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Abstract: We report on finite element (FE) modeling and saioh of effect of squeeze-film damping on flexible
microstructure operating in ambient air in closeximity to a fixed surface, which is a common casenany MEMS
devices. A coupled fluidic-structural problem idvenl by applying a nonlinear compressible Reynelgisation, which
is derived from the Navier-Stokes equations, tramséd into weak form and added to commercial FE etiog
software. The proposed model enables investigatibrinfluence of surrounding air on dynamics of eifnt
microstructures taking into account air rarefactamd air compressibility effects. The paper presaesults of
numerical analysis, which aim was to study the phegnon of natural frequency shifting in the cas&ed and forced
vibrations of the cantilever microstructure. Sintidas demonstrate that squeeze-film damping mayltreés the
increase of natural frequency of the microstructire to system stiffening caused by air compresdibe magnitude
of this effect is determined by such parametersrabient air pressure, air-film thickness, vibrativeaquency and
lateral dimensions of the microstructure.

Keywords: MEMS, squeeze-film damping, finite element modelingnlinear compressible Reynolds equation, natural
frequency shift, stiffening.

Introduction known as squeeze-film damping. It strongly affettis
dynamic behavior of microdevices. The reason o$ thi
Squeeze-film damping is characteristic for devigks strong influence is the scaling effect: volume &w¢such
microelectromechanical systems (MEMS) which desigras gravity and inertia) that act on a device arectly
is based on parallel-plate capacitor structureswhich  proportional to the (length)while surface forces (such as
air fills tiny gap between two parallel plates (evgrtical ~ viscous force) are proportional to the (lengthhus, the
microaccelerometers, torsional micromirrors or micr effect of surface forces on microdevices is rekdiv
switches)(Fig. 1). In order to increase the efficie of greater than the effect of volume forces. And sitize
actuation (for microactuators) or improve the sévigi ~ damping force of the surrounding air is a surfawred, it
of capacitive detection (for microsensors), thetatise plays an important role in microdevices, whereasait
between the capacitor plates is minimized and tba af  be neglected for machines of macroscopic dimengibns
the plates is maximized. When in operation, vilmgti 5]. Squeezed gas effects were studied long befiverd
microstructure of such MEMS devices is undergoingof MEMS. Major applications of this effect were atdd
transverse motion with respect to substrate. Sihee to bearings (lubrication), levitation systems amangers
lateral dimensions of the microstructure are muglgdr  for pneumatic machines [6-8]. History of researchair
than the gap size, its fairly small displacemenhdanmal damping in MEMS was started by W.E. Newell in 1968
direction compresses (or pulls back) a signifieambunt  just after the first MEMS device was developed hg H
of air out of (or into) the very narrow gap. Howevithe  Nathanson in 1967. Newell discussed the influente o
viscosity of the air film limits the flow rate algrthe gap, surrounding air on the quality factor of a resonated he
and thus the pressure is increased inside the mhpets observed that the ever-present damping due to the
against the microstructure. The total pressure eforc ambient air would be increased when the resonass w
which opposes the motion of the microstructure, isiear a second surface due to the pumping actitdmecdir
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Pa Z Table 1. List of proposed expressions for effective vistosi
' coefficient ug. The parametero is the accommodation
Vl” ; . coefficient, defined by interaction between thefates and the
ho quT =) ™ gas (for most engineering surfaces it can be as$tonee equal
- to unity) andQ is Poiseuille flow rate [12].
Umax  LUx
Author .
Fig. 1. Graphical representation of squeeze-film damping (year) Expression for s
between two parallel plates that move normal tdesther and
velocity profile of the generated gas flol— pressure between Knudsen H
plates,P, — ambient pressuré) — gas flow velocity v — plate (1906) + Kn(Kn + 2-507)
velocity, Fsq; — squeezed film forcehy — initial gas film 0-147‘(Kn+3-095)
thickness.
Burgdorfer H
) (1959) 1+6K,
between the surfaces. Later, in 1983 J. Blech aadly -
squeeze-film damping and discussed applicatiorhisf t |Hsia and Domoto M
effect to tailor frequency response of seismic (1983) 1+6K, + 6K
accelerometers. Extensive research of air damping i .
MEMS started at the end of 80s - beginning of QOSFUKU' ailgggKaneko NiD,D=£
(H.V. Allen, H. Seidel. J.B. Starr [9], M. Andrews0], (1988) 6QD) 2K,
H. Tilmans [11], T. Veijola [12] etc.) [1-5]. Seidel et al. 0.7u
Mathematical models of different dimensionality and (1993) 07+ K
complexity have been used by numerous researcbers !
help understand and characterize MEMS structurdsrun Mitsuya H
the influence of squeeze-film damping. Reynolds (1993) 2-« 8

