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Abstract. High frequency oscillations of a circular cylinder in a viscous fluid near a fixed plane are investigated. 
Solution of an ideal fluid uniform flow, when velocity at the infinity is given, is presented. This solution is 
supplemented by a circulary flow and the circulatory constant is calculated approximately. Potential fluid flow velocity 
on the circle surface is displayed in diagrams and in trigonometric series. 
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1. Introduction  
 
 When a cylindrical body executes high frequency 
swing oscillations in a viscous fluid, flow of this fluid can 
be resolved into two principle parts. The first is 
oscillations of the fluid at the same frequency as the 
body, the second has no periodic component and is 
steady-state creeping flow. This flow can be deduced by 
applying boundary layer solution, presented by 
Schlichting [1]. The Schlichting’s  solution can be carried 
out if flow of an ideal fluid round the cylinder is 
determined. Analytical solution of the ideal plane fluid 
flow in a channel with a circular cylinder, placed 
symmetrically in the middle of the channel, is presented 
in [2]. Investigations of such flows can be applied in 
medicine, surgical technologies, ultrasonic angioplasty. 
 In this paper solution of the same flow is expressed 
for a circular cylinder, placed in the vicinity of a 
boundary of the channel. Circulation round the cylinder is 
investigated and approximate evaluation of this flow is 
suggested. This flow disapears naturally when the 
cylinder is in the middle of the channel. 
 
2. Flow through channel in potential field 
 
 General solution of a potential fluid flow in a channel 
with circular cylinde, placed asymmetricaly, can be 
expressed by mapping conformally the doubly connected 
fluid flow domain to circular ring of an auxiliary complex 
variable ς . 

 

 
Fig. 1.  a) Fluid flow domain in complex plane z=x+iy ;  

b) parametric  ζ  plane 
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Applying elliptical functions the boundary value 
problem can be reduced to a singly connected problem, 
but this solution is complicated. If the cylinder is located 
closely to one of the channel boundaries, influence of the 
remote boundary can be neglected. Therefore the fluid 
flow domain can be presented as infinite plane  z=x+iy  
with two equal circles (Fig. 1a). Uniform flow in this 
plane has a relatively simple solution, recently presented 
by Crowdy [3]. Conformal mapping of a fluid flow 
domain to the unit circle in the parametric  ς  plane ( Fig. 

1b ) is realized by linear fractional function 
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where constants  a, q  depend on radius  ro  and distances 
between the discs and the centers: 
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From the inverse function 
 

 
( )
( )ihaz

ihaz
q

+−
−+

=ζ          (1) 

 
one can see that entire imaginary axis  y of the  z plane is 
mapped to the real axis of the  ς  plane. The middle point 

of the flow  Oc  and the infinite point E are mapped to  

q−  and  q+  , while images of the centers  O1  and  

O2  of the discs in the  z  plane are  qq−=ζ  and  

q1=ζ . As always  q<1 , the images  O1  and  O2  

are inside the circle  1=ζ . The function 

 

 ( ) ( ) ( )( )12

1

2 111, −
∞

=

−−−= ∏ ζζζζ k

k

k qqqP  

 
and logarithmic derivative 
 
 

( )qK
q

q

q

q

P

P

k
k

k

k

k

,
11 1

2

2

2

2

ζ
ζζ

ζ
ζ
ζ

ζ ζ ≡








−
+

−
+

−
= ∑

∞

=

 
 

are expressed. As  q=β   [3], two functions  

( )qqKK ,1 ζ= ,  ( )qqKK ,2 ζ=   can be 

defined. The complex potential of the uniform flow, 
when infinite point speed  U  parallel to the  y  axis, is  
 

 ( ) ( )211 , KK
q

U
W −=βζ  .      (2) 

 
When infinite point speed  U  parallel to the  x  axis 

the complex potential is 
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The derivative  dzdζ  can be deduced from Eq.(1). 

 The line  y=h  in Fig. 1a is a simmetry line and a 
streamline also, so it can be replaced by the channel 
border. Streamlines for uniform potential flow in a half-
plane past a circular cylinder are in Fig. 2 (Eq. (3)). The 
streamlines past the same two cylinders , when flow  U  
is perpendicular to the flow in Fig. 2 , is presented in [3] 
and can be deduced from Eq. (2). 

