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Abstract. A number of effects arising during vibrations of long elastic waveguides can not be explained in the context of 
the linear theory. One of these effects is redistribution of energy between the longitudinal and transverse vibration modes. 
Nonlinear equations describing such effects have been studied in momentless approximation with application to vibrations 
of strings and they account for tension of the string axis as a result of transverse vibrations. The authors have studied a 
possibility of generalization of these equations for the case of elastic waveguides taking into account internal moments and 
lateral forces arising during bending of the waveguide. 
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Introduction 
 
 

Today flexible elastic waveguides for transmission of 
ultrasonic vibrations are found increasingly wide 
application in different areas of science and technology, 
e.g. ultrasonic thrombolysis [1, 2], transurethral lithotripsy 
[3], heating of fuel at low temperatures [4], remote 
actuation of ultrasonic motors [5], cleaning of difficult-to-
access channels in technical systems. Unfortunately at 
present there are no methods for designing such 
waveguides and their analysis and synthesis are 
implemented by empirical way. Vibrations of flexible 
waveguides are of complex nature and should be treated as 
coupled flexural-longitudinal vibrations. 

Combined longitudinal and flexural vibrations of 
ultrasonic systems have been considered previously in the 
works by Zhou et al. [6, 7]. However longitudinal and 
flexural vibrations were considered as independent on each 
other. 

An attempt for mathematical modeling of flexible 
waveguides has been made in the work by Bansevečius et 
al. [8] in which flexural vibrations of a waveguide with a 
constant cross-sectional area along the length have been 
considered. Unfortunately the results presented in this 
work cannot be generalized for the case of waveguides 
with a complex law of the cross-sectional area variation 
along the length. 

The problem of the flexible waveguides modeling is 
also considered in the article by Gavin et al. [9] in which 
finite-element model of a waveguide immersed into fluid is 
studied. Although this model makes it possible to study 
waveguides with arbitrary complex law of the cross-
sectional area variation along the length, it is based on 
some assumptions reducing its practical value. Particularly 
the problem is considered to be axisymmetric so only 
longitudinal vibrations can be studied. At the same time 
appearance of flexural vibrations essentially reduces 
efficiency of ultrasound transmission along the large-
length waveguides and therefore should be taken into 
consideration during design. 

In practice longitudinal and flexural vibrations of long 
flexible waveguide cannot be treated independently. If 
initially there are only longitudinal vibrations, as it takes 
place in the case of attachment of a waveguide to a solid 
horn, they can be transformed into flexural vibrations if the 
waveguide is sufficiently long and looses its dynamic 
stability. It means that a portion of longitudinal vibrations 
energy is transferred to flexural mode of vibration and 
constant-energy solutions obtained from the independent 
treatment of equations of longitudinal and flexural modes 
cannot adequately describe vibration of the waveguide. 
Flexural vibrations at the distal end of the waveguide 
should be minimized and it may be achieved by means of 
attachment of pear-shaped working ending to the distal 
end. In this case flexural vibrations originating from the 
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loss of dynamic stability are transformed into longitudinal 
vibrations and it means that longitudinal and flexural 
modes are exchanged with energy. As the loss of dynamic 
stability is a typically nonlinear phenomenon, coupling of 
longitudinal and flexural vibrations should be described by 
nonlinear equations. Nonlinear equations of coupled 
longitudinal-flexural vibration are well developed for 
strings [10, 11]. However they are based on assumption 
that the only kind of internal forces arising in the string are 
tensional stresses (momentless theory). Flexural vibrations 
affect longitudinal ones by means of creating additional 
tensional stresses in the string caused by deformation of 
the string axis. Consideration of this deformation leads to 
geometric nonlinearity. 

Nonlinear equations of elastic bar movement are 
studied by Hsieh et al. [12] and can be useful for deriving 
equations of flexible waveguide vibration. These equations 
account for the deformation of the bar axis and include 
geometric nonlinearity. However elastic bar studied by 
Hsieh et al. has constant cross-sectional area and equations 
of its movement should be generalized to adequately 
describe vibration of flexible waveguide. 

 
Formulation of nonlinear equations of flexible 
waveguide vibration 
 

Let us consider a segment of the waveguide having 
coordinate x and length dx in undeformed state. 
Displacement of this segment during deformation is shown 
in the Fig. 1. Cross section of the waveguide is rotated by 
the angle γθα += , where θ is bending angle, γ is shear 

angle. 
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Fig. 1. Displacement of the waveguide segment during 
deformation 

 
Every point A(x, y) of the waveguide cross section is 

translated during deformation into the point ),(' yxA  with 

coordinates 
 

θξ sinyxx −+= , 

 
θη cosyy += , 

where ξ and η are longitudinal and transverse 
displacements respectively. 

Length of the element A(x, y)B(x+dx, y) after 
deformation can be defined from equation 

 

=+= 22 ydxdds  
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where accent stands for the partial derivate with respect 

to the variable x. 
Relative deformation of the element in the linearized 

form is given by equation 
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where 0ε  is relative deformation of the waveguide 

axis. 
Material of the waveguide is assumed to be elastic and 

the following relations are satisfied: 
 

εσ Exx = , γσ Gxy = , 

 
where E is modulus of elasticity, G is shear modulus. 
Axial force N, bending moment M and shear force Q 

are expressed by equations 
 

0εσ ESdSN
S xx == ∫ ,  (1a) 
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where I is centroidal moment of inertia of the 

waveguide section, S is cross-sectional area of the 
waveguide. 

Equations of the segment motion can be derived from 
the equilibrium conditions: 
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ηρθα &&SQN =′+′ )cos()sin( , (2b) 
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where J is mass moment of inertia of the waveguide per 

unit length. 
From the Eq. (2c) 
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Angle α is related to the displacements ξ and η by 
equations 
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Taking into account Eqs. (3) and Eq. (1b) gives the 

following relation 
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After insertion of Eqs. (3) and (4) Eqs. (2a) and (2b) 

take the following form 
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From Eqs. (3) 
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On the other hand 
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Taking into account Eq. (4) we obtain the following 

relation 
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Eqs. (5a)-(5c) form the basis for mathematical 

description of the waveguide vibration. These equations 
can be solved by means of asymptotic perturbation 
methods, e.g. method of multiple scales [12, 13]. 

Conclusions 

In this article we have derived equations of flexible 
waveguide vibration taking into account coupling of 
longitudinal and flexural modes. To our knowledge this is 
the first attempt to account for nonlinear modal interaction 
in complex-mode ultrasonic vibratory systems. The future 
work in this direction will be aimed at numerical analysis 
of the suggested equations and development of theoretical 
basis for creation of flexible waveguide systems with 
controlled spatial distribution of longitudinal and flexural 
vibrations. 
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