1+6——K, +=K?
3

equation known from lubrication technology is the a

theoretical background to analyze this phenomenon:
Much of theoretical research work on squeeze-film| Veijola et al. H
damping in MEMS by using Reynolds equation treats (1995) 1+ 9.638Kn1'159
vibrating microstructures as rigid, i.e. lumped isgf
mass (single degree-of-freedom) models are utilize
[9,10,14-17]. A number of researchers use modes th
account for flexibility of microstructures and ttehem
as distributed-parameter systems [18-22], howeemym
of them use simplified versions of Reynolds equatio D_/’+p vU

[18,20,21]. All models are almost exclusively based Dt ’

linearized Reynolds equation [10,15,16,21] oritspdest D p a7

version — linearized incompressible Reynolds equati ——=-VP+p g+nV U+§V(V><U)-
[9,12,17,18,20]. Those models that use nonlinear
Reynolds equation, however, have a tendency to
approximate a microstructure by a beam model [19,23
Thus, we may conclude that those models that at¢cou
for flexibility of microstructures either simplifythe
structural problem (as in [19,23]) or the squeelre-
damping problem (as in [18,20,21]).

The presented literature review suggeststhaat is a
need for accurate computational models that reptese
microstructure in 3-D, account for its flexibilitypy
treating it as a distributed-parameter system, arel

ﬂlavier—Stokes (NS) equations, which are composed of
the continuity equation and the motion equation:

(1)

where p is density of the fluid,r is the absolute
Jiscosity (assumed to be constamf)is the acceleration
of gravity, P is the pressure of the fluid and is the
f velocity of the fluid (bold symbol denotes vector
quantity) [5].

NS equations are very difficult to solve analylica
and exact solutions only can be found for problevith
one dependent variable. In most cases these partial
differential equations are solved using computation
fluid dynamics techniques that are one of the most
(éhallenging tasks for FE solvers. In contrast tacttral
mechanics or thermal analysis, solution must beedon
iteratively. Solution requires relatively more dduium
iterations and strong convergence problems occur

analysis point of view, it is important to determihow
different squeeze-flm damping conditions influence
dynamic behavior of the microsystem.

frequently.
Furthermore, if we wanted to include contact model
Derivation of Reynolds equation into the model based NS equations, the computdtiona

effort required for dynamic simulations using such
On the continuous field level, squeeze-film dampingcomplicated model would be enormous and hardly
of a microstructure vibrating in a fluid governed by possible with current stand-alone computers. Thestmo
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[ - 5 Table 2. Parameters of modeled fluidic-structural microsyste
f /W%E’V,p Description and Symbol Value Unit
T T Microstructure lengtth 117 [m]
) }'l Microstructure widthw 30 [um]
Stationary structure "l Microstructure thickness 2.0 [um]
Initial air-film thicknesshy 2.0 [m]
Air film Young's modulu€ 207 [GPa]
Densityp 8908 [kg/m]
Fig. 2. Schematic of the modeled fluidic-structural micrsteyn Poisson’s ratio/ 0.31 -
consisting of a cantilever microstructure under #ffect of Dynamic viscosity of aip 18.%10°| [Pas]
forces generated by squeezed air film.
o(ph*aP) o[ ph®oP a(ph)
. : SR LI P E Ly T AL (4)
common method to avoid usage of NS equations foly| , ax | ay| u oy ot

modeling squeeze-flm damping in MEMS is to apply
Reynolds equation, which is used in lubricatiorotiyeto
determine the behavior of a thin fluid film betwetsvo
moving surfaces [6]:

Gas is a predominant working fluid in MEMS devices
and thin gas films are realistically assumed to be
isothermal, i.e. it is assumed that viscous frittitnes not
cause a significant temperature change sincehéajral
0 ph’oP L9 ph® oP _ contact between the gas and the surrounding solid
OX\ u Ox) oy\l u oy surfaces is very good in MEMS devices (volumes are

(2)  small and surface areas are large), and (b) common
:6{za(ph)+E[ph(ul+Uz)]+£[ph(vl+vz)]} MEMS materials are good thermal cgnductors [1]. The
ot X equation of state for an ideal gas is [6]:

where fluid densityp, pressure in the gap, and the P
gap thicknes# are functions of time and positior, (). P
u is the dynamic viscosity of the fluidy andu, are the B
velocities in thex-direction of the top and the bottom where R - specific gas constant (universal gas
surface, respectively, and andv, are the velocities in constant/molar mass),—gas temperature.
they-direction of the two surfaces. For isothermal procesB/p is constant and therefore

Reynolds equation is a nonlinear partial differainti density in the Reynolds equation can be replacat wi
equation, which is derived from Navier-Stokes emumt pressure [6]. The equation given below is known as
the equation for the conservation of mass and thisothermal compressible Reynolds equation, whict wi
equation of state for an ideal gas by assuming(jahe be further referred to as nonlinear Reynolds equnati
fluid is Newtonian (the shear stress is directly(NRE):
proportional to the velocity), (2) the fluid obetys ideal
gas law, (3) the inertia and body forces are nédiég 3 3
compared to the viscous and pressure forces, @) thi(ﬂ@j+i(ﬂ£J=12[hE+ Pa—hj (6)
variation of pressure across the fluid film is ngigly ox\ pu ox) oy u %y
small, (5) the flow is laminar, (6) the thicknedsfloid
film is very small compared to the lateral dimensi®of where total pressui®(x,y,t) = p0+5(x, V,t), po is

the moving and stationary plates, (7) the fluittésated as  he initial static ambient pressure in the gap and

continuum and does not slip at the boundariesgl.,4, = . . .
The condition of negligible inertia effect of fluig P(xy.1) is the .de_vlatory (additional) pressure caused by
the squeezed air-film effect.

written by using the following condition for mocfi . ) )
Reynolds equation assumes continuous fluid flow

Reynolds number [13]:
y [13] regime. A general condition of acceptance of this
assumption is the Knudsen numbKy, which is a

=Rt,. (5)

2

wh P 1. (3) Measure of the viscosity of the gas under the
U microstructure [2]:
where, @ is angular oscillation frequency of the Kn:ﬂ. 7)
moving structure. Pohy

Since the relative movement in lateral directiomas
considered for MEMS devices, the original Reynolds wherehy — initial value of gap (gas film) thickneskg
equation is reduced to: is the mean free path of air particles at atmospher
pressureéP,, (i.e. the distance covered by a molecule in a
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1% flexural mode; 116.1 kHz ’

U
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2" flexural mode: 727.2 kHz\
Time (s) x10°

