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Abstract. The problem about the synchronization of the unbalanced rotors for the excitation of the longitudinal traveling
waves in the elastic system of a bar type is examined. The steady-state regimes of motion are investigated, the conditions

of their existence and stability are obtained.
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1. Introduction

The study of the excitation methods of prescribed
vibrations of a certain elastic system presents one of the
important problems of the theory of vibration machines and
devices. In this case the problem about the synchronous
operation of severa vibroexciters, connected with the
united oscillatory system arises[1].

In the present work the problem about the
synchronization of several vibration exciters of the elastic
system for the excitation of the longitudinal traveling
waves is investigated. The equations of the problem are
nonlinear. For the solution the small parameter which
enables to use methods of the theory of periodic solutions
of nonlinear differential equations isintroduced.

2. Theformulation of the problem
The system consisting of a semi-infinite bar with the

elastically connected end and n vibration exciters
connected to it is analysed.

YA

Fig. 1. Model of the system

The body of the vibration exciter is attached to the bar at
the point A , where A - the center of the axis of rotation

of the rotors of vibroexciters. The exciting masses of
vibration exciter are located at points B, and B, , and

they rotate synchronously in opposite directions so that the
excitation along the bar is created [2].
Itisdesignated r = AB, =AB, , j=1...,n.
According to Fig. 1 the points A, B, B,, have the

coordinates

A (X, +u;,0), B,(X +u, +rcosep,,~rsng,),
B,, (X, +U, +rcose,,rsng,), X, =const .

Kinetic energy of the j-th vibroexciter is equal to

1 . . 2 2\ 2
T, :E(mo+2m)(x0+uj) +(JI+mr)e; -

=2mr (%, +U,)p, sing, , D

where m, is the mass, concentrated at the point A, and
m are the masses, concentrated at points B, and B,,, J

is the moment of inertia of the rotor of the j -th vibration
exciter with respect to the center of the axis of rotation

A.
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The equations of motion of this system have the form
23 +mr?)p, —2mr (%, +0,)sing, + H,o,=M,, (2

?j

(M, +2m)(%, + U,) — 2mr (¢, Sing, + ¢} cosp,) =F,, , (3)

where H, ¢, aredissipative forces, H, - coefficients of
viscous friction for the rotation of the case of the j-th
vibration exciter with respect to the axis A, M(ﬁj are the
moments of external forces, F, ~areinertial forces.

The longitudinal vibrations of a bar are described by the
equation [4]

ou
EF v .f—— F(

au

j=zcs(x—x])ﬁnj . @

where u(x,t) isthe displacement of the cross section with
the abscissa x, p isthe mass of the unit of volume, E -

the modulus of elagticity of the materia, F - cross-
sectional area, & - coefficient characterizing external

damping, & - Dirac's delta function.
For the elagtically fixed end of the bar the boundary
condition has the following form

3
C,X, = EFa—i )

where ¢, isthe coefficient of stiffness of the spring.

. . . . ) X
By introducing the dimensionless coordinate 7 =—,
r

the equation (4) and the condition (5) take the form

EF o°u _du o’u

o +§E_pF(at2 +Xo]:zi5(77_77j)|:ini )
EF ou

C = —, 7

0  on (7)

Thus, equations (2), (3), (6) with the condition (7) are
the differential equations of motion for this system.

3. Steady-state regimes of motion

The method of small parameter is used for investigation
of the steady-state regimes of motion, determined by
equations (2), (3), (6). Then the equation (2) takes the form

2(J+mr*)gp, =&, (8

where cDJ.=2mr(X0+Uj)sin¢>j—HWi¢>j+M¢j, 9
¢ is the small parameter, at the end of the calculations
assumed equal to one.

The steady-state regimes of motion are represented in
the form

2

2
U =U,+eu,+&u,+...,

2
Q=@ tep, & @, + (10)

2
Fo =Funo tébn, TR, o0

u,;, ij are periodic functions of t.

Substituting (10) into the equations (8), (3), (6) and
equalizing coefficients with the identical degrees of ¢ in
the right and left sides of the equality, the differential
equations for the determination of u,.¢,.F,
k=012,... are obtained.

