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Abstract: An overview of some problems related to the elation of following negative dynamic effects is mpeted:
the effects arising from the nonlinear geometradadracteristics of mechanisms; the effect arisiogifthe joint action of
nonlinear position function and clearancise effects of excitation vibratory regimes arisfrgm overcoming the thresh-
old level of nonlinear dissipation.
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1. Introduction

The problem of reducing vibratory activity is oné o |
the most important problems of modern machine dynam Mn
ics. In this paper we have presented an overviesoafe 1
problems, among which we should single out the iabm W | ¢,
tion of following negative dynamic effects: theesfts aris- n J
ing from the nonlinear geometrical characteristiok 2 @ G
mechanisms; the effect arising from the joint actiof ys,
nonlinear position function and clearanctdsg effects of Fig. 1.
excitation vibratory regimes arising from overcomitne
threshold level of nonlinear dissipation.

2. Effects arising from nonlinear geometrical Any coordinate in the absolute motian is a combina-
characteristics of mechanisms tion of the “large” coordinatdT, (¢,) , realizing the motion
of the absolutely rigid drive, and the “small” cdorate Ao ,

Preliminary remarks. A distinctive property of Ma\\hose ensemble corresponds to number of vibratgstem

e o 1 P degres o eedon.
P 9 In this case the set of differential equationsaslimear.

position functionll(¢) , where ¢ is the coordinate of ar, yever, with representing the position functiorss teun-
input link [1,2]. The mechanisms realized programmegated Taylor series the linearization in the viyindf the
motion (“cyclic” mechanisms) are playing a doubiéerin cyrrent value ofg, is carried out. In doing so the position

:/ri]sr;tli?)rr?tg;)éiaisgﬁmagg :)r:]etr?gei)trr]é?dh:r?(ljngetihe(i:ggglf functions retained their nonlinear properties reéatto the
obiect to vibration ’rotection g large coordinate, and only small deformations eutethe
) P ' corresponding expressions in a linear fashion. rAftee

Fi f O&%T‘gﬂ% daeltsys\I/Z?(Ie gr)g;?;ndlcbmggreT:t')iSn?nre;ﬁétEdtransformation to the quasinormal coordinates thgirml
g y 9 gystem can be described dijferential equations

diagrams of vibratory mechanical systems with ¢ert

kinematic analogsHi that determine the kind of connec- ) ) —
. : . . yo+2n O)y, +p O)y=W () (r=1H) (1)

tions between the input and output links . In thegms

of Fig. 1.J;,G,y; denote moments of inertia, stiffness  gjng the method of conventional oscillator (Vuliso

and energy dissipation coefficients of the corresling 1969) the decisiory, has the following structure [2,3]:
links in the kinematic chain.
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()
Q. (t)

sin¥, +Y, , (2

yr = /ur Z Djr eXp|:—J nrdt}
j=0 tj

i, =[1—2exr(—.9rﬁr) cos2N, + exp- 2N, )T)’s ;

Y, = \/er(r) tsj_l V;/;r(zjj) exp{—]i nrd(f} sir‘HQr (é)df} du,
w, = [0, (r)dr,

Y

@)

whereQ (t) = p, expz, is conventional “natural” frequency;
P is an optional parameter with the dimension ofrex f
quency;N, =p,/o.

According to the method of conventional oscillatbe
relation between the functiorg and variable frequency

p, (t) will have the form of the following differential eq-
tion, responding to the particular "conventionatilbestor"
with the excitation2p *(t) [2,3]:
7,-0,52°+ 2p7e” = 2p.°(t) . (4)
By slow changes ofp? (t) the dynamic components in
the Eq:(4) is small in relation to the static oRer this case,

Q. =p, and the solution (2) corresponds to thaKBJ

approximation method.
Violating of dynamic stability conditions by slow

A dynamic effect caused by a sudden temporary
change in the “natural” frequency of a system (atled
"parametric impulse") is considered in [2,6] usitie
method of conventional oscillator.

