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Abstract. The article analyses a new type of a mechanicatyaiscillator — vibrator, the base of which is mad steady
magnets. The scheme of a vibrator’s regulated pasrbmitted to excite the rotary oscillationsadfirning frame. Some
of the dynamical characteristics of a vibrator hagen researched.
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1. Introduction

Since 1978, a few types of vibrators, which opeadate
the principle of two uninteractive frames with siga BN
magnets of a relative motion, have been patentadh S
vibrators can change from a micro up to a macre aizd
have different power. } =

The article analyses the vibrators of a similaretyp ? 3{ \

(Fig.1) with an easily regulated power, which caa b ---}--—4-====—.
achieved by relative shifting in an axial directiof the

rotary frames comprising magnets. NI====

2. The scheme of rotary oscillations vibrator v 5
A

Owing to these qualities we have chosen this type o
an magnetic vibrator. The equipment (Fig.1) congris
external ring 2 immovably fastened on electric mateaft  Fig. 1. The scheme of rotary oscillations vibrator: 1-rpto
1 which provides a rotational motion. From extemiad) 2  2- external ring; 3-internal disc; 4- spindle oétresearch object;
with fastened magnetic poles 5 on it the rotationation  5-magnets
is transmitted to analyzed body - spindle 4 on Wwhic
internal disk 3 is fastened. Transmission of thejue is
secured by the interaction of magnetic forces betwe 3. The dynamic model of the system and its
magnetic poles 5. Investigation

When the electric motor does not work, equilibrium
steadies in the magnetic system and magnets do not The systems dynamic model (Fig.1), consisting af tw
generate the torque. The electric motor being fwidcon, (incoming and outgoing) links of rotary movementthwi
its rotor 1 and external ring 2 start rotating. Towles N steady magnets, can approximately be describechéy t
and S having moved towards each other in the magnetfollowing differential equations of motion:
system, the torque emerges and tends to returaydtem
to the_ state _of equilibrium. In this way, rotatibna |,¢, + Mlz[n(¢1_(ﬂ2)]+ Ho =M, ,
fluctuations arise and they are transmitted to yereal L G —M [ _ ] H.o. = M
body 4. Magnets have been taken in order to getritwe 202 12 n((pl (p2) TP, =My, 1)
simple construction compared to the previous ohe [4
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here I, I, — moments of inertia of incoming and
outgoing links; @1, ¢, — angles of turning links; M —

Having estimated (7,8) the equation is changed into

moment of magnetic forces, proceeding in one magnet BJFh/B: acosn(ét — ) +m—hQ, 9)
pair; n — the number of pair magnets; H, — coefficients
of viscous friction; M, M, — moments of external forces.

Equations become simpler when the motion of one whered = — €. (10)

component is defined, for example:

P, = ot, (2)
Then if
D=0,

1
T M [n(p, —¢,)] = —acosn(et—¢p).  (3)

1

Differential equation of the motion is going to be:

The equation (9) for calculating a slow motion is
modified:

B +hp =acosnét + {acosn(ét — ) — cosndt] +
+m—hQy},

(11)

wheree- a small parameter in the end of calculations.is 1
E shows the analyzed regime, when the motion dbesn’
bend a lot from the motics=0

The steady motion regime appears in the form of
degree series:

@+ hg =acosn(wt — @) +m, (4) B=po+&b+..., (12)
H M where A3 (i = 1,2,...) are periodical functions.
whereh=—% m=—21,. 'B'( .l )arep
l, l, Considering
Case 1: conservative system, i.e. when in the B, =— a )
equations (1) " ne-Q)n*(w-Q)%+h? (13)

H,=H,=M,=M, =0.

Indicating:

P=P =05,

we get:

¢+ W (ng)=0, ®)
wherey =112

l|2

The solution of an equation is:

(z'ﬁzi\/C—ZvJ.M (Ng)dg | 6)

where C is a constant of integration.
The equation (6) calculates separatrises.
Then the equation (4) is being analyzed.

Case 2:constant slow motion, when:
p=Qt+ /[, (7

whereQ<<p. (8)
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[n(w— Q) cosn(w — Q)t —hsinn(w — Q)t].

From (11, 12§, is calculated in the following way:

B, +hp, =acosn(w—-Q)t - ,] -

(14)
—acosn(o - Q)t + m—hQ.

The periodicity condition of; is:

acosn(o—-Q)t - g,]—acosn(w—-Q)t +
+m-hQ=0.

(15)

In the equation (15) we mark only the linear part
according ty Having estimated (12), we get:

ha?