Substitution of (10) into equation (8) and equating of
coefficients at £° and &' gives the equations of the zero
and first approximation

23 +mr?)g,, =0, (11)
20 +mr*)p, =, (12)
where

®jo = (Dj uj=ujo = 2mI’(XO +Uj0)Sin(0jo —_ H'ﬂj('bjo + M¢i .

?j=9j0

It follows that ¢,,can be represented in the following
form

Dio :a)t+¢j0’ (13)

where ¢, = const .

Equation (12) is the differentia equation for the
determination of ¢,. Periodicity condition of ¢,
according to the equation (12) has the form

@, =2nr (%, +0,)sin(wt +9,)-H, 0+M, =0, (14)

the upper dash indicates averaging with respectto t .
Constants @ and ¢,,, j=1...,n, are determined

from the condition (14), but before it is necessary to find
the functions u,,, j=1...,n, from (6), (3). Substituting

(10) with ¢, =wt+9,, in (6) and (3) and equating the

coefficientsat &°, it is obtained

e 2o p (az‘j

=(m, +2m)(X, + ) - 2mr o’ cos(wt + Py -

EF 82
r’

+ Xo] = 2,5(77—77,»)5nio , (19)

(16)

|njo

4. Solution of the problem describing the forced
longitudinal vibrations of the bar

Further the determination of the solutions u(n,t) of
the equation (15) with the boundary condition (7) is
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described. At the points with the abscissa x; (or in the
dimensionless coordinates 7;) of the bar the forces F_ |

(16) are applied.
Using the condition (7), the equation (15) is rewritten in
the following form

2 2 3
E|:6L:+§@_pF63+EF auzz
r- on ot ot°  c,r onot
:Zj:é‘(n_nj)':injo' (17)

The case n = 2 is examined. The solution of this
problem is reduced to the integration of the differential
equation of the vibrations of the bar

EF ou
r? on’

2 3,
+§%_pF(au EF auj:,

+_
ot* ¢y onot’
n#n,n#1,, (18)

valid everywhere, except at the points =7, and n=17,,
at which the forces are applied

Frp = (M, + 2m)(X, + Uy,) — 2mr o” cos(at + p,,)
and
Fo = (M, +2M)(%, + U,,) — 2nr ° cos(et + @)
respectively.
Equation (18) must be integrated with the following

conditions:
u— 0 when 7 -+,

u(l)‘ :u(z)‘ ,
n=m n=0
ou®| u®@| Fingo (19)
= +—,
on | on | EF
n=m n=0
and
u(z)‘ _u(3>‘
n=n2 n=0
u® ou®| Fingo (20)
= + ,
on on | EF
n=12 n=0

where u®” =u when 0<7 <7, uU? =u when 0<p<np,,
u®=u when 0<7<+o.
The solution of equation (18) is sought in the form

u(n,t) = 6(7) coswt + () Sin wt. (21)

Designating
2 2 .2 2 2
ﬂ:zfr a)’ p’?:pr 10} ’ k:EF,b’ :pFra)
EF E C,r C,

and substituting the expression (21) into the equation (18),
the functions 6() and w(n) arefound

k
L )
O)=e 2 (A Y + Ae™ 1 1+ Age™ 2T 4+ Aje 2Ty,
k
-1
w(n)=ie 2 (-Ae" VT — Ae "V 4 Age" 27 4 AT 2T,

(22)
where r,=a +ia,, I,=a—-ia,, a, ap are positive real
numbers

o W =457 11647 + (K7 - 457)
22 '

A48 16" (- 4p)
1 2& .

The function u® (,t) = 6,(7) coset +y, (n) Sinat is
determined for 7 €[0,7,] , therefore, the functions 6, () ,
v, () must satisfy the conditions

(23)

k 00, k oy,
0 O = — 0 y 1 0 =_Z_ 0 y 24
,(0) ﬁzan()’”() ﬁan() (24)
obtained from (7);

the  function u®(n,t) = 0,(n) cosawt +y, () Sin ot
approaches zerowhen 7 — +w , i. €.
6,(n) >0, w,(7) >0 when 7 — +oo. (25)

the functions u®(n,t), u®@t) and
must satisfy the

Besides,

u®(n,t) =0, (n) cosat +y, () sin wt
conditions (19) and (20).
Substituting conditions (24) in (22), it is obtained

_k k275 p2
0,(n) =e 2" Ayl "V K22 BT e |,
kry +k2 12+ B2

kr, —k2/2- B2
+A_|_2 er277 + r2 ﬂ e—r 27] ,
krp +k2/2+ B2

_K k2 _p2
‘//1(77):|e 2” _All erln +%e_rﬂ7 +
ki +k“/2+p

ron + kl’z —k2/2—ﬁ2 e—rzr]:U.