The effect arising from the joint action of nonlinear
position function and clearances. For cyclic mechanisms
the clearance-effect leads to possibility of vitigtortion
of kinematical characteristics and increase theegdrivi-
broactivity. Two cases are revealed. In the fi@se the
clearance proves as a nonlinear element to whigbsai-
bility of generating vibratory impact modes is cented.
In the second case reaction to a clearance masifissif
as an impulse in linear systems. This dynamicceffe
equivalent to impact arising from disruption of@tnuity
of the function dI1/d¢,. Some dynamic criterions that

allow forecasting the excitation of vibratory impae-
gimes are offered [5, 7-9].

In the linkages the clearance effect sometime sefte
due to the conjugate action between the contraciing
faces of hinge (Fig. 2). On many researches of pihidb-
lem it is supposed, that the vibration excitatiorelamina-
tion of breaks of the kinematic contact in cleaemndoes
not arise. However at parametrical pulses therayisifect
is close to impact. This effect, nampsetudo-impact, un-
der certain conditions is transformed to the impaith
disruption of contact of a kinematic circuit.

The relation between linearized tangential and @brm
stiffnesses of "links"A'A", B'/B"-c",¢" can be presented

as [9] |

¢ /¢ =|R[/(0,5"s +|R|) (7)

change of parameters. According to (2) the amplitude ofyhere R (i=1,2) is the reaction in the corresponding hinge

free and accompanying vibrations
to the function

is changingpertional

calculated at the kinetostatic leves; is the value of clear-

ance.

S=p O expHin €)Xl ©)

With changing parameters

it may happen that

y A' AH
0:

dS /dt >0, therefore the customary decrease of ampli-—\

tudes can be disturbed. In the similar case theliamdp
modulation exists, where the zone of decreasenaltes of
the zone of increase. Therefore, contrary to amendc
resonance we do not experience the unlimited isered
amplitudes. Under some unfavorable conditions the i
crease of amplitudes may become rather intensigégJ
(5) the dynamic stability conditions on any timeenval
can be written as [2-5]

n +0,5p /p > 0. (6)

It is possible to show that condition (6) can disoob-
tained by the direct Lyapunov method and it is, s&n
quently, the sufficient condition for asymptoticalsility.
Compliance with this condition removes also theahbagity
in the zones of parametric resonances.

0, P3
N @D

®2

O XN\

WYl X

S

Fig. 2.

The offered model of clearance-joint (Fig. 3) idbsnit-

ted as a pendulum that oscillates in a rotating grofield

443

© VIBROMECHANIKA . JOURNAL OF VIBROENGINEERING 2008 DECEMBER VOLUME 10,1SSUE4, ISSN1392-8716



399.SOME NONLINEAR EFFECTS OF MACHINE DYNAMICSI. |. VULFSON

about the elastic support [9]. The analysis of thmedel Real damping is determined by the effective valuthe
allows to define the conditions of stability on theited time logarithmic decremens’ = 9 —|S°| _ The valuemax8® can

intervals and critical values of parameters of systit which . L .
the excitation close to impact takes place. be used as an efficient criterion for characteg#ime level of

vibration. The envelopes shown in Fig.4a (curvex@®Yye-
spond to the logarithmic decrement decreasing f8pm0,2
to 0,06. We see that a decreasdimntensifies the dynamic
instability and vibration excitation.

For 17,=10 and$; =0,2 , the valued;” remains nearly
zero for a rather long time. In this case the camspéng of
the dissipative factors takes place (Fig.4b).

The transformation the pseudo-impact to impactvis e
dently visible at comparison of phase trajectofi€g.5)

(P3” (PS*” a

Fig. 3.

In order to obtain comparable results in varying $lys-
tem parameters the quasielastic coefficients weated by
the stiffness coefficient, = J,p2 /13, where p, is the partial .
frequency realized conditionally for a zero pressangle ’ */J \(.3 3
and clearance-free elastic joint between coupled #re 2 (PZ/-A 1, /
rocker; J, is the reduced moment of inertia of the rocker; 0.5 i} SN
I, =BD. For the closed kinematic chain, an increase of ' 2\ AN~
natural frequency parametey, = p,/ o, results in the slow AA ‘\ / M(l
frequency variation being interrupted by intenseapzetric ST TG T~/ /271c P1
pulsations. In turn this may result in a consideaowth in TV ~4lAN
the level of dynamic errors and the vibration dttivwf the 0.5 \ I l JW\ /
mechanism [9] YT \%\ 5 /

