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Abstract. The computation of Lyapunov quantities is closely connected with the important in engineering mechanics 
question of dynamical system behavior near to "safe" or "dangerous" boundary of the stability domain. In classical works 
for the analysis of system behavior near boundary of the stability domain was developed the method of Lyapunov 
quantities (or Poincare-Lyapunov constants), which determine system behavior in the neighborhood of the boundary. In the 
present work a new method for computation of Lyapunov quantities, developed for the Euclidian coordinates and in the 
time domain, is suggested and is applied to investigation of small limit cycles. The general formula for computation of the 
third Lyapunov quantity for Lienard system is obtained. Transformations between quadratic system and special type of 
Lienard system are described. The computation of large (normal amplitude) limit cycles for quadratic systems such that the 
first and second Lyapunov quantities are equal to zero and the third one is not equal zero were carried out. In these 
computations the quadratic system is reduced to the Lienard equation and by the latter the two-dimensional domain of 
parameters, corresponding the existence of four limit cycles (three "small" and one "large") was evaluated. This domain 
extends the domain of parameters obtained for the quadratic system with four limit cycles due to Shi in 1980. 
 
Keywords: Lyapunov quantity, Poincare-Lyapunov constant, period constant, (normal amplitude) large limit cycle, small 
limit cycle, two-dimensional autonomous systems, Lienard equation, quadratic system 

 

Introduction 

The computation of Lyapunov quantities is closely 
connected with the important in engineering mechanics 
question of dynamical system behavior near to boundary of 
the stability domain. Followed by the work of Bautin [1], 
one differs "safe" or "dangerous" boundaries, a slight shift 
of which implies a small (invertible) or noninvertible 
changes of system status, respectively. Such changes 
correspond, for example, to scenario of "soft" or "hard" 
excitations of oscillations, considered by Andronov [2]. 

In classical works of Poincare [3] and Lyapunov 
[4] for the analysis of system behavior near boundary of the 
stability domain was developed the method of computation 
of so-called Lyapunov quantities (or Poincare-Lyapunov 
constants), which determine a system behavior in the 
neighborhood of boundary. This method also permits us 

effectively to study the bifurcation of birth of small cycles 
[1, 6–15], which correspond in mechanics to small 
vibrations. 

In the present work the method of Lyapunov 
quantities is applied to investigation of small limit cycles. 
A new method for computation of Lyapunov quantities, 
developed for the Euclidian coordinates and in the time 
domain, is suggested. The general formula for computation 
of the third Lyapunov quantity for Lienard system is 
obtained. 
Also, the computer modeling of large (normal amplitude) 
limit cycles are carried out. The transformation of 
quadratic system to a special type of Lienard system is used 
for investigation of large limit cycles. For this type of 
Lienard systems there is obtained a domain on the plane of 
two parameters of system, which the systems with three 
small and one large cycles correspond to (around two 
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different stationary point). In our computer experiments the 
effects of trajectories "flattening", that make the 
computational modeling difficult, are observed. 
 
Methods of calculation of Lyapunov quantities 

 
For computation of Lyapunov quantities one usually 

consider a sufficiently smooth two-dimensional system 
with two purely imaginary eigenvalues of lineal part of 

( , ),

( , ).

dx
y f x y

dt
dy

x g x y
dt

= − +

= +
 (1) 

Here x,y∈R and the functions ),( ⋅⋅f and g ( ⋅⋅, ) have 

continuous partial derivatives of (n)-st order in the open 
neighborhood U of radius UR  of the point (x,y)=(0,0). 

Suppose, the expansion of the functions f, g begins with the 
terms not lower than the second order and therefore we 
have 
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The study of limit cycles and Lyapunov quantities of 
two-dimensional dynamical systems was stimulated by as 
purely mathematical problems (the center-and-focus 
problem, Hilbert's sixteenth problem, and isochronous 
centers problem) as many applied problems (the 
oscillations of electronic generators and electrical 
machines, the dynamics of populations) [1–21]. The 
problems of greater dimension (when there are two purely 
imaginary roots and the rest are negative) can be reduced to 
two-dimensional problems with the help of procedure, 
proposed by Lyapunov [4]. 