+Ap e > >
kro +k</2+ 3

(26)
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It is assumed that

s
O2(n)=e 2 (A + Agpe™ VT + Agge'? + Agye 2"
wa(n) =
L
=je 2 (—A21er w_ Azzeir g A23er277 + A24eir277).
(27)

With the satisfaction of conditions (25) when 7 — +o ,
it is obtained

k
K,
O3(n)=e 2 (Age V'

k

ey _ _
wa(n) =ie 2 (-Agie™" 7 + Age™" 27).

+ Age 27), (28)

Using the connection conditions obtained from
boundary conditions (19) and (20) it follows that

01'*12*71 = 92|rz:0’ l//1|'z:m = WZ'IFO'
20, _ 20, —ad,(n,)- k b () —bcosg,,,
1 1 1 10

677 n=n 77 n=0 'B a
51//1 61//2 ak o v,

) G 1 -— +bsng,,
onl. ~onl., ay, (1) 5 on (1.) Pro
2|'z:'z2 - 93'*120’ ‘//2|'z:'73 - ‘//3|'7:0'

o0 00 ak 00

. = > 9( 2) —= (772) bCOS(DZO,

877 n=12 n 7=0 'B a
0 0 ak o

el STy, ()~ (,) +bsingy,
677 n=12 677 n=0 ﬂ a

Where azwra)zzalﬂz, al:M’
EF pE-T
2m 2m
b= r20? = LU
EF bp F
the integration constants A, - A,, A, —A,, A, —A, in

(26) — (28) are determined.
Functions u®(z,t),
form

u® (1) = A (i) cos(et + 7" (7)) , (29)
where the amplitude of vibrations of the points of a bar

AY () =6 m) +y.i (1),

and theinitial phase
4

k=123, are represented in the

v, (n)

y () =—arctg <=2 0.1

Presenting u®(n,t) inthe form (29), it is obtained

u® (,t) = A" (17) cos(et + @, + 7™ (1)) +
+ A (i) cos(at + @, + 7™ () +

+ AP () cos(at +p, + 7P (), 0<n<n,
(30)
a + 0( (171+172—17)

where A () = bya +a, e? e“mIM (1),

n \/— oA 77

bya®+ K omen

A(lZ) (77) — % eg( n I)efmnM 1(77) ’

ab (rrrfi) o (m+
AP () = 25 Ae e "M, (MM, (17,) ,

a.
7y ) =a,(n,+n,) - arctgj+ A +arctgA, (77) ,

¥ (1) = ey, - arctg% +A+arctgA,(n),

y® () =, (i, +1,) —arctgA, (i7,) + A + arctg, (17);
Ach2an + A,sh2an + A, c0s2a,n + A, Sin 2a177
M1(77) =

A+ A,

M, (1) = s.ch2ain — p,sh2an + p1, €0S2a,1 — 1, Sin 2a,77,

A=K +a?) + (K2 12+ B2) , 4, = 2ka(K? 12+ B7),
4 =K@ +a?) - (k124 g2, /14_2ka1(k 12+ p2)
=Kot +a?) +(kE 2= ), pp = 2kalk? 1 2- )
:k(a +a?)-(k212- Y, p, = ka(k2/2 B2),
A ()= a0
) AOK

v.() = (=(4, + 4,)e” + 1.e “"Nga,n -1, ,
v,(m) =, +A,)e" + e + L, e “"tga,n,

ke, + (ke -than —(k* 12— g )kgan

ka - (koz1 ‘tga,n + (k2 12— p? ))thom '

