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1. Introduction the phenomenon of the dynamic orientation. The
phenomenon of a dynamic orientation is close to the
The synchronization phenomenon has manysynchronization phenomenon [8].
applications in mechanics and in physics, in tHeation For the theoretical research of the phenomenon of
technologies and in other fields [1-3]. orientation the small parameter method is used. The
Synchronization is one of mechanisms of self-conditions for the existence and stability of thigeg
organization of nonlinear oscillatory systems [Ilhe  phenomena for elastic system are received by
general definition of synchronization properties swa approximate-analytical methods.
offered in [4-5]. In certain cases synchronizatiamses
owing to properties of the system, for example, the2. Problem statement
frequency synchronization of vibrating or rotatibgdies.
In such cases the term self-synchronization is Jgéd The system consisting of a semi-infinite bar witle t
Machines with independently rotating vibration ésrs  elastically connected end andh vibration exciters
found wide application. Their rotors can rotate connected to it is analysed.
independently, and for normal work of the machihe t The bar can perform vibration in a transverse and
necessary synchronization of rotations of vibratsuiters  longitudinal direction as the body of the vibratiexciter
is reached owing to the phenomenon of self-turns round the joint which connects the body of th
synchronization of systems [1]. Lately interesinisreased vibration exciter to a bar with the center of thdsaof
to chaotic synchronization where each of synchemhiz rotation in point A, and finds a steady direction of
subsystems continues to make complex chaotic vilmsat
and after the establishment of the synchronousme(].
The aim of the present work is the research of the YA
phenomenon of the dynamic orientation of an elastic
system for excitation of longitudinal and transeers
travelling waves, i.e. studying of the capacitydyhamic
system to make vibrations in the directions chdsgrhe
system.
The additional degrees of freedom are arised at
fastening vibration exciter to the object by meaofs

vibrations.

connections allowing the motion of the body of the 9 ; §<
vibration exciter concerning object. Excess degreés %o X Y
freedom give the possibility to the vibration egcitto 1 w
choose trajectories of motion or position of itdpoSuch ,
dynamically defined stable and unstable positioescalled Fig. 1. Model of the system
147
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The exciting masses of vibration exciter are lodae

points B, and B, , and they rotate synchronously in

opposite directions so that the excitation along bar is
created [8].

The pointsA;, B, B,; have the coordinates

A-(X-+U- V,), B, (X +U, +rcosp, v, +rsing,),

B,; (X, +u, +rcosp, ,v, —rsing, ), X, =const,
Py =Py

I’:AJ.B“:AJ.BZJ., 0!]:7Z'+1JTZJ, J:_‘L”.,n

Kinetic energy of thé-th vibroexciter is equal to

T - m, +2m
2

o ) [ +mr? . )
(0, + %)+ )+ =7, +2) -
_mr[(uj + Xo)((plj Sin% +¢2] Sin¢2j)+
+Vj (_(rblj COS(plj +¢2j COS(ij)] ’ (1)

where m, is the mass concentrated at the pot and m
are the masses concentrated at poBfsand B,,, | is the
moment of inertia of the rotor of th¢-th vibration exciter
with respect to the center of the axis of rotatian [9].

The differential equations of motion of the givesstem
is obtained in the form

(I +mr*)¢, —mr[(l, +%,)sing,, -V, cosp, ]+
tH, 0, =M, . (@
(I +mr*)g, —mr[(l, +%,)sing,, +V, cosp, 1+

+H, ¢, =M, . (3
(m, +2m)(U, +X,) — mr (¢, sing,; + ¢/, cosp,, +

+¢,, Sing,, +¢22J. cosp, )=F,(u), (4)
(my +2m)V, —mr (=@, cosp,, + ¢, Sing,; +

+¢2j COSp,, _(pzzj Sin(ij):Fin(vj)’ (5)

whereH, ¢ and H ¢, are dissipative forcesyl, and
M, are the moments of external force§; (u;) and

F.(v,) are inertial forces.

The longitudinal vibrations of a bar are describgdhe
equation [10]

gzu 51 (62 +><o)
=2 0(X=X, )F (u;)cose; , (6)

sectional area¢, is the coefficient of external damping,

o is the Dirac's delta-function.

The boundary condition for the elastically fixeddesf
the bar has the form

ou
C EF — 7
% = EF — )
wherec, is the coefficient of stiffness of the spring.

