces for the same values of 
the radial coordinate are assumed mutually equal. 

As it is assumed that the cyclic frequency of excitation 
coincides with the eigenfrequency of the appropriate 
eigenmode and the excitation is not orthogonal to the 
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eigenmode, the excitation is not specified explicitly and 
vibrations according to the eigenmode are analyzed. 

The unsmoothed digital stroboscopic holographic 
image of the seventh eigenmode is presented in Fig. 5. The 
smoothed digital stroboscopic holographic image of the 
seventh eigenmode is presented in Fig. 6. The necessity of 
smoothing is evident from those figures. 
 

 
 

Fig. 5. Unsmoothed digital stroboscopic holographic image of the 
seventh eigenmode 
 
Conclusions 
 

The obtained digital holographic images of the 
vibrating fluid are used in the hybrid experimental – 
numerical procedure for the determination of the 
correlation with the experimental holographic images. 

Numerical model for ideal compressible fluid without 
rotation is developed in axi-symmetric geometry. For the 
calculation of fluid volumetric strains from the finite 

element model the procedure of directional conjugate 
smoothing is proposed. The Abel transform is 
implemented in three steps: 

1) the column number and the row number of a pixel 
with the corresponding value of the volumetric strain is 
obtained for all the analyzed values of the local coordinates 
for each finite element; 

2) for each scan line of the digital image the averaged 
volumetric strain for each pixel of the scan line is obtained 
using the proposed block scanning procedure: the 
volumetric strains for a block of sequential scan lines are 
obtained while scanning the file from the previous step; 

3) for each scan line of the digital image by using the 
right rectangle numerical integration rule the Abel 
transform is calculated and the digital holographic image is 
produced. 

The necessity of smoothing is evident from the 
presented numerical results. 
 

 
Fig. 6. Smoothed digital stroboscopic holographic image of the 
seventh eigenmode 
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