At present, there exist different methods for 
determining Lyapunov quantities and the computer 
realizations of these methods, which permit us to find 
Lyapunov quantities in the form of symbolic expressions, 
depending on expansion coefficient of the right-hand sides 
of equations of system (see., for example, [3-10, 15] and 
others). These methods differ in complexity of algorithms 
and compactness of obtained symbolic expressions. The 
first method for finding Lyapunov quantities was suggested 
by Poincare [3]. This method consists in sequential 
constructing time-independent holomorphic integral for 
approximations of the system. Further, different methods 

for computation, which use the reduction of system to 
normal forms, was developed (see, for example, [6, 10]).  

Another approach to computation of Lyapunov 
quantities is related with finding approximations of 
solution of the system. So, a classical approach [4] it is 
used changes for reduction of turn time of all trajectories to 
a constant (as, for example, in the polar system of 
coordinates) and procedures for recurrent construction of 
solution approximations. 

In the works [12,15] a new method of computation of 
Lyapunov quantities is suggested which based on 
constructing approximations of solution (as a finite sum in 
powers of degrees of initial data) in the original Euclidean 
system of coordinates and in the time domain. The 
advantages of given method are due to its ideological 
simplicity and visualization power. This approach can also 
be applied to the problem of distinguishing of isochronous 
center since it permits us to find out approximation of time 
of trajectory "turn" (time constants) depend upon initial 
data [7,9,21]. 

The first and second Lyapunov quantities have been 
computed in the 40-50s of last century [1,23]. The third 

Lyapunov quantity was computed in terms of ijf  and ijg  

in [14,15] and its expression occupies more then four pages 
and the expression for the fourth Lyapunov quantity 
occupies 45 pages. 

Note that for reduction of symbolic expression and 
simplification of analysis of system, special 
transformations of system to complex variables [6,10,21] 
are often used. 

 
Calculation of Lyapunov quantities by approximation 
of system integral. 
 

Following the classical work [3,4], we consider a 
problem of computation of Lyapunov quantities by 
constructing the time independent integral V(x,y) for 
system (1). 

Since 
2
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),(
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2
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+

=  is an integral of system of 

the first approximation and for the right-hand side of 
system smoothness condition (2) is satisfied, then in certain 
small neighborhood of zero state we seek the 
approximation of integral in the form 
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Here ),( yxVk  are the following homogeneous 

polynomials  
 

 1,...,3),( , +== ∑
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nkyxVyxV jiji
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with the unknown coefficients ,i jV . By (3) for the 

derivative of V(x,y) in virtue of system (1) we have  
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The coefficients of the forms kV  can always be chosen 

in such a way that 
2 2 2 2 2 3
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Here iw are expressions depending only on coefficients 

of the functions f and g. 
Then sequentially determining the coefficients of the 

forms kV  for k=3,... (for that at each step it is necessary to 

solve a system of (k+1) linear equations), from (5) and (6) 
we obtain the coefficient mw that is the first not equal to 

zero 
 2 2 1 2 2( , ) ( ) ((| | | |) ).m m

mV x y w x y o x y+ += + + +ɺ  

The expression mw  is usually [7] called a Poincare-

Lyapunov constant ( mwπ2 — mth Lyapunov quantity). Let 

the additional conditions [8]  
 0,0 2,22,2222,2 ==+ ++ mmmmmm VVV  

be satisfied. Then at the kth step of iteration the 
coefficients kjijiV =+}{ ,  can be determined uniquely from 

the linear equations system via the coefficients kjiijf <+}{ , 

kjiijg <+}{  and the coefficients kjijiV <+}{ , , determined at 

the previous steps of iteration. 
 
Calculation of Lyapunov quantities for the Euclidian 
coordinates in the time domain. 
 

Here the new method, developed for the Euclidian 
coordinates and in time domain, not requiring the reduction 
to normal form, is described. The advantages of this 
method are due to its ideological simplicity and a 
visualization power. 

The first steps in the development of this method were 
made in the works [11–15] and some related with it results 
can be found in the work [22]. 

Here we assume that 
( 1)( , ), ( , ) : ( ).nf g U+⋅ ⋅ ⋅ ⋅ × → ∈R R R  C  (7) 

The existence condition of (n+1)th partial derivatives 
with respect to x and y for f and g is used for simplicity of 
exposition and can be weakened. 
Approximation of solutions. Further we will use a 
smoothness of the functions f and g and will follow the first 
Lyapunov method on finite time interval (see f.e. classical 
works [23, 24] and others). 