The transverseibrations of a bar are described by the
equation [10]

o'v a

ox*

EJ

—25(x X, )F,(v,)sina, , (8)

where v(x,t) is the transverse displacement of the points

of a bar, EJis the stiffness of a bar, the ter@%
characterizes the external damping proportionapeed
of displacement of the points of a b¥Yith x=0:

o%v
ox®

o%v

EJSS =0, EJ

=0. 9)

Introducing the dimensionless coordmayez— the
r

equations (6), (8) and the conditions (7), (9kttie form

EF 0% ou o’u
+&—-pF
2 6772 glat p [ XO)
:;5(’7—77,-)':1.1(1-';)005(1; ) (10)
cx =EE M with p -0, (11)
r ong
EJ o'v o°v ov .
—AW+,0F¥+§2§:Ejj&(n—nj)Fin(Vj)smai ,(12)
2 3,
E-f%:o, %§i=o with 7 =0. (13)
n n

From equations of motion of the given system itissble
that the vibration exciter on a bar at, =0 excites

longitudinal vibrations, and ata, :% - transverse

vibrations.

3. Application of the small parameter method

where u(x,t) is the displacement of the cross section with

the abscissax, p is the mass of volume unit: is the
modulus of elasticity of the materiallF is the cross-

148

The small parameter method is used for investigatio
of the steady-state regimes of motion, determingd b
equations (2) - (5), (10), (12).
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The equations (2), (3) take the form

@, =mr(li, +%)sin(t + @, )~V , cos@t+ @, ,)] -

(I +mr?)g, =&, , (14)
-H, o+M =0,
(I +mrz)¢2j :é(DZj’ (15) J I
where @, = Mr[(li, + %) sin(t +,; )+, cOS@t +9,,,)] -
@, =mr[(lG; +X,)sing,; -V, cosp,; | - Hm @y + Mm , - szja)+ Mc»z; =0, (19
@, =mr[(U; +X%,)sing,, +V, cosp,;] - qu_gsz +M,, the upper dash indicates averaging with respett to
Substituting representations of functiofig(u;) and
¢ is the small parameter. F.(v,) in the form (16) into (10), (4) and (12), (5) with
the'ggfmsteady—state regimes of motion are represanted the account thab, , = wt+p, , and , , = wt+p,,, and

equalizing the coefficients at’, it is obtained
uj =k§gkujk ’ ¢1j =l§gk¢1j‘k ’ Fin(uj) =l§ngirk (ujk)' EF azu
r? on’

o c,r onot?

+0

v, = ngvjk » @, = lg)gk(pzj.k ) Fin(vj) = Z%Jngink (ij)- (16)

k=0

ou o°u EF 0ou

+&,—-pF + =
éa p( J
= 2115(77_771)':% (ujo)cosajo ) (20)

where u,,v,,0,,9,,,F (u,),F (v,) are periodic functions
of t. .

We  substitute  representations of functions £, y_(m +2m) i +Eau(771,t) _
u,,v,,@,,@, in the form (16)into equations (14), (15) ™ ¢ onat®

and, equalizing coefficients at’ and &', we receive the

problem of the first approximation: —mro’(cos@t+9, ) +cos@t+9,,)), (21)
(I+mr*)g, =0, (I+mr’)g, =@, , EJ o'v v ov
TR I Lk
N o~ r' on ot ot
(l +mr )(pzj,ozov (l +mr )(pzj;:(DZj,o’ (17)
= 25(77—77,-)Fim (VjO)SInajO ' (22)
where :
cDu.o = q)lj :ij:’.iig = m[(ujo + XO)Sinwlj,D _vjo COS¢1].0] - F‘rU (VjO) = (m° + Zm)vio -
PLj=11j,0
_ ~ ot o _
“H, G0t M, mre’ (sin(t + @, ,) —sin(@t +,,,)) . (23)
q)zj,o = (Dzj sjjjjjg = mr[(ujo + Xo)sm(pzj,o +Vj0 COS%,-,O] - n Dijo —Pajo R (/_)11,0 _azj,o '

wherea, =7
92j=02j,0

2 2
_sz;¢’21,o+M¢zj . . _ _
Functions u, and v,, j=1...,n, will be found

It follows that ¢, , and ¢, , can be represented in the from expressions (20) - (23), then the constantsand

form Pyi0—Prior 1 =1...,n, will be defined from periodicity
conditions (19) taking into account that i ,=0,
Puio = O Puor Pr10 = DLF Py (18) j=1...,n, at action of the perturbing force developed by

L the vibration exciters, the bar makes vibrations ain
where ¢, ,, ¢,,, are constants. o o _ r
Periodicity conditions of functionsp,, and g, , longitudinal direction, and ifx , =3 - in a transverse

according to the equations (17) have the form direction.