The dynamic effect under analysis is illustrated~om4 . ’

by the plots of function,:"’, ¢z+"’, which are proportional to
the ideal angular accelerations of coupler and en¢gurves
1), andg,”, ¢3’, calculated taking into account the clear- (P3” (pg*” b
ances and elasto-dissipative properties of hinfrsves 2). L
We see that at a rather high valuemf=50 (Fig. 4. a) free 0.5

accompanying vibrations are intensively excitedhie zones 2
of parametric pulses and cause a marked growseoifnixi- M 2
mum accelerations and vibration activity of meckami At ! !

n, =10 (Fig. 4. b) the effect is considerably attenuated. n M P1
An analysis shows that the dynamic stability of slys-

tem over a finite time interval is an important ttacdeter-

mining the system behavior in the zones of pardmetr (0P

pulses. The corresponding sufficient conditions E&)sed on

the method of conditional oscillator, lead to thenfi [2] 0.5

9, >|9¢|=[In(n; /m,), (8) f\\ M
on

where S,,|9?| are logarithmic decrement and its critical
value for the mod¢ , , 1

-0.5

14

T
D>

N’ =n,(0,+4¢,),n, =1 (9, —A9,),
Ag, =m/n, (). Fig. 4.
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The effect of excitation owing to fall out of synchro-
nism in multi-sections drives with lattice structure. The
researched effect in drives with regular structarebserved.
Similar drives are used in machines for realizatibmepeat-
ing technological and transport operations [2,5,10he
theory of regular oscillatory systems is basedhenanalysis
of the lattices consisting of masses and springs.tiie first
time this problem was considered by Born and Karmuih
reference to the analysis of the heat capacityrydtals. The
basic directions of the further development of thisory are
reflected in [11].

With reference to machines with cyclic mechanishes t
theory of regular oscillatory systems requires todal
development. Dynamic models of drives have moraptex
internal structure of each repeating module formedonly a
simple connected chain, but also brunched and singc-
tured vibratory systems with nonlinearities and stationary
dynamic connections [2,5,10,12]. Should be notedt in
some cases the conditions of regularity are redliaaly
approximately.

function. It is supposed, that dynamic charactesstf the
main shaft and the actuator are given as inlet auntet
parts of cyclic mechanisms. Besides angular speedn
"input” is accepted constant, that corresponds llys@e
first approximation to real machines at a ratiortadice of
characteristics of the electric drive and transioiss
mechanisms. The considered oscillatory systemZmas1
degrees of freedom. As the generalized coordinates
accept the dynamic mistakes equal to deviationabsb-
lute coordinates in the appropriate sections oftiaeele-
ments from coordinates of program motion. Thus, tfer

main Shaﬁql =0,=0 q2(ifl): P 1= P

where ¢, =ot, j=Ln+1 and q =¢ -II(p) (j=2)
for the actuator. The accepted dynamic model seriteed
by the set of nonlinear differential equations wélbwly
varying factors [12]ByI1’ =r sing the computer simula-
tion with variation of number of identical mechamsn

and other parameters of system was carried outark w
[12].

q3 qzi+1 s P
Jap sz k Juz
c 1'IlliI e
i ¥ % l|li S W
s, i 5 s,
n n n
m=gonst _I_ _I_
HILHH
.I'1'| a1 II"Z'I qz ”J“ q2_| LIII"“ q2n
Fig. 6.

Under favorable conditions the queasy-synchronous

mode of actuator vibrations is realized (a modaypg 1,
Fig.7a). At this form the elastic elemeg)t is not deformed.

For modes of type 1 the “natural” frequency igsel to a
case withC, — oo (the rigid main shaft) and is described by

dependence
P, = Py1+ 2, [1- cos(n— Lx h],
(m=1n; ¢,=c, /c,)
The synchronous motion corresponds to the lowest fr
qguency (n=1).
Father we consider the dynamic model of a driveg.(Fi ~ The conditions in which the synchronous form ofraib

6), consisting subsystems of the main shift(L) and an tions of an output link is strongly broken wereeiwed [12].
actuator = 2), which is connected to the main ShaftrbyUs;ually this corresponds to the most deformed sitehe

cyclic mechanisms. Each of mechanisms is submiged”'" S_haﬂ (a mode of ty_pe 2 Fig.7b). Ir_' this c@plots
consecutive connection of the elements, subjeahéve G for first three mechanismé = 3,5,7) differ a little, but
dissipative, inertial, apd kinematic characterstiand for the coordinat
clearances. The following symbols are acceptéd: are )

