402. Lyapunov quantities, limit cycles and strange behavior of
trajectoriesin two-dimensional quadratic systems

Kuznetsov N. V.2and Leonov G. A.°

Faculty of Mathematics and Mechanics,
Saint-Petersburg State University, Universitetsky2g,
Peterhoff, Saint-Petersburg, 198504, Russia

e-mail: akuznetsov@math.spbu.ru, bI eonov@math.spbu.ru

(Received: 02 October; accepted: 02 December)

Abstract. The computation of Lyapunov quantities is closebnnected with the important in engineering meda®ni
guestion of dynamical system behavior near to "safé'dangerous” boundary of the stability domamclassical works
for the analysis of system behavior near bounddryhe stability domain was developed the methodLydpunov
guantities (or Poincare-Lyapunov constants), whlietermine system behavior in the neighborhood ebttundary. In the
present work a new method for computation of Lyapuquantities, developed for the Euclidian coortisaand in the
time domain, is suggested and is applied to ingastn of small limit cycles. The general formuta Eomputation of the
third Lyapunov quantity for Lienard system is oh&d. Transformations between quadratic system padia type of
Lienard system are described. The computationrgélénormal amplitude) limit cycles for quadratystems such that the
first and second Lyapunov quantities are equaleim zand the third one is not equal zero were chroigt. In these
computations the quadratic system is reduced td_itheard equation and by the latter the two-dimemai domain of
parameters, corresponding the existence of fout tgtles (three "small" and one "large") was ewsdd. This domain
extends the domain of parameters obtained for tlaemtic system with four limit cycles due to Shili980.

Keywords: Lyapunov quantity, Poincare-Lyapunov constant, qeiionstant, (normal amplitude) large limit cydeall
limit cycle, two-dimensional autonomous systemgnlard equation, quadratic system

Introduction effectively to study the bifurcation of birth of athcycles
[1, 6-15], which correspond in mechanics to small
vibrations.

The computation of Lyapunov quantities is closely
connected with the important in engineering medw®ni
guestion of dynamical system behavior near to bapndf

the stgbllltylldom|:31|n. l!:ollowed b,),/ the worI§ of Bagtﬂ.l, developed for the Euclidian coordinates and in tilee
one differs "safe" or "dangerous" boundaries, ghslshift S .
domain, is suggested. The general formula for caatjmun

of which implies a small (invertible) or noninvéie . . . .
changes of system status, respectively. Such claang%f the third Lyapunov quantity for Lienard system i

correspond, for example, to scenario of "soft" bard" Obtained.
espond, >Xample, : Also, the computer modeling of large (normal anoolé)
excitations of oscillations, considered by Androfidy o : '
In classical works of Poincare [3] and Lyapunov“mlt cycles are carried out. The transformation of
[4] for the analysis of system behavior near boupdéthe quadratic system to a special type of Lienard sysseused

" . ) for investigation of large limit cycles. For thigpe of
stability domain was develope.d_ the methqd of coapn Lienard systems there is obtained a domain on ldreeof
of so-called Lyapunov quantities (or Poincare-Lyapu

constants), which determine a system behavior m® thtWO parameters of system, which the systems witheth

neighborhood of boundary. This method also permits small and one large cycles correspond to (arounal tw
460

In the present work the method of Lyapunov
guantities is applied to investigation of smallitiroycles.
A new method for computation of Lyapunov quantities
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different stationary point). In our computer expegits the for computation, which use the reduction of systeEm
effects of trajectories "flattening”, that make thenormal forms, was developed (see, for examplel §§).

computational modeling difficult, are observed. Another approach to computation of Lyapunov
quantities is related with finding approximationd o
M ethods of calculation of Lyapunov quantities solution of the system. So, a classical approag¢ht[#&

used changes for reduction of turn time of allecapries to
For computation of Lyapunov quantities one usuallya constant (as, for example, in the polar system of
consider a sufficiently smooth two-dimensional ewst coordinates) and procedures for recurrent consbucif

with two purely imaginary eigenvalues of lineal tpafr solution approximations.
dx In the works [12,15] a new method of computation of
Ez_er F(xy), Lyapunov quantities is suggested which based on
dy (1) constructing approximations of solution (as a érsum in
e X+9(x,Y). powers of degrees of initial data) in the origiRaiclidean