- Fig. 4. Time responses of velocity (1) and pressure (2) at
arbitrary midpoint of cantilever microstructure #&d with
0 sinusoidal force of the magnitude that producegelamplitude
vibrations and which frequency is equal to fundatalen
ﬁ frequency of microstructure in the presence of egedilm
damping.
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\ ‘ escaping [1,5]. Thus, the use of original Reynolds
equation in the noncontinuum regimes is not correct
19 torsional mode: 899 4 kHz Fortunately, extensive research has extended tiditya
of Reynolds equation to the noncontinuum regimes,
thereby enabling description of the flow using $ng
model. A convenient and popular way to accountgfas
rarefaction effects is to modify dynamic viscosjtyin
Reynolds equation by introducing effective visopsit
coefficient u. Various expressions have been proposed
by different researchers fag since the beginning of the
ﬁ 20th century, when Knudsen presented a correction

coefficient based on his research on the gas flow i
capillary tubes [12]. Summary of these expressimns

given in Table 1. Though all expressions give smil
results, expression from Veijola et al. is validepwa
wider range oK, in comparison to others QK, < 880)
and therefore is widely used in squeeze-film daigpin

v analysis [2,12,13].

Fig. 3. Simulation results: vibration mode shapes of cangit

microstructure and the corresponding pressure rabdpes. 3. Formulation of a model of the fluidic-structural

microsystem

gas between successive collisions). ForRhg= 101325 A microstructure having cantilever-type or fixeaefdl

Pa,Lo ~ 65 nm [1]. Based on the Knudsen number, theonfiguration is a basic structural element of nMEMS
flow can be divided into four regimes: continuurovil  5ctyators and sensors such as microswitches, tapaci
(whenK, < 0.001), slip flow (when 0.001 K, < 0.1), pressure sensors, accelerometers, filters, ressnatal
transitional flow (when 0.1 <K, < 10), and free many others. Schematic drawing of a basic modeled
molecular flow when K, > 10) [1]. In the continuum figic-structural microsystem with typical paramet
regime, the fluid is governed by the Navier-Stokesgjyes are provided in Fig. 2. Firstly, a mechanicadel
equations (or equivalently the Reynolds equation)of the microstructure was created in the finitenedat
However, many MEMS devices are designed to operat(q:E) modeling software Comsol [13]. In the FE

at very low pressure with a very small gap betwten  formuylation microstructure dynamics is describedtiy
electrodes. Under such rarefied gas conditions,d<en following equation of motion presented in a general

number increases to the noncontinuum regimes angatrix form:
interaction of gas molecules with the surfaces bexo

important, reducing gas viscosity, through so-chfiip . . .
effect” where particles can have fewer interactibefore [M N‘J }+ [CNJ }+ [K]{U}: {Q(t,U U )} (8)
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Fig. 5. Simulated free vibration response curves of thérarly 0 {(ho )3 65} 0 {(ho 2)3 65}
- 0 - )

point at the end of the microstructure after it weleased from & Ox oy oy

its initial deflected position, = 1 um for differentp, in the gap - (20)
of hy=1um. Curves: 1- 10Pa, 2 — 10Pa, 3 - 10Pa, 4 - 1® 12 oP 0z

Pa, 5 - 10 Pa. =LLlegt (hO - Z)E_ pOE .

where [M],[C],[K] are mass, damping and stiffness ~ Air can freely move into and out of the gap. The
additional time-dependent pressure comporie(t, y,t)

, . . appears due to transient changes in the gap sizegdu
velocity and acceleration vector#;)(t,u,u)} — Vector  mijcrostructure movement and it depends on the gap s
representing air pressure forces generated byidluid and its deformation velocity as well as on the prtips
structural interaction between the microstructured a of the air and the structures. Because the system’s
ambient air. surroundings are in equilibrium, the only force
The model consists of a flexible 3D microstructure,component that affects the moving microstructusailte
which is fixed atx = 0 and i; suspendedl_byd(?i_stambriae from the additional film pressurB(x, y,t).

over a stationary structure. Parameters listedhéntable o P

of Fig. 2 are used for simulations. It is assuntet both Dirichlet boundary condition is:
structures are surrounded by the air. Thereforgépein-

matrices respectively, {U}%J}{J} — displacement,

between is filled by the air and forms an air-filmhich P(O’ y,t)= Po- (1)
is characterized by the following parameters that a .