Let x(t,x(0),y(0)), y(t,x(0),y(0)) be a solution of system 
(1) with the initial data  

x(0)=0, y(0)=h (8) 
 

Denote  
x(t,h)=x(t,0,h), y(t,h)=y(t,0,h). 

 
Below a time derivative will be denoted by x' and x ɺ. 
Lemma 1 A positive number ),0( URH ∈  exists such 

that for all  H][0,h∈  the solution (x(t,h),y(t,h)) is defined 

for ][0,4t π∈ .  

The validity of lemma follows from condition (2) and 
the existence of two purely imaginary eigenvalues of the 
matrix of linear approximation of system (1). 

This implies [26] the following 
Lemma 2 If smoothness condition (7) is satisfied, then  
 

( 1)( , ), ( , ) ([0,4 ] [0, ])nx y Hπ+⋅ ⋅ ⋅ ⋅ ∈ ×C  (9) 

 
Further we will consider the sufficient small initial data 

 H],[0,h∈  a finite time interval  ][0,4t π∈  and use a 

uniform boundedness of the solution (x(t,h),y(t,h)) and its 
mixed partial derivatives with respect to h and t up to the 
order (n+1) inc in the set H].[0,][0,4 ×π  

We apply now a well-known linearization procedure 
[27]. 

From Lemma 2 it follows that for each fixed t the 
solution of system can be represented by the Taylor 
formula  
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Note that by Lemma 2 and relation (10), the functions  
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and their time derivatives are smooth functions of t and 
have the order of smallness o(h) uniformly with respect to t 
on a considered finite time interval [0,4π ]. 

Introduce the following denotations 
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are the mth approximation of solution of system with 
respect to h. Substitute representation (10) in system (1). 

Then, equating the coefficients of 1h  and taking into 
account (2), we obtain  
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Hence, by conditions on initial data (8) for the first 
approximation with respect to h of the solution 
(x(t,h),y(t,h)), we have  
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Similarly, to obtain the second approximation 
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in formula (3) for f(x,y) and g(x,y). Note that in expressions 

for f and g (denote their by f
h

u 2  and g
h

u 2 , respectively) in 

virtue of (2) the coefficients of 2h  depend only on )(~
1 txh  

and )(~
1 tyh , i.e., by (12) they are known functions of time 

and are independent of the unknown functions )(~
2 txh  and 
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Substituting (13) in system (1), for the determination of 

)(~
2 txh  and )(~

2 tyh  we obtain  
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Lemma 3 For solutions of the system  
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with the initial data  

0)0(~,0)0(~ == kk hh yx  (16) 

we have 
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The relations (17) can be verified by direct 

differentiation. 
Repeating this procedure for the determination of the 

coefficients khx~  and khy~  of the functions )(tu f
hk  and 
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hk , by formula (17) we obtain sequentially the 

approximations )),(),,(( htyhtx kk hh  for k=1,...,n. For 

h∈ [0,H] and t∈ [0,4π ] we have  
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Here by Lemma 2 
 

( ), ( ) ([0,4 ]), 1,...,
n
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and the estimate )( nho  is uniform ∀ t∈ [0,4π ]. From 

(16) and by the choice of initial data in (11) we obtain  
.,...,1,),0(),0(,0),0(),0( nkhhyhyhxhx kk hh =====  

Computation of Lyapunov quantities in the time 
domain. Consider for the initial datum h∈ (0,H] the time 
T(h) of first crossing of the solution (x(t,h),y(t,h)) of the 
half-line {x=0, y>0}. Complete a definition (by continuity) 
of the function T(h) in zero: T(0)=2π . Since by (12) the 
first approximation of solution crosses the half-line 
{ x=0,y>0} at the time 2π , then the crossing time can be 
represented as  
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T(h)=2π +∆ T(h), 
 

where ∆ T(h)=O(h). We shall say that ∆ T(h) is a residual 
of crossing time.  

