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Abstract. A number of effects arising during vibrations ohg elastic waveguides can not be explained irctimext of
the linear theory. One of these effects is rediigtion of energy between the longitudinal and tvanse vibration modes.
Nonlinear equations describing such effects haen Istudied in momentless approximation with apfibceto vibrations
of strings and they account for tension of thengtraxis as a result of transverse vibrations. Tithaxs have studied a
possibility of generalization of these equationstf® case of elastic waveguides taking into accouernal moments and
lateral forces arising during bending of the wavdgu
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Introduction The problem of the flexible waveguides modeling is
also considered in the article by Gawnal. [9] in which
finite-element model of a waveguide immersed ihadfis

Today flexible elastic waveguides for transmissafn studied. Although this model makes it possible tiadg
ultrasonic vibrations are found increasingly widewaveguides with arbitrary complex law of the cross-
application in different areas of science and tetdgy, sectional area variation along the length, it isdaaon

e.g. ultrasonic thrombolysis [1, 2], transuretHithlotripsy =~ some assumptions reducing its practical value.idedatly

[3], heating of fuel at low temperatures [4], remot the problem is considered to be axisymmetric soy onl

actuation of ultrasonic motors [5], cleaning offidiflt-to-  longitudinal vibrations can be studied. At the satinee

access channels in technical systems. Unfortunedély appearance of flexural vibrations essentially reduc
present there are no methods for designing sucéfficiency of ultrasound transmission along thegéar
waveguides and their analysis and synthesis adength waveguides and therefore should be takea int
implemented by empirical way. Vibrations of flexébl consideration during design.

waveguides are of complex nature and should béettess In practice longitudinal and flexural vibrations lohg

coupled flexural-longitudinal vibrations. flexible waveguide cannot be treated independenfly.

Combined longitudinal and flexural vibrations of initially there are only longitudinal vibrationss at takes
ultrasonic systems have been considered previondlye place in the case of attachment of a waveguide golid
works by Zhouet al. [6, 7]. However longitudinal and horn, they can be transformed into flexural vitoas if the
flexural vibrations were considered as independerdach waveguide is sufficiently long and looses its dyi@am
other. stability. It means that a portion of longitudindbrations

An attempt for mathematical modeling of flexible energy is transferred to flexural mode of vibratiand
waveguides has been made in the work by Bakaevet  constant-energy solutions obtained from the inddpen
al. [8] in which flexural vibrations of a waveguidettvia  treatment of equations of longitudinal and flexuraddes
constant cross-sectional area along the length baem cannot adequately describe vibration of the wawmgui
considered. Unfortunately the results presentedthis  Flexural vibrations at the distal end of the wavdgu
work cannot be generalized for the case of waveguid should be minimized and it may be achieved by medns
with a complex law of the cross-sectional areaatamh  attachment of pear-shaped working ending to théaldis
along the length. end. In this case flexural vibrations originatimgpr the
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loss of dynamic stability are transformed into libndinal where ¢ and 5 are longitudinal and transverse
vibrations and it means that longitudinal and fi@u displacements respectively.
modes are exchanged with energy. As the loss cddim Length of the elementA(x, y)B(x+dx, y) after

stability is a typically nonlinear phenomenon, clingp of  deformation can be defined from equation
longitudinal and flexural vibrations should be dé#sed by

nonlinear equations. Nonlinear equations of coupled 5 o

longitudinal-flexural vibration are well developefbr ds = y/dx? +d372 -

strings [10, 11]. However they are based on assompt
that the only kind of internal forces arising iretstring are
tensional stresses (momentless theory). Flexubahtions
affect longitudinal ones by means of creating acudil

= J @+ & - y(sing))? + (7’ + y(cosd))?dx ,

tensional stresses in the string caused by deftymaif where accent stands for the partial derivate vagpect
the string axis. Consideration of this deformatieads to  to the variablex.
geometric nonlinearity. Relative deformation of the element in the lineadiz