specified in Comsol during pre-processing stage: Néuman boundary conditions are:

ho— initial air-film thicknessu — dynamic viscosity of air ~ _

at standard pressure and temperature STP (101 kPéP(Ly,t):O (12)
25°C), Lo — mean free path of air particles at atmospheric  ox '

pressure andp, — initial ambient pressure. The

microstructure is initially at rest in its undefoeth aP(x,0,t)

configuration. o 0, (13)

In order to add the effect of squeeze-film dampgmng
the mechanical model, it was necessary to transéarnt
into weak form and insert into the Comsol. To teisl
the procedure provided below was performed.

Due to symmetry only half of the microstructure is
modeled therefore the condition at symmetry is as

The variable gap thicknessis expressed as: follows:
h(x, y,t)=ho — Z(x,t) . ©) M Y "
n

wherez(x,1) is deflection of the microstructure. where.n — outward normal vector
Then we obtain the following form of compressible At ' d fth . ; .t th .
Reynolds equation by taking into account that open E_} ges 9 ) € microstruc ure_ € pressure 1S
P(X, V,t) = Po + P(% y,t)and 1 = sierr (model of Veijola equal top, i.e. vanaFlor.l oP(x,y,t) vanishes at. the.
is used here foig as given in Table 1): edges of the gap. Th|s is an adequate assumptioe si
Mleft S G : the aspect ratio (ratio between lateral dimensiand
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Fig. 7. Simulation results: (a)

characteristics of arbitrary point of the microsture in the

oP oV
Po &J& + ((ho -

(j} H{(m—zf’ 2 pc%ﬂ%]da—

- [ (-2 R - 2P o -

o

oP oz
- i 1241 {v (ho ~2) %~y E} 0. 16

where Q denotes the boundary on the dom@in
Taking into account boundary conditions we get the
weak form of eq. 10:

3 YoP oV 0P oV
J{((ho -2) pOI&& +6_ij -
o (17)

oP oz
-12 V(i —z)—-Vp,— | |[dQ = 0.
Vi~ 9% v |

The obtained weak formulation of the compressible
Reynolds equation was inserted into the Comsol FE
model and “coupled” to a lower surface (boundarfythe
microstructure. It was possible to perform thiseition
of weak form of Reynolds equation into the Comsat d
to the unique feature of the software, referredato
“equation-based modeling”, which enables the user t
input any number of equations via graphical user
interface. When the equation is inserted, the suofw
uses a special equation interpreter to automaticall
translate the expression into a finite element code
Thereby Comsol solves entered Reynolds equations in
order to determine pressure distribution in the gap

amplitude-frequency then this pressure acts as a boundary load on the

microstructure. The developed FE model was

vicinity of its 3¢ natural frequency and in the presence ofsubsequently used for numerical study of squeei@d-f

squeeze-film damping at different levels of workipgessure
po. (b) Relative shift of § natural frequency of the

microstructure presented as a function of workingspurepg,
(ho = 1 um, | = 117 um, f; = 2.0482 MHz,c = 16.1 at
Po = Paum)-

thickness of the air-film) of the considered migrstem
is large.

Then eq. 10 is multiplied by some test functiband
integrated over the domain of interest denote@by

i{%{(ho - 2)3 Po Z—z}V +%[(ho - 2)3 Po %}V dQ =
[ T 09
“g[ ot ot

effects.
3. Simulation results

Numerical analysis of squeeze-flm damping starts
with modal analysis, which purpose is to determtime
distribution of air pressure forces in the gap when
cantilever microstructure is vibrating in its fleal and
torsional resonant modes. Comsol eigenfrequenaoxesol
is used for the simulations. Ambient presspgen the
gap is set to atmospheric value R, = 101 kPa. For
better visualization model symmetry is not useceh&€he
results, presented in Fig. 3, consist of severalrah
frequencies of the microstructure, corresponding
structural mode shapes and the associated prassute
shapes. When examining these results we may nibtice
obvious coupling between structural displacemehts®
microstructure and the pressure distribution in gag.
For example, in the 2nd flexural mode, the upward