A =(BB, ~C,Cy - Dy)? + (BC, + Gy - D)2,
B,C,+C,B, - D,

A2(77) =

A =arctg

al ale—Zmyl .
B =a+—=u ———[A. cos2a,n, + A, Sin2a.n,],
1 2 5 2(11 +2,2) 5 171 6 171
—2anm

C=¢ +i ke —%[ﬂa cos2a,n, — A, Sin2a,1,],

1 2
—2a112

B,=a +%,u5 +%[ﬂ6 cos2a,m, + ke, Sin2a,1,],
—2a2

C,=a + & ka, + alez [Ker, cos2a,17, — 1, SN 20,17,],
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) [, cos2a,n, + p, SN 2a,17,] +

D _ alefazr]z
2

ale*Zrl (m+n2)
AT )

72m72
D, = &°

[4, cos2a, (1, +17,) + A, SN 2a,(n, +1,)],

[:us 00520‘1772 K sin 26‘61772] +

ale—Za(ru+rzz)
A4
e =Ka—K? 12+ B, A = A (ka +K* 2= B*) = 4, -Ka,,
Uy =ka+k*12-p%, A, =2, -ka, + 4, (ka+k* 12— p?),
p, =K@ —a?)+alk?12= %), 2, = A, — Ay,
g = 2K, + (K21 2= B2), Ay = Agity + Aty

[4, cos2c, (1, +17,) — A, Sin 2cx, (17, +77,)],

Now u®(z,t) isrepresented in the form (29)

u®(n,t) = A () cos(at + @, + 7 (17)) +
+ A (17) cos(at + @, + 7 (17)) +
+ A% (7) cos(at + @, + 7 (17)) +
+ A () cos(at + @, + 7 (17)) ,

no<n+n, <n+n,, (31)

2 2
bya® + a, g('zzﬂz)
—€

J2A

where A% (7) = &M, (+17,)

bya’+a? X
A(ZZ) (77) — \/EA 1 e z'iefa(mw)M 1(’71) ,
ab e
A® () = 25 Ae ‘e M, ()M, (7, ~77) ,
(24) ab (’72”7) o (m+12)
A (n) = 25°A —e? € M 3(771)\/Ch20577 —Ccos2a,77,

a
7® ) =a,(n,+1,)- arctgj+A +arctgA, (7 +17,) ,

(04
7#(n) = a,(n,+n)- arctgj +A+arctgA,(n,) ,

72 (1) = a, (17, +n,)—arctgA, (17, —17) + A +arctgA, (17,),

¥ (7) = a,(n, +7,) - arctg ﬁ ;7 + A+arcigh, (n);

A+ 4,
S X3

x.Ch2an + y,sh2an — y,cos2an+ y,sin 205177
M 3(77) =
X = j“1/“1 - j’z/'lz ) X2 = 23/"3 + 14/"4 )
Xi= /13,L14 - A’A:u3 )
AL () = Kevan —kas v ) + (K212 p7)-v, ()

P ka v, kay v, )+ (K T2- ) v, ()

v,(n) =((4, +A,)e" + L,e“" Ny, n— 1,8,
v,(m)=—(4+1,)e" + e +1,e"tga,n .

Representing the function u®(n,t) in the form (29), it
is obtained

u®(n,t) = A () cos(wt + @, + 7™ () +
+ A (i7) cos(at + @, + 7™ () +
+ A (i7) cos{at + 9, + 7% (1)) ,

M+1, SN +1,+1, <+0, (32)

bya®+al

J2A
b 2 2
A® (1) = —(f/ial (1+;—l§

b kr] —a (I +12+
25A e Z'e ™M (n,)y/ch2an, —cos2a,n,,

7k1
where A(31) (77) — e zlefa(mw]zw)Ml(,]l +772) ,

k
—(n+12)
2 —a (m+72+17)
je e M. (7,)

A= (n) =
a
y®m) =a,(m+n,+n) - arctgj% +arctgA, (i, +1,),

a
72 n) = a,(n,+n,+n)- arct9—1+A+ arctgA, (n,),

t9an,

y® () = o, (n, + 1, +n) —arctg_=—+= thay, A ACGAL ().