Nonlinear equations of elastic bar movement ardorm is given by equation
studied by Hsielet al. [12] and can be useful for deriving g
equations of flexible waveguide vibration. Thesea@pns _Os . [ 2 n2 ' /
agcount for the deformati%n of the bar axis andﬂ)idxe g_&_l_ N+ At -1y =0 -y0,
geometric nonlinearity. However elastic bar studiegd
Hsiehet al. has constant cross-sectional area and equations \where g is relative deformation of the waveguide
of its movement should be generalized to adequatelgxis.

describe vibration of flexible waveguide. Material of the waveguide is assumed to be elastit

. . . . the following relations are satisfied:
Formulation of nonlinear equations of flexible

waveguide vibration O =Ez , Oy =Gy,
Let us consider a segment of the waveguide having

coordinate x and length dx in undeformed state. whereE is modulus of elasticityG is shear modulus.

Displacement of this segment during deformatioshiswn Axial force N, bending momenM and shear forc®

in the Fig. 1. Cross section of the waveguide tatenl by —are expressed by equations

the anglea =6+ y , where@ is bending angley is shear

angle. N = [(odS=ESeo, (1a)

Y‘ M :jsaxxy-dsz—Ee'jsyzdsz—Em', (1b)

Q=] (Ox0dS=GSy, (1c)

where | is centroidal moment of inertia of the
waveguide section,S is cross-sectional area of the

- X R waveguide.
1 A B Equations of the segment motion can be derived from
*‘ ] | the equilibrium conditions:
@) .
y . ox X (N cosa)' —(Qsind)’ = pSE (2a)
Fig. 1. Displacement of the waveguide segment during (Nsina)'+(Qcosd) = pSij, (2b)
deformation
M’ —Q(+&g)cosy =—J4 , (2c)

Every pointA(x, y) of the waveguide cross section is

translated during deformation into the poiAt(x, y) with whereJ is mass moment of inertia of the waveguide per
coordinates unit length.

) From the Eq. (2¢)
X=X+&-ysing,

M43 (M7 4+ 30)A+ &)
(@L+&p)cos@e —0)  cosacosd +sinasing

y=n+ycosd,
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Angle a is related to the displacemenfsand by
equations

4 , COS = 1o 3)

sina = = .
1+ &0 1+ &0

Conclusions

In this article we have derived equations of fléxib
waveguide vibration taking into account coupling of
longitudinal and flexural modes. To our knowledgés tis
the first attempt to account for nonlinear modaéiaction
in complex-mode ultrasonic vibratory systems. Titirie

Taking into account Egs. (3) and Eg. (1b) gives thevork in this direction will be aimed at numericaladysis

following relation

_ J0-El'0'-El0"
@A+ &) cosd+n'sing

Q (4)

After insertion of Egs. (3) and (4) Egs. (2a) a2d)(
take the following form

1

E(S@+§)+S)| 1-——— |+ ES{+ )%
n2eaey?
n'n"+ @+ &EYE (JIG-EI'9 -Elg" ’: o5
%+ @+ &)%)¥? ((1+§')C0U9+77'j pe B9
E(S +S1") 1-—————— | +ESy'x
In?earey?
nn"+ @+ EYE (JIG-EI'G —Elg" I: Sii. (5b
(% + @+ £)?)F? ((1+§')+;7’tan9j o 5D

From Eqgs. (3)

’

n
1+¢&

tana =

On the other hand

Q
tang =tan@+y) =tan 6 +—|.
a ©+7) I'( st

Taking into account Eq. (4) we obtain the following

relation

tan 0+ JH—EI&—EI&_ _n (50)
GS((L+¢&")cosb +n'sing) | 1+ ¢&'

Egs. (5a)-(5c) form the basis for
description of the waveguide vibration. These eguat

can be solved by means of asymptotic perturbation

methods, e.g. method of multiple scales [12, 13].
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of the suggested equations and development of @tieal
basis for creation of flexible waveguide systemghwi
controlled spatial distribution of longitudinal arfigxural
vibrations.
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