" of synchronism are observed.

moments of inertia; ¢, ¢ are factors of rigidity;  ‘strong additional excitation of the mechanismis
v, Vv, are factors of dissipationfI(p,,) is the position caused by a specific influence of the subsysterméolr by

Fig. 5.

e, not damping vibrations and violation

445

© VIBROMECHANIKA . JOURNAL OF VIBROENGINEERING 2008 DECEMBER VOLUME 10,1SSUE4, ISSN1392-8716



399.SOME NONLINEAR EFFECTS OF MACHINE DYNAMICSI. |. VULFSON

the previous mechanisms, whose energy is partipllynped
over” in the asynchronous form. Thus a large rd&y$ the
violating of dynamic stability conditions on finitéime
intervals (see above). At vibratory impact modes $ipec-
trum of frequency can be change, and the levelilmfation
increase. For analysis of these phenomena the ohétap
monious linearization of force was used [12].

One of ways for the constructive decision of thebbem
for elimination of asynchronous modes with largephitudes
is the transition to branched-ring structured drivethis case
the separate sections with limited number of meismas
replaced the long actuator.

3. Effects of excitation vibratory regimes caused by

overcoming the threshold level of nonlinear dissip#on

To the theory of nonlinear dissipation under poly-

harmonic excitation. The problem of the nonlinear dissi-

pation at polyharmonic oscillations of mechanicgtems
has not yet been solved completely. The compleditthis
problem is caused by the nonlinear character cfijghsgive
forces and also by the fact that usually it is flmesto de-
termine only the integral characteristics of diasipn. To

solve the problem are used two approaches basdteon

idea of the separation of motions.

The first approach is based on the ideas of vibnati
rheology implying the separation of motions, dinigli
them into the fast and slow ones. This approachbleas
developed by L.I. Blekhman (1973 and later) [18Y.this
approach it is proposed, that the mathematicalrgesm
of dissipative force is known.

tional motion. Thus, the effective area of a lodghe ba-
sic movement decreases (Fig. 8).

In the analytical form the marked effect for pamiti
force of resistance results in the following cotex

v =y,2(2); $=9,0(2). (9)
Here ®(z) is the factor of decrease of the equivalent

dissipation characteristicg is the ratio of speed’s ampli-
tudes of the basic and additional movement. Theegeén
relationship of functiond(z) for the widespread forms of

loops of a hysteresis can described by the follgviarm:

2

[ B(9)é(p,2)cospde
o= ,

2

[ B(p)cosp do

0

(10)

where

27
£(p,2) =2i j sign(z cosp+ cod)do =
7T 0

2 . 1) .
_ ;arcsw(z cop) (| cogl<z?) ;

sign( cosp) (| cop|>z") .
The functionp(¢) depends from the form of hystere-

sis loop [15]. However, as the analysis shows fainetion
®(z) depends only slightly on the form of the hystesesi

loop. For typical cases the following approximatidg-

The second approach bases of motions separate, §€ndence may be applied as (Fig. 9):

viding them into two groups: the resonant motioand(
some other oscillations, whose frequencies areedioghe
natural frequency), and the non-resonant compon&hts
approach for frictional force of sliding by M.Z.Kmtsky
(1963) [14], and for position force of resistancg .

Vulfson (1968 and later) [15-18] was developed:cdyd-
ing to this approach the modes can be classed'liatsic”
and "additional". Note, that the engineering deteation
of nonlinear position dissipative forces is bassdally on
the limited initial information, such as energy dq#ng

factor y, or logarithmic decremens,, which for typical

objects at monoharmonic vibratory modes are recdeive '

experimentally. If the energy transfer between riiedes,
caused by nonlinear dissipative forces, is smadl have

R=-bg; b=(a")"b (a)?,
whereb’ = diadh ,..b, 1 b =y,c /(2nk ), ais a ma-
trix of the coefficient of mode.