2

Differentiating the function u®(,t) with respect to

k oau®
, the value of the function x,(t) = ﬂ on (n,,t) a
n=n is found, then adding  x,(t) and
u, (t) =u®(n,,t) =u®(0,t) , it is obtained
Uy (1) + %, (1) = A” cos(at + @, + 7 V) +
+ A? cos(at + @, + 7)) + A® cos(at + @, + ), (33)

ol +al

oV
+
A =—b”“ e M, ()

o _ o (m+12)
where A eZ gretm |\ (1),

A = ""2121 DM, ()M, (7,),

O =am+n,)- arctg&Jr A+arctgA,(n,)
a

@ —arctgﬁ+A+ arctgA, () ,
o

Y=o,

9 =a,(n, +n,)-arctgA, (n,) + A +arctgA,(17,) .

In the same way, differentiating the function u® (»,t)
with respect to 7, the value of the function
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k au®
t)=—
o0 =25

X, (t) and u,(t) =u®(7,,t) =u®(0,t), it is obtained

(m70,1) a n=mn, isfound, then by adding

Uy (1) + %, (t) = A cos(at +@,, + 7)) -
—A? cos(at + @, +7) + A? cos(at + @, +7?), (34)

where A“ =

Jai+al
bl \/E ! eﬁ{l(”ﬂ"&) M 3(771 + 772) 1
A

byJa®+a? & f
A® :We z'lzefa(mwz) U+ 1, Ml(ﬁl) ,

(04
r@ =a,(n,+1,) - arctg;l+ A+arctgA,(n, +1,),

1 kal

7 = a,(,+n,) - arctg 2+ A +arctgA, (1,) - arctg
a

6
5. Theexistence and stability of the solutions

From the periodicity conditions

@, =2nr (%, +U,)sn(et +9,)-H, 0+M, =0,j=12,

where the functions u,, +x, (33) and u,, + x, (34) are now
dready known, the constants @ and @, —@,
determined.

are

Designating h, =%, M" =
SO N = Y T

can be written in the form

, these conditions

D =-20°(X,+U,)sn(wt+p,)-ho+M =0. (35)

Equations (35) by taking into account (33), (34) lead to
the following expressions

_ A'sin(p.—a +7%)+ X
- _(cozo Po af) hotM =0
AP Sy + AT s
A€ + (36)
a)zozw2 +A5)Sin(¢zo_¢m_7/5))+ _hzaH_M; =0
A0 siny

From (36) the expression for the determination of
@, — @, iSObtained:

F,siny® +F,siny®

S-r](quo - ¢_’10) = s-n(y(l) + }/(5)) ! (37)
(ho—M;)/ o~ A?siny® - A®siny®

where F, = ! A0 ,

6

_(ho-M})/@® - A®sny" — A®siny®

F2 A®

According to (37), the condition for existence of the
solutions @,, —¢,, isexpressed by the inequality

) im0
[Fusiny® + Fsny®) (38)
| S|n(7/()+7/“) |

Vaues ¢,—@, depend on the frequencies of
excitation @ , which are determined from the equation

F2+F2-2FF,cos(y® +y?)=sin*(y® + ). (39

It follows from (39) that |F[<1, |F,|<1.

Only those values of @,, —¢,, are stable, which satisfy
the inequality

A® COS((’TZO - (/_’10 - 7/(5)) -AY COS(@O - ([_)10 + 7/(1)) <0. (4’0)
6. Vibrations of a bar in the absence of damping

If the viscous damping is disregarded, that is £=0,
then the expressions (23) for «, «; arerepresented in the
form

'4ﬂ2_k2

a) when k*<4p%: azo’%:T’ (41)
'k2_4 2
b) when k*>4p%: a:Tﬂ' a, =0, (42

since =0, a, ap -rea positive numbers.
In the case a) the functions u,, + X, (33) and u,, + X,
(34) are transformed to the form

K7
Uy + %, = L,e?” cos(at +p,, + B,) +
+L, cos(at + @, + 5,) + L, cos(at + @, + 5,) ,
Uy + X% = L3 COS(a)t + (Zzo + ﬁl) -

(43)

7kl . pa— [e—
-Le 2" sn(at+ @, + B;) + L, cos(at + ¢, + B,), (44)

blozn/z1

where L = TCOS(%’A +7.+7,)
L,= %Cos(ozln1 +y,+y,)co8(en, +7,),
L= bloz—(\l)/ﬂ—lCOS(al(m +1,) 70+ 7,),