By definition of T(h) we have  
 

x(T(h),h)=0. (20) 
 
Since by (9), ),( ⋅⋅x  has continuous partial derivatives 

with respect to either arguments up to the order n inclusive 
and x ɺ(t,h)=cos(t)h+o(h)), by the theorem on implicit 
function, the function )(⋅T  is n times differentiable. It is 

possible to show that T(h) is also differentiable n times in 
zero. By the Taylor formula we have  
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is the kth approximation of the residual of the time T(h) of 
the crossing of the solution (x(t,h),y(t,h)) of the half-line 
{ x=0, y>0}. Substituting relation (21) for t=T(h) in the 
right-hand side of the first equation of (18) and denoting 

the coefficient of kh  by kx~ , we obtain the series x(T(h),h) 

in terms of powers of h: 
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By smoothness condition (19) we have  
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Substitute this representation in (24) for the solution 
x(2π +τ ,h) for τ =∆ T(h), and bring together the 
coefficients of the same exponents h. Since 

)())(( nn hOhT =∆ , by (20) and taking into account (21) 

for T(h), we obtain  
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From the above we sequentially find jT
~

. The 

coefficients 1,...,1 −= nkT  can be determined sequentially 

since the expression for kx~  involves only the coefficients 

kmT <  and the factor )2('~
1 πhx  multiplying 1−kT  is equal 

to -1. 
We apply a similar procedure to determine the 

coefficients ky~  of the expansion  
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Substitute the representation  
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in the expression 
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Equating the coefficients of the same exponents h, we 
obtain the following relations  
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for the sequential determination of niy ,...,1
~
= . Here 

)(~
,..,1

⋅
= nkhy  and 1,..,1

~
−= nkT  are the obtained above quantities. 

Thus, for n=2m+1 we sequentially obtained the 
approximations of the solution (x(t,h),y(t,h)) at the time 
t=T(h) of the first crossing of the half-line {x=0,y>0} 

accurate to )( 12 +mho  and the approximation of the time 

T(h) itself accurate to )( 2mho . If in this case 0~ =ky  for 

k=2,..,2m, then 12
~

+my  is called the mth Lyapunov quantity 

mL . Note, that, according to the Lyapunov theorem, the 

first nonzero coefficient of the expansion iy~  is always of 

an odd number and for sufficiently small initial data h the 
sign of iy~  (of the Lyapunov quantity) designates a 

qualitative behavior (winding or unwinding) of the 
trajectory (x(t,h),y(t,h)) on plane [4]. 
 
Lyapunov quantities for Lienard equation.  
 

We apply now stated above two method for Lienard 
equation. Assuming in (1) 

 

,0)0(),()0,(),(
),(

,0),( 0
01 ===≡

dx

dg
xgxgxg

dy

yxdg
yxf x

xx

 
we obtain the following system  
 

),()(

,

01 xgyxgxy

yx

xx ++=

−=

ɺ

ɺ
 (25) 

 

Let be ...)(...,)( 2
110111 +=+= xgxgxgxg xx  Then  

).(
4 2111201 gggL −−=
π

 

 
If 112021 ggg = , then 01 =L  and  

).5353(
24 11302011403120412 ggggggggL +−−=
π

 

 

If 1130201140312041 3

5

3

5
gggggggg −+= , then 02 =L   

 
and  
 

3 2

3 20 30 11 20 51 30 11 20

40 31 11 40 30 30 31 20

3

20 31 61 30 11 20 60 11

(70 105 105
576
63 63 105

70 45 105 45 ).

L g g g g g g g g

g g g g g g g g

g g g g g g g g

π
= − + + +

+ − − −

− − − +

 

 
The computation of Lyapunov quantities by means of 

two different analytic methods with applying the modern 
software tools of symbolic computing permits us to show 
that the formulas, obtained for Lyapunov quantities, are 
correct. 

Transformation between quadratic system and the 
Lienard system. 
 

Consider the Lienard equation  
 

xɺɺ +F(x)x ɺ+G(x)=0 (26) 
  

and the equivalent system  
 

),()(

,

xGyxFy

yx

−−=

=

ɺ

ɺ
 (27) 

 
where  
 

.
)1(

|1|
)1()(

,|1|)()(

3

2

3
2

2
3

1

2

+

+
+++=

++= −

x

x
xxCxCxCxG

xxBAxxF
q

q

 (28) 

 
We have the following results [27;14].  
Lemma 4 Suppose, for the coefficients 

qCCCBA ,,,,, 321  of equation (26) the relations  

 

( )2

2 1 3

( )
(1 ) (3 2)

(2 1)