Applying the Green-Gauss theorem and integrating bflexing of middle part of microstructure correspertd a

parts we obtain the following relation:

concave pressure profile in the respective regién o
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logarithmic scale. It is obvious that the most pnamced
reduction is front; to t; asp, changes from 1 kPa to 100
kPa. Total relative decrease fragto t; is 16.3 %. This
effect also manifests in the case of small-ampéitud
(ho/zo = 100) free vibrations but in this case it is not so
significant. Reduction of time-coordinate of ampdié
peak with increasing pressure indicates that thguigncy
of natural vibrations increases and this in turplies that
in this case air undergoes compression leadingtoral
frequency shift. This agrees with the known fagit thn
the case of squeeze-film damping phenomenon peessur
force exerted by the air-film undergoing periodicles

. . . . ‘ s of compression and decompression has two companents
M e Y Mk one is in phase with the microstructure velocitye.(i

viscous damping force) and the other is in phask thie

Fig. 8. Simulation results: comparison of responses ofoiglo displacement (i.e. elastic force component due to

(1) and pressure (2) at arbitrary midpoint at treefend of 5 ppressibility of air). A non-dimensional squeeze
cantilever microstructure excited with sinusoidaice of the ; .
number o is used to characterize the degree of

magnitude that produces small-amplitude vibratiand which . L. ]
excitation frequencf, equals to 108. compression of the air in the gap [4]:

0.01 T T T T T 5

Velocity (m/s)
(=]
Pressure (Pa)

o S . L2uey 0
pressure distribution plot, which indicates theuettbn oC=—T"-5—" (29)
of pressure in this part of the gap (i.e. decongioes Poho
effect). And, in contrast, the downward flexing foée
end of the microstructure corresponds to a convex wherel is the characteristic length — the shortest
pressure profile — zone of increased pressurenegpect lateral dimension of the microstructurey — angular
to atmospheric (i.e. compression effect). oscillation frequency of the microstructure.
Simulations of forced vibrations of microstructure At relatively low oscillation frequencieseo or

were carried out by exciting lower edge of the feeel of  relatively large air gap$y (i.e. low squeeze number —

the microstructure with a sinusoidal force: roughly o < 3 [2]), the viscous damping force dominates
_ because the air can escape out of the gap witreingb
Fe = Fasin(27 ft). (18)  compressed. While, at relatively high or relatively

small hy (i.e. high o), elastic forces increase because of

wheref, — excitation frequency, — excitation force the air-film compression effect. In practice, thpsezed
amplitude. air-film represents a combination of viscous darg@and

Fig. 4 presents transient responses of velocity anelastic forces [4]. The main effect of air compressat
pressure at arbitrary midpoint at the free endamtitever  high values ofo is the stiffening of the microsystem,
microstructure excited with sinusoidal force of thewhich consequently increases its natural frequency.
magnitude that produces large-amplitude vibratiarthe A sequence of frequency response analyses was
presence of squeeze-film damping. Large-amplitudearried out by applying harmonic load (eq. 18)lides to
vibrations (with respect to air-film thickneds) are study the phenomenon of natural frequency shiftirtee
achieved when excitation force generates displanenfe condition of largerc was achieved by increasing
free end of the microstructure that is equal oseltoh,.  excitation frequenciek and therefore the simulation was
Fig. 4 indicates a nonlinear pressure response witperformed in the vicinity of '8 natural frequency of
respect to velocity response. transverse vibrations of analyzed microstructure