At use of this procedure for polyharmonic regimas c
be result in essential mistakes. In works [15—h8]éssen-

tial decrease of an effective level of dissipatisrnestab-
lished with additional movement of system. Physjmad-
conditions for this effect are related with the urcence of
so-called minor hysteresis loops located insideap,
appropriated to vibration with the basic frequente
total area of minor hysteresis loops is propogido the
work of forces of the resistance, carried out dueaddi-

446

®(2) = 2(0,4+ 0,5 ) /(k+ 0,5 ) (11)

0.4 ,

e
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1(D modified differential equation can be representedthe
form
0.8
b, + 7 kS, (AD(2)g, + k*(L-esinQt )y, = 0, (14)
0.6 where
0.4 / 4, is the logarithmic decrement without additionatiea-
// tion (O(2) =1); z=Ak/(Aw,); A A—are the amplitudes
0.2 of vibrations with frequencie& and o, .

0 The condition of dynamic stability we write down in
0 05 1 15 2 2 5Z energy form: AE = AE, —AE <0, where AE_,AE - are
accumulated and absorbed energy. Then, the comdifio

dynamic stability in the zone of main parametrio dee
presented as [18]

Fig. 9.

Based on the method of linearization of the functid
distribution, offered by M.Z. Kolovsky and A.A. Rexz-

vansky [19], the proposed procedures can be akso insthe 7, > 1. = ©(2), (15)

case of polyharmonic excitation [16]. It can bewhdhat in

this case wheren, =29, /(ze) is the coefficient of stability margin.
Z= Alkll(gVJ?) ) If n,<1 the system is unstable independently of

. . L -1
Here 03 -y 2@}_2 is the dispersion of velocities in Presence of additional vibration; ff<n, <® = the am-
™ plitude grows up to an output of stability bordeat

additional motion(j #1). o th lution is al bsol bl
The obtained results can be extended on the cadey of Mo > t.e solution is always absolute sta. ©
friction. Then, the resulting dynamic effect witdditional According to (15) we have three areas in the plaine
condition (z < 0, 4) corresponds to the vibrational lineariza- Parametersi, and z (Fig.10). In the area 1 the system is
tion. The results of the analytical investigatidrdissipation ~ always unstable independently of the action of talukl
are in good agreement with experimental data. vibrations. In the area 2 the system is stablgHercase 1
|ncrease of the resonant amp“tude with allowance for and unstable for the case 2. Thus under the aofiaddi-
additional excitation. The factor of increase of resonanttional excitation the area of dynamic instability in-
amplitude y in comparison with results of the analysiscreased. In the area 3 the system is always stéble.

without additional excitation is defined as [15,17] 4, =const, or 9.9,/0A> 0, in area 2 the amplitude grows
7=AlA, =0 (yz), up to the border of asymptotic stability (curved)1,
(12) If 08,/06A<0 (for example by action of dry friction)

where z, =V, /v,,; Vo, A, =mA /8, are the velocity and there are two or one cross-points with the bordedye

resonant amplitudes without additional excitatiowy, is ~ Nnamic stability (curve 3). In this case the loeint cor-
. . . . . responds to the stable mode of vibrations. If theelr
amplitude of velocity at additional vibration.

_ . _cross-point is absent, we have— 0.
The differences between results of computer simi*'~ Specified conditions of subharmonic resonance excita-
tion and analytical investigation are less than 10%

tion. It is established that the additional high frequenc

low frequency excitation exerts essential effecttiom level

of dissipation, determining the conditions of oceuce of
subharmonic resonances [20].

As applied to analytical investigation of this plern the

. ) , , efficiency of transformation the initial differeatiequation to

md+cq = -u[R(q,4) - zcqsinQt]+ F, sinot, (13)  the modified type is established. As this takescglthe

additional excitation is replaced with energetigatuivalent

where & is the depth of parametric pulsatiorf;, are the correction of dissipative forces. Fore some charéstics of

hysteresis loops the analytical solutions are wecki This

amplitude of disturbing force, R(q, g) =|R(Q)| signy is allows predicting the occurrence of subharmoniomasces.

the position dissipative forcgy is the small parameter. The initial differential equation is presented as

We have considerate the problem of the action fie|R(@)[signd+P @)=w, sinQ,t+¢ }+aQ; simt (16)
high-frequency excitation(w, >k =/c/m) on the dy- where  ( is  the  generalized  coordinate;
namic stability in a zone of a main parametric resee R(q) = —|R(q)|sigrq is the positional dissipative force;

(€2~ 2k,F, = 0).Using the method discussed above, trleP(q) is the elastic force; the terms of the right-haidk

Specified conditions of dynamic stability at joint action
of parametrical and forced excitation. Let us consider the
initial differential equation
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of EQ.(16) correspond to the disturbing forces vitdquen- q”+|R(q)|signq’+ P@g)=wsinot cofx, (Q > ).
cies Q, (basic frequency) andQ2,>Q or Q, KQ, (16)

(additional frequendy all forces are relatetb unit of mass.