L, blaAl(\l)/z sin(am, +7,)
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B=a,(m,+n,)+ A +7,,

:Bz:ﬂl_alnz'
ﬂ3:ﬂ1+72’
—arctgL
7 K224 B2
2 2
}/2 = a_rctg k/A,
ke,
A® = N+ A,
A
AP =arctg—,
QA2
A =gl K g )1 8K alul oo B
1= Ta 5 p*| 1+ > —=—sin2a,7, T

A )
X [(al/ls - %] cos2a,7, + (alie + %)S n2a,m, +
+(a14 +%]cos2a1<m +17,) +(alﬂe + 2 jSinZal(m +nz)}

A, = a k - B 2(1+a1_kj a4 C082a1772+ix
4 2 4 21

1

A A
X [(al/le + %) cos2a,1, — (al/ls - %] sin2a,1, +

(a A+ =22 AZs jcosZozl(r]1 +1,) —(alﬂg +%]§n 201, (17, +772)},

=K’ +(k2 12+ p7F,
A, = 2ka, (K2 12+ %),
=K+ (12§
o= 212 ),

X = /13#3 +ﬂ,41u4, Xa :/13/14 _14/‘3'

it is obtained that

a, € 0,i ,
EF

(45)

Taking into account that k* < 43%,
2 2
K O’4(:0r , B e 04c
EF (EF)?

2
o’ |0, 4% )
EF - pF

When k?/2-p8?=0 ¢, takes the maximum value
Cof
EF’
2,2 2
k:ZCOr,ﬂZ:ZCOrz,a)Z: 2c; ; (46)
EF (EF) EF - pF

A, =Ka? (K2 12+ B2,
o = 2,(K2 12 %) - 2, -Kar,,
py=Kal~(k*12-p*f,
Iy = Ay -Ka, + 2,(K* 1 2= %) ,

when k*/2-p8°<0: a,€ 02" |, ke 0,2C°r :
EF EF
2,2 2
52 <o, 2c0r2 ' w'elo, 2c, ;
(EF) EF - pF
(47)

when k*/2-p8%>0: ale(

, [ 2cir?
(&

C,r K 2c,r 4c,r

"EF )’ EF 'EF )’
2,2 2

acrt) e[ 2% 4c? 48)

(EF)? EF - pF 'EF - pF

Periodicity conditions lead to the expressions

J— /. — — *
Dy = w?| Lie? " sin(@ —Pro+A) + |-ho+M; =0,
+L19.n(ﬂ1—a1772)+L23-nﬂ1
L3Sinﬂ1+
k
_ - (49)
Do = 0% +Ly4e 2 oS0~ Pro- Bi—72)+ |-
+L2§nﬂ1
—ho + M;:O.

From (49) it is obtained

F11 Cos(ﬂ1+72)_ FuSinﬂl

sin(e,, —@,,) = , 50

Bo ) =L (50)
Fli + Fé - 2F11F12 sn(zﬂl +72) = cos’ (zﬁl +72) ’ (51)
where

.,
e _lho-M)le’ -Lsn(p, ~am,)-L,sinp)e "
1 Ll !
k
e _((ho-M)/o* (L +L)snp e
12 L !

4

moreover, one isto take into account that according to (45)

4C2
a)ze(o, = ‘)ij.ln(Sl) [Ful<1 |F,|<1.
According to (50) the condition of existence is
expressed by the inequality

|F11COS(181+72)_ Fleinﬂ1| <1.