: system of coordinates and in the time domain. The
Here xy<R and the functionsf () and g (--) have a}(/jvantages of given method are due to its idechbgic
continuous partial derivatives oh)¢st order in the open simplicity and visualization power. This approa@nalso
neighborhoodU of radius Ry of the point xy)=(0,0).  be applied to the problem of distinguishing of is@mous
Suppose, the expansion of the functigrisbegins with the  center since it permits us to find out approximatid time
terms not lower than the second order and theref@e of trajectory "turn" (time constants) depend upaitial

have data [7,9,21].
f (00)=g(00)=0, The first and second Lyapunov quantities have been
computed in the 40-50s of last century [1,23]. Thied
T 09-L 00-% 09-% 0g-0. @ P . entury 13,23
dx dy dx dy Lyapunov quantity was computed in terms fﬂ and gij

By assumption on smoothness in the neighborhdod j, [14,15] and its expression occupies more then fages

we have and the expression for the fourth Lyapunov quantity

n K| N occupies 45 pages.

f(xy)= z figx"y? +o((Ix]+]y ") = Note that for reduction of symbolic expression and

k+j=2 simplification  of analysis of system, special
= £, 06 y)+o(( X[+ yD™), transformations of system to complex variables J&1]

0 (3) are often used.

g y) = Y g xXy! +o((Ix]+]y)") = - " —

' K Calculation of Lyapunov quantities by approximation

k+j=2 of system integral.

=gn (% y)+o((Ix|+]y)").

The study of limit cycles and Lyapunov quantiti€s o
two-dimensional dynamical systems was stimulatecaby
purely mathematical problems (the center-and-focu
problem, Hilbert's sixteenth problem, and isochieno
centers problem) as many applied problems (the
oscillations of electronic generators and electrica
machines, the dynamics of populations) [1-21]. Thehe first approximation and for the right-hand sidé
problems of greater dimension (when there are twelp  system smoothness condition (2) is satisfied, thewrtain

imaginary roots and the rest are negative) caretheced to  small neighborhood of zero state we seek the
two-dimensional problems with the help of procedureapproximation of integral in the form

proposed by Lyapunov [4].

At present, there exist different methods for 2 2
determining Lyapunov quantites and the computer V(x,y)= Xty
realizations of these methods, which permit us ita f 2
Lyapunov quantities in the form of symbolic expiess,
depending on expansion coefficient of the rightchaies HereV (x, y) are the following homogeneous
of equations of system (see., for example, [3-H),ahd polynomials
others). These methods differ in complexity of ailipons
and compactness of obtained symbolic expressiohs. T Vi (%, y) = Z Vi XY k=3..n+1
first method for finding Lyapunov quantities waggasted ’
by Poincare [3]. This method consists in sequential . .
constructing time-independent holomorphic integfai with the unknown coefficienty,, . By (3) for the
approximations of the system. Further, differenthnds ~ derivative ofV(xy) in virtue of system (1) we have

Following the classical work [3,4], we consider a
problem of computation of Lyapunov quantities by
gonstructing the time independent integré(x,y) for
system 1).

SinceV,(X,y) =

2,2
(x;zy) is an integral of system of

+V3 (%, Y) + .4 Vi1 (X, Y) 4)

i+j=k

461
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V(X y)= Denote
X(t,h)=x(t,0,h), y(t,h)=y(t,0,h).
oV (X,
HEAN (s 37 10y
kei=2 (5) Below a time derivative will be denoted kyandx.
5V(X Y)(X+ Z g xy') + Lemma 1 A positive number H € (O,R,) exists such
= that for all he[0,H] the solution (x(t,h),y(t,h)) is defined
+0((Ix [+ 1y ™). for te[0,47] .
The coefficients of the form¥) can always be chosen  The validity of lemma follows from conditior2 and
in such a way that the existence of two purely imaginary eigenvaluéshe
V(X Y) =W, + Y22+ W, (X2 + y?)*+... matrix of linear approximation of syster)(
" (6) This implies [26] the following
+o((Ix |+ 1y ™). Lemma 2 If smoothness condition (7) is satisfied, then
Here w; are expressions depending only on coefficients
of the functiond andg. X(,), Y, )e C"([0,47 1< [0,H ]) 9

Then sequentially determining the coefficients loé t
forms Vy for k=3,... (for that at each step it is necessary to  Further we will consider the sufficient small iaitidata
solve a system ok¢1) linear equations), fronb) and 6) he[0,H], a finite time intervalte[0,47] and use a
we obtain the coefficientvythat is the first not equal to uniform boundedness of the solutiox(t),y(t,h)) and its

zero mixed partial derivatives with respect hoandt up to the
V(X y)=w, ¢+ Y™ +o((|x |+ |y [F™?). order fi+1) inc in the sef0,4~]x[0, H].
The expressionw,, is usually [7] called a Poincare- _We apply now a well-known linearization procedure
Lyapunay constant-Z(.nwm— mth Lyapunov quantity). Let [27Lrom Lemma 2 it follows that for each fixadthe
the additional conditions [8] solution of system can be represented by the Taylor
Vomami2 *Vomi2om =0, Vomom =0 formula

be satisfied. Then at th&th step of iteration the

i AR i i ox(t, h? °x(t,
coefficients{V; j};,jk can be determined uniquely from ¢ 1y, é 1) B W= a57277) .