In order to determine influence of squeeze-film(f; = 2.05 MHz). The squeeze number for this case was
damping effects on free vibrations of the microstice, equal too = 16.1 atpy = P.m Obtained amplitude-
the latter is set to oscillate freely by displacimgwards frequency characteristics, provided in Fig. 7(dpady
its lower edge at the free end by a certain di®aC demonstrate that air undergoes compression andrthis
(static analysis) and then releasing (transienlyaisd.  turn raises the natural frequency of the microstmecas
Large-amplitude free vibrations were obtained bythe pressure increases from 1 kPa to 100 kPa.7Kiy).
selecting value af, such thahy/z, ~ 1. The results of this jllustrates the change of relative frequency shit a
numerical analysis are provided in Fig. 5. By ob®y  function of p,. Simulation results reveal that thé® 3
the time-coordinate of amplitude peaks of curvesatural frequency of transverse vibrations in aipa=
corresponding to different levels pf (t1, t, t3, 4, &) itis P, is by 0.73 % higher than the value obtained under
possible to notice that the time-coordinate of @k  vacuum conditionsp = 0). It should be pointed out that
decreases (fronts to t;) with increase inp,. Fig. 6 no significant pressure dependence was observavbel
illustrates the variation of time-coordinate of theaks 100 Pa and this result is in agreement with expamted
with respect to ambient pressum represented on results and observations found in open literatli. [
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Another sequence of transient simulations wasedrri air damping forces and increasing elastic forcess |

out during which free end of cantilever microstruret
was excited with sinusoidal force of the amplitutiat
produces small-amplitude vibrations and which featy
fo is 100 times larger than the first natural frequenf
the microstructurefs.
transient responses of velocity (curve 1) and piress
(curve 2) at arbitrary midpoint at the free end of
cantilever microstructure. The figure clearly iraties that
the pressure lags behind the sinusoidal velocity
Simulations revealed that the magnitude of the phag [1]
increases with vibration frequency. This in turdigates 2]
that increase in vibration frequency changes ttazagter

of squeeze-film damping phenomenon by lowerings3]
viscous damping forces and raising elastic forces.

Conclusion [4]

Results of modeling and simulation of squeeze-film9]
damping phenomenon in the case of cantilever-type
fluidic-structural microsystem were presented ire th
paper. The developed finite element model is slatédy
numerical analysis of the coupled fluidic-structura
problem in the case of flexible microstructure @bieig [7]
in ambient air in close proximity to a fixed surfaevhich
is a common case in different MEMS sensors and
actuators such as microswitches, capacitive pressur
sensors, accelerometers, filters, resonators, € [§]
model enables evaluation of influence of surrougdiir
on the dynamic characteristics of the microstriegur
Proposed model accounts for air rarefaction effantsis
valid in wide a pressure range of 10 P400 kPa. The
particular emphasis of performed numerical analysis
on study of air compressibility effects leadingstgstem
stiffening, which results in the increase of naltura[i0]
frequency of the microstructure in comparison tsuhes
obtained under vacuum conditions.

For modeling of squeeze-film damping a nonlinear
compressible isothermal Reynolds equation was used. (11]
was derived from the Navier-Stokes equations,
subsequently transformed into weak formulation anqlz]
inserted into mechanical finite element model oé th
cantilever microstructure, developed with the Comso
software, thereby expanding the capabilities of the
software to perform more in-depth study of the[13]
considered squeeze-film damping phenomenon. [14]

Numerical modal analysis was performed, which
provided natural frequencies and mode shapes of a
microstructure together with the corresponding suies
distribution in the gap. [15]

Simulations performed in the case of large-ampétud
motion of the microstructure demonstrated the mesal
response of the pressure in the air-film with resge

(9]

velocity response of the microstructure. [16]
Effect of natural frequency shifting was analyzed a

observed in the case of free and forced vibratafnthe

microstructure. It was confirmed that vibrationguency [17]

of the microstructure changes the character of estpie
film damping phenomenon by reducing generated uisco

concluded that natural frequency shifting is obedrv
under specific operating conditions that are defibg a
combination of values of ambient pressure, air-film
thickness, vibration frequency and lateral dimensiof
Fig. 8 demonstrates obtained the microstructure.
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