(52)
cos(2f3, +7,)

© VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING. 2008 JANUARY/MARCH, VOLUME 10, IssUE 1, ISSN 1392-8716



326. DYNAMIC SYNCHRONIZATION OF THE UNBALANCED ROTORS FOR THE EXCITATION OF LONGITUDINAL TRAVELING WAVES. A. SARSEKEYEVA, K. RAGULSKIS, Z. NAVICKAS

The stability condition of those regimes of motion which

satisfy the condition of existence isthe inequality
5’72
Llez COS(gDZO Pyt 181) +
Ky
+L,e 2" Sin(@, ~p,—B,~7,)>0. (53

In the case b) the functions u,, + %, (33) and u,, + X,
(34) take the form

U, + X, = L cos(at + ¢, ) + (L, + L,) cos(ewt + @,,) ,
u,, + X, = (L, + L,) cos(at + @,,) — L, cos(at + ¢,,), (54)

k
* a 2 )" —2a7,
where L, = ZbL(Z) e[2 )Zsl(sz —-se’my,
. a o
Bngﬁ@—%fﬂ,
. _ab 24 24
L, = 4&21) s’(s, —s,e ) (s, + e *"?)
* [24 —2a (m+
L, = ZbZ(Z) 31(52—8382 (. rzz)),
ba 7[%“’)"2 —2am 2 2
5=We s(l+se™"), s =ka+k*/2-p%,
ka—K*/2+ Kka—k*/2-p
° ka+k*12-p7" ka+k*/2+p%"

A? = (a +% s(s, - geza’“)j(a Jr%sl(s2 +em )j -

aa

_ Sl(e—Zar]Z + sae—Za(rnﬂ]z)) .
2

By taking into account that k* > 437, it is obtained that

2,2
K Acr o, B e 4cr
EF

+ooj, o, < (04),

(EF)*’
2
o e = poo . (55)
EF - oF
The averaged values @, i =12, are represented in

the form

§1o :sz;Sin((’?zo_(Eo)_hw*'M; =0, (56)

q)zo = sz;gn(azo _(510)_ h20)+ M; =0.

From (56) the equality for determination of the
frequency @ is obtained:

(ho-M))L, - (ho-M;)L; =0, (57)

moreover, one is to take into account that

2 4c;
0’ e 4o |.
EF - pF

The expressions for determination of the values
?,, — ¢, arefound:

ho-M;, ho-M,

S.n((;zo - (;10) = a)szl sz; ) (58)
hence it follows that the inequality

lho-M;| |ho-M;|

| oL 1|_| szL; 2|<1 (59)

is the condition of existence of the steady-state regimes of
motion.

The stability condition of the obtained regimes of
motion is determined by the inequality

(L; - L;) 003((720 - (310) <0. (60)

Let L,#L #0, and ho-M; =h,w—M, =0, then
sn(e, —@,,) =0, fromwhereitisfound ¢, —¢,, =0, 7.

The solution ¢,, —¢,, =0, according to (60), is stable
when L, <L, and @,,—¢,, =7 isstablewhen L, > L.

In the case, when hw-M;=hw-M,=0 and
)= DM,

o, L (w,)
the solution of the equation L, =L;. If the condition of
hao, —M,
;L (@,)
solution ¢,,—¢,, Wwill be stable when the inequality
L, cos(p,, —@,) <0 is dtsfied: if the
Oy — P €(-712,712), then it is stable when L, <0, if
O — P €(123712), then it will be stable when
L >0.

In the case, when ho-M,;=zhwo-M, and
L, # L, #0, those solutions ¢, —,, (58), satisfying the
condition of existence, will be stable, which belong to
1) (0,7#/2),if L, <L, and

L, =L, #0, then sin(p,, — @, , where o, -

existence is satisfied, i. e <1, then the

solution

ho-M, _ho-M, (61)
oL, o°L

2) (z/2,x), if the inequdities L, >L, and (61) are
satisfied,
3) (=,3x12),if L,>L, and
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ho-M; hwo-M,
o°L o’L,

<0, (62)

4) (3r/22x), if the inequalities L, <L, and (62) are
satisfied.

2
In all the analyzed cases w?® e i,+oo .
EF - oF

)

_2r
<@g FF

Note: When 7, >0 and »® € (i

EF -

5 [

20 LI
EF

l<e” < e[gﬂjq2 <e¥ " 0< ef(2 ) "

<1.

k
7.

Lez” with the growth of the degree [%-ﬁ-ajﬂz
approaches zero, i. e. beginning from a certain value of the

k
frequency @ the value of the function Lie 2” will differ
by a small amount from zero.