0<6.(t,h)<1,
t, h? o%y(t,
y(t,h) = hy L:O +?% L:hgy(t,h)
0<0,(th)<1,

the linear equations system via the coefficigftg} ;. ji ,

{9ij}i+j<k and the coefficient§V; ;}i, <k, determined at (20)

the previous steps of iteration.

Calculation of Lyapunov quantitiesfor the Euclidian
coordinatesin the time domain. ) )
Note that by Lemma 2 and relation (10), the funio
Here the new method, developed for the Euclidian h?a x(t 7) h? 62y(t,n)
coordinates and in time domain, not requiring #duction 5 6;7 ly= hg,th): 5" |r7=h9y(t,h)

2
to normal form, is descrlbed The advantages o$ thi on

visualization power. have the order of smallnesgh) uniformly with respect td
The first steps in the development of this methedew ©ON & considered finite time interval [074.
made in the works [11-15] and some related witkstilts Introduce the following denotations
can be found in the work [22]. - akx(t,n) ok y(t,7)
Here we assume that Xpk (0=W|q:o, Ype ) =——=—"y=0 -
f(,),9¢,):RxR—>R eC"U). 7
( )_g( )R _> < ©) . ( ) . We shall say that the sums
The existence condition oh{1)th partial derivatives m o XL, hk
with respect toc andy for f andg is used for simplicity of X (t,h) = thk (t)—= Z ( ’7) Lo—
exposition and can be weakened. k=L k=1
Approximation of solutions. Further we will use a R m o y(t 77) hk
smoothness of the functiohandg and will follow the first Y (t0) = thk (t)_ kZ

\II‘V%"’:ESTS; gj]tg?% g?h]:;?;t; time interval (see f.mssical are the mth approximation of solut|0n of system with

Let x(t.x(0)y(0)), y(t.x(0)(0)) be a solution of system respect toh. ?ubstltute reprasentat|()ln (10) in aystam (
(1) with the initial data Then, equating the coefficients di~ and taking into
x(0)=0,y(0)=h (8) account ), we obtain
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oX,. (t _
th( ) ),
d?glt ® _ 7 (0). (11)

Hence, by conditions on initial dateB)(for the first
approximation with respect toh of the solution
(x(t,h),y(t,h)), we have

X, (t.h) =%, ()h=—hsin¢),

y,(t.h)=¥,(t)h=hcos¢). (12)

Similarly, to obtain the second approximation
(X2 (t, ), ¥, (£, h)) , we substitute representation

h 83x(t, n)
x(t,h) = X2 (t, h) +§—6773 lr=he, t.h),

he a3y, 7) (13)
y(t,h) = Yh2 (t,h) +§—8773 |;7:h0y(t,h).

in formula (3) forf(x,y) andg(x,y). Note that in expressions
for f andg (denote their bw;2 and ur?z , respectively) in

virtue of ) the coefficients oh? depend only oriZhl (9]
and yhl ), i.e., by @2) they are known functions of time
and are independent of the unknown functidﬁﬂs(t) and
Yiz (1) . Thus, we have

f (2 (t, h)+0(h?), y;2 (t,h) +0(h?) = ugz (t)h? +o(h?),
g0xy () +0(h?), ype (t h) +0(h?) = u, (t)h? +o(h?).

Substituting 13) in system 1), for the determination of
Xz (t) and ¥, (t) we obtain

o%,, (1)

dt = _yhz (t) + uhfz (t)! (14)
G o e
dt _Xhz()+uh2()'
Lemma 3 For solutions of the system
dax, (t)  _
# = _yhk (t) + u,:k (t)r
y (15
dy, () .
- X, () +us (1)
with theinitial data
X (0)=0¥,.(0)=0 (16)

we have

%, (t) = ug, () cost }+
+cost )| cost ). € )Hu) £ W+
+sin®)] sing ) €))%+ ). € )z -us ¢),
y,, (1) =u2 (0)sing )+

+sin(t)j cosft )((|hgk €))+ +uhfk €z —

(17)

—cost ) sing )((% €))+ul (r))dr.