149
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4. Theforced transver se and longitudinal vibrations of
the bar

For casen=1 we shall find functionsu(r,t) and
v(n,t) - the solutions of the equation (20), (22) witle th

boundary conditions (11), (13), respectively. Ance w
believe that at the point of the bar with the #&mxx =0

(or in the dimensionless coordinateg =0) the forces
F (Uy,) and F, (v,,) are applied.
Finding of functionu(r,t) is reduced to the integration

of the differential equation of the longitudinabvations of
the bar [11]

EF du
c,I onot

EF 6% (aZu

2 on? e at?

P z]=0,f7¢f71,(24)

and at the poing =7, =0 of a bar the force

Fino (ulo) = (mo + 2m)(um + EF MJ B

o onat?
—mrw?(cos@t + ¢,,) + CoSEt + @,,)) (25)

is applied, wherep,, =

¢110 ! gDZO gDZlO

Equation (24) must be integrated with the following

conditions:

u—0 when 7 - +x,

EF du

X, =——+F (ulo) COSx, when =0, (26)
r on

()

wherea, = a,, .
The solution of equation (24) is sought in the form

u(n,t) = 8(n) coswt + w(r7) sinwt. (27)

Substituting the expression (27) into the equaff),
the functionsé() andy(n) are found

9(’7) e Z Aer 17] + Azeir 177 + y
+Ae” +Ae"”

l//(77)=ie;[ Aet-Ae T J

ron -ron |
+Ae” +Ae

(28)

wherer, =a+ia, ,
numbers

r,=a-ia,, a,q, are the positive real

150

2)

W45 16 + (K- 4p7)

22
k2_4 2\2 16 Z_k2_4 2
%:W( B 16w (K- 4p") 29
22
RN 5= prio’ ke EFp®  pFro’
S EF T E T or ¢

The functions 6(;7) and w(n) must satisfy the
conditions

6(n) >0, w(n) >0 whenn — +o .

[1—ﬁ2cos(x j%(O)—ﬁ—z[ +ﬁ2cosaoj9(0)=
B k' B

(30)

b — —
= E OS2, (COSP,, +COSP,) ,

[1—%cosa Jal// 0) - ’B [1+—C05a j ©0) =
Yij B’
b . L
=~ cosa, (sing,, +sing,,) , (31)
wherea:m"E;Fzmr ‘=ap’, aizn;,;F;?:\w,
2m 2m
b= 22 _ 2' ==,
EF %

are obtained from (27).
Using the conditions (30) and (31), the integration
constants A — A, in (28)

A=A=0,

AZ:_bk

cosa, (e + ')

(kz B2 krj—;kcow(kz—ﬂ +kr,

cosa, (€™ +€7°)

ak k?
j—ﬂco&x (Z—ﬂ +kr j

bk
A4_ (kz

—+ B2 +kr

are determined.
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Functionu(z,t) is represented in the form

u(n,t) = A(m7) cos@t + y, (7)) , (32)

where A7) =+0°(7)+w?(y) is the amplitude of

vibrations of the points of a bar, and(n) = —arcth

o(n)

is the initial phase.
Presentingu(z,t) in the form (32), it is obtained

- 5+(l
u(n,t) = %e [2 ]” cose,[cos(@t + @+, + A) +

+cos@t + @, +an+A)], (33)
ak
Kot 1+Fc05040
where A = arctg — , D= k"
ka+?+ﬂ2-D 1—FC05‘10

A= +(ka ) A,

2 2 2 2
pm [ cosg, -t ka) ) [ 2kap” )
I u? + (kazy) w + (k)

w=ka+k? 12—, u, =ka+k* 12+ %.

Differentiating the functioru(r,t) with respect tor at

n=mn, =0, the value of the functiomx, (t) :%S—U 04 is
n

found, then adding, (t) andu,(t) =u(0,t), it is obtained

bk _
U, (1) + %, (t) = mcowo[cos(a)t +@,+A)+
+cost+ g, +A)], 134

k
where A, = A—arctg %

H
Finding the function v(n,t) is reduced to the
integration of the differential equation of the rsaerse
vibrations of the bar

o%v

EJ o'v ov
+pF 2"’525201 n#n,

r* on' ot

(35)

valid everywhere, except at the point= 7, =0, where the
force

Firo (Vlo) = (mo + Zm)vlo -
—mr@?*(sin(@t + @,,) — Sin(wt + ¢,,))
is applied.