2 3 ,

B A
q B q A

q

C C C

−
− + − =

−

= − −

 (29) 

  

( )2

2 1

( )
2( 1)

(2 1)

2 1,

B A
B q A

q

C C

−
+ − =

−

= − −

 (30) 

 
are satisfied. Then by a nonsingular change, equation (26) 
can be reduced to the quadratic system  
 

2

1 1 1 1

2 2
2 2 2 2 2

( , ) ,

( , )

x p x y a x b xy x y

y q x y a x b xy c y x y

α β

α β

= = + + +

= = + + + +

ɺ

ɺ
 (31) 

 
with the coefficients  
 

,1,2,,1,1,1 222111 −=−=−==== βαβα qcb  
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1
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11
2
12

1
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−
+=

qaAb

CAaaqa

q

AB
a

 
(32) 

 
Then by the above relations for the Lyapunov quantities 

1L  and 2L , we obtain the following in the point (0,0) 

Lemma 5  
if 021 == LL ,  04B-2Bq-5A = and 

2

1
,0, ≠≠≠ qABBA  then  
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2
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3

(1 3 )
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25 5
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(15(1 2 ) 3 ) ,
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C q B

q
C

+
= + −

= − +

−
=

 

 

2 2

3

( 2)(3 1)[5( 1)(2 1) ( 3)]
.

20000

B q q q q B q
L

π + + + − + −
= −  

 

Thus, if the conditions of Lemma 5 and 3 0L ≠ , then by 

small disturbances of system we can obtain three "small" 
cycles around a zero equilibrium of system and seek 
"large" cycles on a plane of the rest two coefficients (B,q). 

Lemma 6 For 01 ≠b  system (31) can be reduced to 

the Lienard equation (27) with the functions  
 

1 1( ) ( ) | | ,qF x R x b xβ= +  2

1 1( ) ( ) | | .qG x P x b xβ= +  
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Computer experiments. 
 

The above results were applied to quadratic systems 
and the experiments for computing "large" cycles were 
performed. In these experiments the reduction of quadratic 
system to the Lienard equation of special form (26)-(28) 
was used and with its help a set of parameters B,q (Fig. 1), 
which correspond to the existence of "large" cycle, was 
estimated. 

In Fig. 1 is shown a domain bounded by straight lines, 
which correspond to the lines of reversal sign of the third 
Lyapunov quantity. The curve C in the graph is a curve of 
the parameters B and q of the Lienard system, which 
correspond to parameters of quadratic system, such that for 
these parameters the results on the existence of four cycles 
were obtained in [29]. Since two Lyapunov quantities are 
equal to zero, by small disturbances it is possible to 
construct systems with four cycles for the considered 
domain of parameters: three small cycles round one 
equilibrium and one large cycle round another equilibrium. 

These results were applied to quadratic systems and the 
experiments for computing "large" cycles were performed. 
Our experience of computations shows that it is practically 
impossible to trace "small" cycles in the neighborhood of 

equilibrium, where the zero and first Lyapunov quantities 
are equal to zero. However in a number of computer 
experiments we can distinctly see "large" cycles. 

For example in Fig. 2 is shown a "large" cycle for the 
system  

2

2 2

0.99 ,

0.58 0.17 0.6 2 ,

x x xy x y

y x xy y x y

= + + +

= − − + − −

ɺ

ɺ
 

 

the parameters of which correspond to the point P. 

 

 
 

Fig.1. Domain of existence of "large" limit cycles 

 

 
Fig.2. Stable limit cycle in quadratic system 

 
In other experiments there occurs the interesting 

phenomenon of the existence of certain "domains of 
flattening", i.e. the "limit" points and "limit segments" of 
nonperiodic trajectories. The latter substantially involves 
the qualitative analysis of quadratic systems. 

In Fig. 3 is shown the behavior of trajectory, which is 
"unwinded" from equilibrium and then extends at infinity, 
for the Lienard system with the functions  
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For this system the following condition 1 2 0L L= =  and 

3 0L ≠  is satisfied. 

 
Fig. 3. Domains of flattening 

 
Here we have the intense flattening of trajectories in a 

lower domain of graph. The trajectories in the domain of 
flattening very closely approaches to stationary point (the 
distance between the stationary point (0,0) and the domain 
of flattening is h=0.026). 
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