3. Circulatory flow 

 Solution of the flow past a cylinder, located in 
vicinity of a infinite wall, presented in the chapter 2, is 
not unique. Any circulatory flow can be added to this 
uniform flow because velocity of this flow vanishes in 
infinity. Motion of a vortex near some obstacles is 
investigated by Jonson, McDonald [4]. Solution of a 
circulatory flow at the wall is depicted by Milne-
Thomson in Chapter 6, [5]. The complex potential of the 
flow in the domain below the line  y=h  in Fig. 1a is 
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Fig. 2.  Streamlines of uniform potential flow past a cylinder 
when  d=0.25 ro 
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where  c  and κ  - some constants. Applying  

ψϕ iw += , where velocity potential ( )yx,ϕϕ =  and 

stream function  ( )yx,ψψ = are real functions, Eq. (5) 

can be rearanged to  
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The variables  
κ
ψ

κ
ϕ

tanh,tan == cc vu   are real also. 

From two real equations, deduced from (6), the function  

cu  can be eliminated:  

( ) ( )( ) 02122 =+−++−+ − chyvvchyx cc . As 

constvc =  when  const=ψ , this is the streamline 

equation – a circle of a radius  ( ) 21−−= cco vvcr , 

when center coordinates of the circle are  

( ) 21−+−= ccc vvchy  ,  0=cx . It can be deduced 

that the constant  22
orhc −= . Streamlines for the 

circulatory flow are in Fig. 3.  
Complex velocity of the circulatory flow 
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c
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and velocity of the uniform flow (4) in the gap OcA1 (Fig. 
1a) are compared with the circulatory flow velocity in 
Fig. 4.  

 
Fig. 3. Streamlines of circulatory flow when  d=0.25 ro 

 

 
Fig. 4. Velocity  xvv =   on the y axis between the circular 

cylinder and the channel border when  d=0.25 ro ,  κ = 1  and 

velocity of the uniform flow  1−== xvv  when  ∞→x  

 

       Velocities  xvv =  on the channel border and  xv  

on the x axis are depicted in Fig. 5.  
 

 
Fig. 5. Velocity xv  when  d=0.25 ro , κ = 1  on the channel 

border  y=h   (continuous lines)  and on the x  axis  (dashed 
lines) 
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        The circulatory flow velocity decreases when  
∞→x  and this can be easily seen from Eq. (7). When 

cyrcular cylinder is in the middle of the channel [2] the 
circulatory flow vanishes naturally. But when fluid flow 
domain is asymmetric the circulatory flow can be 
generated. This is widely known in the wing flow theory 
of ideal flow [5] and can be determined for the viscous 
fluid [6]. 
 If the gap between the cylinder and the channel border 
is narrow, influence of a fluid boundary layer can be 
significant. Longitudinal oscillations of a plane generates 
displacements of the fluid [1] 
 

 ( ) ( )
ν
ω

ω
2

,cos, =−= − kkyteutyu ky
o ,      (8) 

 
where  y  is axis, perpendicular to the plane,  ω  - 
frequency,  ν  - kinematic viscosity. Thickness of the 

layer  cm31096.0 −×=≈
ω
ν

δ , where dynamic 

viscosity of blood  31023 −×=µ Pa×s, frequency  f = 

40 kHz  ( ν = 0.23 cm2 /s ,  ω = 8 π × 104 rad/s ). 
 Amplitude of the velocity in the Eq. (8)  
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and depends only on dimensionless parameter  

δ2
l

kl = . When distance l=d  ( i.e. the gap, Fig. 1a ) 

is very narrow 0→kl  then  1→aS . When the gap is 

wide ∞→kl  then  0→aS . The velocity of the 

uniform and the circular flows in the gap vary little(Fig.4 
). The correction parameter κ in Eq. (5) can be 

approximated as  
( )1cm

um
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v
S=κ  , where vum  is mean 

square velocity of the uniform flow,  vcm(1)  - mean 
square velocity of the  circulary flow when  κ =1.  