(36)

2)

Equation (35) must be integrated with the condgion
v— 0, whenny — +w,

OV y=0, LY ()= ol sne
6’72 ' ’ 3 A '

37
on EJ 37

The solution of equation (35) is sought in the form

v(n,t) = X(n)coswt +Y (1) sinwt . (38)
4 2 4

Designatin : PO , _el @ and
g g A = ==

substituting the expression (38) into the equafB5), the
system of the ordinary differential equations

{X“‘) () BEX () + Y (1) =0, 39)

Y@ ()= BIY (1) = 1, X(17) = 0

is obtained.
Solving the system of ordinary differential equato
(39), the functionsX (r) andY () are found:

X(n7) = D,K, + D,K, +iD,K, +iD,K, +
+ DK, + DK, +iD,K, +iD,K,,

. . (40)
Y() = DK, +D,K, —iD,K, —iD,K, +
+D.K,+D,K, -iD,K, —iD,K,,
where
1
K,(m) = 3 (chyn cosy,n +chy,ncosyn),
1 .
K,(m) = 3 (shyncosy; +chynsinyn),
1 . .
Ki(7) = 5 (shynsiny; +shy;sinyny) ,
1 .
K.(n) = 5 (chynsiny,n + shy,n cosyn),
1
Ky(7) = 5 (chyn cosy,n —chy,ncosyn) ,
1 .
Ke(m) = > (shyncosy,;n —chymsinyn),
1 . .
K,(m) = E(Shm siny,n —shy,npsinyn) ,
1 .
Kq(n) = > (chynsinyn —shy,ncosyn) , (41)
7, 7., @, a, are the positive real constants:
Jai+a!l +a Jai+a! -a
yEN T =y,
2 2
151
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Functions v(;,t) are represented in the form

—,W G- —\/'BlJ””l_'Bl_ (42) V(77,t) = A() cost + y,(77)) . It is obtained

, , y ~ b,sing, _.
K.©Q=1, K@©O=r. K©O=p, K@O@=a, Vo= ZJA—Z(Jsm

K/0)=«a, KZ(©0)=9,, KJ0)=¢,, where
S,=ay-ay,, O6,=ay+ay, values of all other x((K4 CK, 1K, -K) co{a)t + Lot Poo _Azj_
functions and their derivatives to the third ora®lusive at 2

510 _620 x

n =0 are equal to zero. P+ O,
H 10 20
Applying the connection conditions - (K, -K,+K; - Ks)sm[a)t L —AZD : (45)
X(@m)—>0 X"(0) =0, .
) whenzn — +w0, ) © a,sina, -9,
Y(7)—>0 Y"(0)=0, where A, = arctg=—>—=.
a,sina, + 9,
X"(0) = (azx 0) +b—22(sing$m —Sin@o)]smao, Then the functionv,,(t) = v(0,t) is equal to
(43)
Yll O _ Y O b2 T ol H bZ Slnao —
( ) = a ( )+E(Cos¢m _COS(pzo) Sing,, Vlo(t) = [COS(C()t T @y _As) -
V24,
) ) —cos@t+¢,—A,)], (46)
where a, LR ap’, b, = Mg = bA?,
EJ EJ 2a,sina, + 0, -9,
h A _ t a2 0 1 2
are obtained from conditions (37); the integrationstants WN€re A, =arclg 540 '
D, - D, of functions X(r) and Y(7) (40) are determined e
from algebraic system concerning these constants: 5. Conditions of the existence and stability of the
) solutions
D,=-D,-D,, D,=D,=0, D, =-iD,,
i ) i It is necessary to make use of periodicity condgio
D, =-D, +iD,, D, =ID,, (19) at definition of frequencyw for longitudinal and
. transverse vibrations which at=1 takes the form
b, sing, . o
D, :T((az Smao_52)(S|n¢10_sm¢)20)+ o
z chO = [(Um + Xo)sm(a)t + (7)10) _\710 COS@'[ + 610)] -
+(a, sing, +6,)(Cosp,, — €C0sp,,)) , w _o,
b, sine, . L
=2 sing, + o,)(sing,, —sin - — - — = —
T aa, (SN TA)ENG,mSNg) B =[Gy %) SN ) 7, COSEA )]
_(az Sinao - 52)((:05(;10 - 005@0)) ' - h2w+ M 2 = 0, 476
A, =(a,sing, +6,)° +(a,sina, — J,)*. H M
where ®,=®,,, h=—2, M =—2%  j=1,