—he=0.
20— (@-0yf g e=P09

When the speed (8) of the motion is far smallentha
the speed of the excitation wave, we can calculate:

o-Q=w-). a7

And to find the linear part of an answer (16) adaay
toe:

Q=0+, +..., (18)
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where Q); (i = 012...) is constant.
From equations (16,17,18) we get:

2

a m

= +
° 2w(n’w?+h?) h

h
Q, = : (19)
'o*(nPw?+h?) 0
so only confining those two approximations:
a’ m
~ 111+ ]1.(20)

—+_ e —
20(N°w®+h?) h o’ (n°w® +h?)

system describing dynamics of a dendritic neuroimdi
process [3].

Evaluating M=w=1 and change of variables
y=1—¢ yields:

y+hy+asiny=h-m. (27)

This is a classical mathematical pendulum with
external constant drag. There is no external drag

whenm=h. Equation (2) can be expressed in a form of
two first order ordinary differential equations:

Case 3:steady motion when the system is moving in

the speed of an excitation wave:

p=wt+0p, (2n)
where @ - constant.

From equations (4, 5) we get

acosng +m—hwo=0. (22)

The conditions of the existence and stability dre t
following ones:

m-hwo
a

‘(1,

nasinng)0. (23)

Case 4:steady motion proceeds in an average speed,

which is bigger than the speed of the excitatiomava

In this case:
w-Q=e(Q-w))0. (24)
The zero approximation is:
m
Q,=—, (25)
° h
and confining two approximations:
2
m a

2 - o) (o () +h)

Eq. (1) describes a well known rotary motion transf
mechanism [2] whem=0. Also, Eq. (1) represents a

dz . (28)

— =h-m-hz-asiny.

dt

When m<h, equation (3) produces 2 sets of

equilibrium points:

Pl:(z:O;y:arcsir{h;m

PZ:[Z:O;y:ﬁ—arcsir{

Joza

mj+2ﬂnj, nez. (29)
The necessary (but not sufficient) condition foe th

existence of an equilibrium point is
—a<h-m<a.

(30)

Characteristic linearized equations in the surrdngel
of the pointsP, and P, will be:

-1 1

-h —\/az—(h—m)z—i‘zo'

- L -0 31
-h ya?-(h-mP -4 1)

Both roots of the characteristic equation fgr have

negative real parts. R, is a stable knot when

a?—(h-mf-4h>0; it is a stable focus when
a?—(h-mf -4h<0.
Characteristic roots foP, have always different signs

of their real parts;P, is a saddle point. Basin boundaries

of attractors can be constructed by reverse tiregration
from the surroundings of the unstable saddle pdiots
different sets of system parameters (Fig. 2).aft be seen
that two different stable attractors coexist — abl
equilibrium point and a stable limit cycle. The &ys’'s
attractors can also be represented in the phase fiax)

327

© VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING 2008 SEPTEMBER VOLUME 10, SSUE3, ISSN1392-8716



382.RESEARCH OFDYNAMICS OF ROTARY VIBRATION ACTUATORSBASED ONMAGNETIC COUPLING. K. RAGULSKIS™*, R. JONUSAS ®, K. KANAPECKAS® €, K.JUZENAS™®

(Fig. 3). Limit cycles are represented as closegdoin the A

phase plangx; ). We skip the transients and plot only the .|

steady state limit cycles at increasing values lod t
parameterm. Limit cycles get closer to the homoclinic
orbit as the parameten increases until, finally, the stable

limit cycle disappears and only the stable equilior point 0ap
(representing the motion by the velocity of thepagating ozs|

wave) is left. We plot also a transient orbit fdret
equilibrium point for better visualization.

¥
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Fig. 4. Fourier amplitude spectrum of limit cycles at

h=0.1;a=0.3; m=0 (solid line) andn = 0.03 (dotted line)

4.Conclusions

The article analyses a mechanical rotary vibratoe,

base of which is made of steady oscillatory magtiets
w move unstoppably and generate rotary oscillatichsh

rFig. 2.Basin boundaries &t= 0.1;a = 0.3;m = 0.01. Gray- vibrators compared to the known ones can changa &0
shaded regions mark the basins of attraction o$tihigle micro up to a macro size and may have differentgyow

equilibrium point

The system’s dynamic characteristics have beendfoun

in the analytical and numerical methods. SpecHiatdres

{l

- \&\ //é{/;f//;

. 3. Limit cycles in the phase plar(el(; x) plotted ah =0.1;a
=0.3;m=0.004;i=1,...10 [1]

(2]

a -

Ei

Fourier amplitude spectrums of limit cycles (oj are
plotted in Fig. 4 atm = 0 andm = 0.03. It can be seen that 3]
the amplitude spectrum becomes more complex as the
limit cycle approaches the homoclinic trajectory.
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have been revealed, when the motion starts from the
smaller speed and alters to the bigger speed of the
excitation wave.

Harmonic analyze shows, that we can get different

%77\§\$S = types of amplitude-frequency characteristics.
7/ T
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