 If velocity  ( )tyu ,&  as function of distance and time 
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can be deduced. The mean square ratio  Sm<Sa  for any 
value of  kl, but the difference is the most significant 

when  0→kl  as  22→mS , while  1→cS . 

 

 
Fig. 6. Dependence of fluid velocity tangent component on 
angle  θ for uniform flow without circulation ( dashed lines ) , 
uniform circulatory flow (continuous lines ) , circulatory flow 
when  d=0.25 ro ,  κ = 1 (dashed-dotted line ) 
 
 In Fig. 6 tangent component of the fluid flow velocity  

τv  on the circular cylinder as a function of angle  θ ( Fig. 

1a ) are depicted. The dasded lines are for the uniform 
flow when circulation is absent, the continues lines when 
uniform flow and circulatory flow are summed. The 

circulatory flow is adjusted by  ( )1cmummm vvS=κ . 

One can see from the diagrame that influence of the 
circulation is more important when the gap  d  is less.     
What’s more, if the gap  0→d  the velocity of the 

uniform flow with circulation in the gap ( 2πθ ≈  )  is 

decreasing while velocity of the uniform flow without 
circulation is increasing. Over the rest of the circle 
surface  ( πθπθ 8.0,2.0 ><  ) difference between the 

curves is approximately constant and when  2πθ −=  

,velocity of the fluid is increasing, when the gap is 
decreasing, for all flows. Velocity of the circulatory flow 
has the same direction over the whole circle and its 
modulus increases in the vicinity of the gap. 

 Position oθ  of the zero velocity point 0=τv  

depends on the gap  d . The angle oθ  increases when the 

distance  d  decreases for all flows ( the uniform flows 

Vττττ 
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without circulation and the uniform circulatory flows 

also). If the gap  d  is a constant, the angle  oθ is larger 

for a uniform circulatory flow. Obviously  oθ = 0 when 

the circle is in the middle of a channel [2]. 

 It is advantageous to present the fluid velocity  τv  as 

trigonometric polinomial 
 

 ( )∑
=

++=
n

k
kko kbkabv

1

cossin θθτ  .   (11) 

 
 
 
Table 1. Factors of the trigonometric polynomial, Eq. (11) 

 
 
      The factors  ak , bk  depend on the ratio  d/ro ( Table 
1). The series (11) in the table is truncated Fourier series 
when relative mean square error is less than 2%. 
 In all solutions the constant  U  was given a value that 

the infinite velocity 1→xv  when ∞→x . 

4. Dicussion 

 When a velocity at the infinity point is given a 
potential plane uniform flow past a cylinder has no 
unique solution. The additional arbitrary parameter can 
be the velocity circulation around the cylinder. Velocity 
of the circulatory flow at the infinity is zero  (Eq. (7), Fig. 
5 ). There is no reason why this circulation flow should 
be absent generally, and viscosity of the fluid have to be 
taken into consideration to assess the circulation. 
 When the gap d  between the circle and the border of 
the channel diminishes ( Fig. 1a ), velocity of the 
potential  fluid in the gap increases if the circulation is 
absent. This dependence is really likely when the gap  d  
is much more than the thickness  δ  of the boundary layer. 
Influence of the viscosity will alter this if  δ≈d . A 
radius  ro  of the circle could be increased to   ≈ ro+δ , but 
velocity in the narrower gap is even greater. Obviously 
adding a circulatory flow is more realistic way to assess 
the viscosity of the fluid, and still retain in potential field. 
The two circulation approximations Eq. (9) and Eq. (10), 
suggested in this paper, possibly can be improved 

considering two parallel planes at a distance  d  [7]. On 
the other hand, there is only one plane in reality and  d  is 
the minimal gap distance. 

 Position of the zero velocity point  oθ  on a circular 

cylinder strongly depends on the gap distance  d  and a 
circulation flow. The other zero velocity point, where 

streamlines divide, is oo θπθ −=∗ , symmetric with 

respect to  the y axis. 
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d/r0 0.1 0.25 1.0 

b0 -0.489 -0.168 -0.058 

a1 2.008 2.249 2.104 

b1 -0.235 -0.264 -0.059 

a2 -0.231 -0.178  

b2 0.174 0.104  

a3 0.119 0.056  

b3 -0.078   

a4 -0.050   

b4 0.032   