Functions X(r7) and Y () take the form k=12

Substituting the functionsi, +x, (34) andv,, (46)

X(ﬁ) = Dz(Kz - K1+ K7 - Ks) + De(K4 - K1+ K6 - K7)1
into the system (47), the given system is transéatto
{Y(U) =D, (K, - K, + K; = K;) = Dy (K, - K, + K; = Kp). the form

Therefore, the functiow(,t) is equal to

(ZE—IZ(ACOSO(O COSA, + \/EZT sina, sinAJsin@20 -9,) =
v(n,t) = (D, coswt — D, sinat)(K, — K, + K, —K_) + ! 2

_ ho-M,-ho+M,

’
a)Z

+(D, cosat + D, sinat)(K, - K, + K, - K.). (44)
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ZI‘TI:COSCZO sinA, (L+ cos@,, — ¢,,)) — Lsinao COSA, x

A, /24,

_ o—-M, +ho-M
X(l_COS@zo_(plo)): hl 2 2 Z.

From the given system (48) it follows that the dtiod

of existence of solutions is the inequality

‘ ho-M,-ho+M,

<1.
bkaw® bw® . .
- —COSz, COSA, + Sing, SINA,
2B°A, V24,

T — —
a) FOI’O(O:E Do =P =7,

from system (48) it is obtained that

ho-M,=ho-M,,

2
_bo CosA,| .=ho-M,,
2A, %
and as

/A

o=@ 0) (=)

B 0, +0,

COSA,| - ,
"2 J2A(a,+6)+(a,-5,)°)

that for transverse vibrations of the bar frequencys
defined from the equality

b2w2(5 +0,)
L 2 -M)=0. 49
@0y + (@0 M) (49)
b) For e, =0 Dy — P, =0,

from the system (48) we have
ho-M, =ho-M,,

2

bko SinA,
2B°A,

w00 =ho-M,.

As

N (ﬂ_muﬁ(kalfj:[ 2ka, J
o WA (ke i+ (kay)® )

1

> (48)
@

determination of frequency w

2ka, p?

sinA =
00 (g +(key)?) A,

1

ap=0

that for longitudinal vibrations of the bar freqegnw is
defined from the expression

bk’a,@*
(4 + (k) 1A, ]

~—(ho-M,)=0. (50)

The solution was stable when it should satisfy the
condition

A= Dy) g (51)
a((pzo - (plo)
On the basis of this inequality it is received timthe

case ife, =% the solution is stable when the inequality

bza)2 (Zaz + 51 - 52)
2((a, +0,)" +(a,~5,)*)

<0or2a,+0,-06,<0 (52)

is fulfilled; in the case whenx, =0 the solution should
satisfy the inequality

bk (ak s+ (ka)?) o
28] V\ B w+(kay)’

ap=0

ak g, +(Kay)?
B w+(kay)?

or >0. (53)

6. Experimental analysis results

As initial data it is accepted:
a=01,b=02,p=2,n=05,¢=0,h=h=2,
M, =M, =1, ¢,=0.

Entered into consideration the
coordinates are connected with
dimensional coordinates by the formulas

dimensionless
corresponding

:M b:@ p—ﬁ.r,n:EF

oFr T o VE c,r’

LTI VI L
" mr 7% EF

In the given casep,,—¢,, =27 . The equation for
has the solutions:
153
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o, = 05040, w,~ 26571 The frequency @, is the

frequency of resonance.
The three-dimensional graph of the functiars,t)

with the given parameters is represented in Fig. 2.

u(n,t)

Fig. 2. The graph of the functioru(7,t)

Following dimensionless coordinates

c,=03, ¢c,=1, h=h =01, M,=M, =1, aozg,

are connected with corresponding dimensional coatds

by the formulas

,OF - 52'r4
1 2 :
EJ EJ

In this case ¢,—¢,=7. The equation for
determination of frequency @ has the solution:

o ~ 3.4029.

The three-dimensional graph of the functiay,t)
with the given parameters is represented in Fig.3.

vt

Fig. 3. The graph of the function/(7,t)

154

2)

7. Conclusions

The dynamic model of the system is constructed, the
exact solution of a problem about determination of
longitudinal and transverse vibrations of the b&hwhe
elastically connected end is found in the work.ndsihe
given exact solutions, the expressions for thenitefin of
the excitation frequency are received, leading le t
results of calculations with any entered parametéithe
system.
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