7. Theresults of numerical calculations

Asinitial datafor thecase & =0 it isaccepted:

a=2, b=2, p=2, n=2, h=03, h,=-06,
M; =05, M, =-0.2, , =0.01, 5, =0.05,
where alzrnb;zrn, b1:2_m’ P = ﬁ.r, n= EF,
pF-r PoF VE C, T
H . X
h=—2%2 M =L »n=""L
"o "o g r
2
Inthiscaseaf:‘li:1 or w=1/2.
EF-oF 4

The equation for determination of the frequency @ has
two solutions: @, #1.3952, @, ~10.0560. Frequency o,
does not satisfy the condition of existence.

Since w, >1/2, thus the values ¢, —¢, are found
from the equation (58).

When o, #1.3952, then sin(g,, —@,,) = —0.6967 , from
where ¢, —9¢,, = —0.7708 P — Py ©—2.3416.
L, <L,, consequently, the vaue ¢, —¢, ~-2.3416
corresponds to the stable solution.

At the point 7, = 0.01 the function u,, + X, is defined,
a the point 7,=0.05 - the function u,+Xx,. The

dependence of the presented functions on t is represented
inFig. 2.

and

Wyx 1.3952, ¢, 07708

Uyy*Xo |
0.5 Upg*Xg

Wyx 13952, ¢,00, 0~ 23416

1 Ui0*%o| |

Uy X

0

-1

0 1 2 3 4 5 6 7 8 9 10

Fig. 2. The dependence of functions u,, + X, and U, + X, on t
(unstable and stable solution)

The three-dimensional image of the function
u®(,1),0<n< My

u(n.t) = 4u® @0, 7. <n <y +n2, (63)

u® @1, 20, +n,,
n, =0.01, 7, =0.05, with the given parameters (in the

2

case o’ >i) isrepresented in Fig. 3.
EF - pF

a) We 1.3952, 00,4~ -2.3416

-~
| ~

I

_ [N
I
I

gt
i
022 eyt il Ungy .
Uity Wy
Gl iy

um.H

10

u(n.t)

Fig. 3. The image of the function u(;,t): 1-u®(y,t),

0<7<001; 2-u®(n,t), 0.01<y<0.06; 3—-u“(n,t),
n >0.06
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If to accept as initia the following data in the case

£=0:

a=2, b=2, p=02, n=2, h=02, h =07,
M, =M, =01, n=1,n,=5,
then two values of frequency will be obtained

o, ~1.47113 and @, ~1.71277 .

2

As ot =—2% __25 o w=5, and ® <5 and
EF - pF
®, <5, then the values ¢, —¢, ae found from the
equation (50).
With @, the eguation (50) has solutions

O — P, #1,4379 and @,, —¢,, =3.0087, and only the
solution @,, —@,, = 3.0087 satisfies the stability condition
(53).
With @, from the two solutions ¢,, —¢,, ~1.3865 and
.0 — Py = 2.9573 stable position will be the second one.
The dependence of functions u, +x, (7, =1) and
u, +x, (7, =5)from t isrepresented in Fig. 4.

Wy~ 1.47113, ¢o4-0 19~ 1.4379

Wy 171277, ¢oidy g 2.9573

Fig. 4. Dependence of functions u,, + X, and U, + X, from t
(unstable and stable solution)

The three-dimensional image of the function u(n,t)
(63) ,=1, n, =5, with the given parameters (in the case

2

<i) isrepresented in Fig. 5.
EF - pF

2

10

a) Wx 147113, ¢~ 3.0087

AP
BRI
)

s

LR,
SRS
K
7

LT AT
II,’"'

u(n,t)

¥ ;' Coltartnde i
et iy
Wl f
i
i
% "'}

.'
DY
G

T ,;?:0' I,,', il

0
RN

u(n,t)

Fig. 5. Image of the function u(z,t): 1-u®(n,t), 0<n<1;
2_uP (1), 1<n<6: 3—u (), n>6

8. Conclusions

Approximate analytical solution of the examined
problem about the synchronization of vibroexciters for the
generation of longitudinal travelling waves in a bar can be
disseminated to the more general case, for any number of
vibration exciters in the system and for more complicated
systems.

On the basis of results of investigations some qualities
of the system are revealed, the obtained inequalities and
equations are suitable for practical application.
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