It is assumed thatP(q) =k;(1+aqg*)gand the order of  \odified differential equation:
subharmonic resonance is 1/3.

g'+9(q,t)n g+ p>(l-e cos ot §,+aq: = (
(17)
Where

-

9=9,0(q]-|wsinozcosr| )~ 4@ @);

N
-
<

P(q) = p5+aq’)a, pf = pe(l+7),

<
N
N

y =0,7%w /Q?, G is the unit function.

' On plots of amplitude-frequency characteristic ithe
— tervals limited to curves 1-1(6=0)or curves 2-2

¥ (6 =0,03) correspond to conditions of existence of the
e, regime being studied (Fig. 11). The curve 3 egponds
2 ) to the casep, = ®; the continuous curves — to the stable

solutions and dotted curves — to unstable.
3 4 For various typical nonlinearities, the resuti§
Mo analysis good agree with the data of numerical expe
, ments. On Fig.12 the comparison of the resultsivedeby
Fig. 10. computer simulating (Eq:14, Fig.12a,b)and with ama-
lytical method (Eq:15, Fig 12c) is shown. At theeapted
data the resonant mode at low frequency arises wen
factor dissipation does not exceed the valgie- 0,35

) (Fig.12a). Thus, beats of excitation transforms to the bi-

The condition of existence of subharmonic rescaan

is defined asAE_ <AE+,

energy, AE_is the absorbed energy. The dissipative forcesGiven the physical character of this effect, it wblobe
noted that without nonlinearities(a =0) the low-

frequency resonance is not present. In this case gnd b
rather large dissipation the beats of excitation leathe
) ] .. . similar response of vibration (Fig.12b). Only in nonlinear
frequency Q, is absent but the correction of d'ss'pat'vevibratory system the amplitude pulsation of disturbing
component is done. Comparison of decisions of bgtlee forces leads to eigenfrequency pulsations and to passibil
tions testifies to efficiency of the offered appban analyti-  of parametric excitation with frequenay.
cal research at fast and slow additional excitation

Fore some characteristics of hysteresis loops rlagyt- 4 a=0,2
cal solutions are received that allow to prediet dlccurrence 1.8
of subharmonic resonances [20].

Nonlinear resonant oscillations of a drive at the am- S
plitude-modulation frequency of high-frequency excitation. o~
For linear dissipation this problem was discusseld 4]. The
specific dynamic effect in the nonlinear elastissipative
characteristics of a drive and in the harmonic émunbé
pulsation of high-frequency disturbing forces igdstigated 06
[21]. The conditions corresponding to the excitataf low-
frequency resonant oscillations are obtained, tpldocount
of the significant correcting influence of polyharnic
excitation on the effective dissipation parametérdlowing U e e
the considered approach we transform the initialagiqn in
modified form.

Initial differential equation:

establish some barrier of energy. If to overcdhig barrier
the occurrence of subharmonic resonance is possible
In the modified equation the additional excitatiaith

(2]
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a The similar situation came in cyclic mechanismshwit
2q | | | | “_nonreversib_le" kinematic pair§, in .particule}r, wbethe
a_ line of reaction does not coincide with the direntof the
‘ $=0,2 force of friction [22]
1 y‘ Y -
0 i 4. Conclusion
-1 — The development and perfection of modern machinery
raise many complicated technical problems for ezgyis.
- ' ' ' T Some of them are related to the reducing vibroaytivf
machines. This is connected with toward intensiificaof
b process and transport operation. In the paper smgative
) q : dynamic effects arising due to nonlinear kinemagi
dissipative characteristics were analyzed. The swaly
8=0,4 their elimination are offered.
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