The relations 17) can be verified by direct
differentiation.
Repeating this procedure for the determinationhef t

coefficients X,« and y,x of the functions u;k (t) and

uﬁk (t), by formula (7) we obtain sequentially the

approximations (X« (t, h), y,« (t,h)) for k=1,..n. For
he[0,H] andte[0,47 ] we have

x(t,h) =
hr|+1 6n+lx(t, 77)
(n+1)! o™

—x, (Lh)+o(h") =Y %, (t)z—k'+o(h”),
y(t,h) =

=Y, (th)+

=x_(t,h)+

L:haX thy =

(18)

hn+1 6n+1y(t’77)
(n+1)! on™

n N <7 hk n
=y, (th)+o(h")=>"y, (t)FH)(h )
k=1 .
0<6,(th)<1, 0<6,(th)<1.

lz:hay(t,h) =

Here by Lemma 2

th (')iyhk (')E(Cn ([0147[])! k:].,,n (19)

and the estimateo(h") is uniform v te[0,47]. From

(16) and by the choice of initial data i) we obtain

Xp (0,h) =x(0,h) =0, y,« (O, h)=y(@0,h)=h, k=1..n
Computation of Lyapunov quantities in the time
domain. Consider for the initial daturhe (0O,H] the time
T(h) of first crossing of the solutiorx(,h),y(t,h)) of the
half-line {x=0, y>0}. Complete a definition (by continuity)
of the functionT(h) in zero:T(0)=2x . Since by {2) the
first approximation of solution crosses the hatkli
{x=0,y>0} at the time 2, then the crossing time can be
represented as
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T(h)=27 + AT(h), Substitute this representation i24] for the solution
x(2z+7,h) for z=AT(h), and bring together the
where A T(h)=0O(h). We shall say that T(h) is a residual coefficients of the same exponentsh. Since

of crossing time. (AT(h)" =O(h™), by (20) and taking into accoun®{)
By definition of T(h) we have |
for T(h), we obtain

T(h),h)=0. 20 -~ =
X(T(h).0) (20) h:0=X; = X1 (27),
Since by 9), X(.) has continuous partial derivatives h? :0=%, = X2 (2,,)+;r'11 Q)T
with respect to either arguments up to the orderclusive 1._
and x(t,h)=cosf)h+o(h)), by the theorem on implicit h3:0= X3 = xh3 @2r)+= Xhz (27r)T1+xh1 (27r)T2 +
function, the functionT(:) is n times differentiable. It is

1 ~
possible to show thafi(h) is also differentiable times in +— X (27r)T12,
zero. By the Taylor formula we have 2

no_ o, . h":0=X, =
T(h)=27+) Tch*+o(h"), (21)
k=1 From the above we sequentially find;. The
dkT H coefficients Ty_; 1 can be determined sequentially
where 'Fk = 1 ( ) (called period constant [7,9,20]). since the expression fax, involves only the coefficients
T, and the factorX',: (27) multiplying Ty_; is equal
We shall say that the sum t m<:ll( e (27) multiplying Ty IS equ
o -1.
K We apply a similar procedure to determine the
ATy (h) :z Tth (22) coefficients yy of the expansion

j=1 n
| . _ | y(T(h),h)=>" Jh*+o(h").
is thekth approximation of the residual of the tifigh) of k=1
the crossing of the solutiorx({,h),y(t,h)) of the half-line

{x=0, y>0}. Substituting relation 1) for t=T(h) in the  gypstitute the representation
right-hand side of the first equation di8j and denoting

the coefficient ofhk by X, , we obtain the seriegT(h),h) 7™ 27 AT AT(h)
in terms of powers df: Ve (@7 + AT (0)) = Yy (22) + kZ‘i h
0, _ +o(h™), k=1...,n
X(T(h),h)=>" Xh* +o(h™). (23)
k=1 in the expression
In order to express the coefficierks by the n. hk .
coeﬁicientsfk of the expansion of residual of crossing y(@r+AT(h), h) = kz—‘i Yt (2”+AT(h))W+O(h )

time we assume that idg) t=2z +7: Equating the coefficients of the same exponkntge

obtain the following relations

n
XQr+7,h) =Y K 27r+r)—+0(h ). (24) he = 9. (20),
k=1 -
h?: ¥, = ¥ (27)+ iy 27)Ty,
By smoothness conditiol) we have 3 ~ =~ 1 -~ -
h=: Y3 = yh3 (272') +E yhz (272')T1 + yhl (271')T2 +

Xk (27 +7) = X (27) + z X (zﬂ)%m(r”),

m=1

k=1..,n h":y,=...
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for the sequential determination ofy;_; ,. Here Transformation between quadratic system and the

~ ~ o .. Lienard system.
Yh, () andTy 1 are the obtained above quantities. ¥

Thus, for n=2m+1 we sequentially obtained the  Consider the Lienard equation
approximations of the solutiorx((,h),y(t,h)) at the time
t=T(h) of the first crossing of the half-linex$0,y>0} X +F(X)X+G(x)=0 (26)

accurate too(hz™1) and the approximation of the time )
and the equivalent system

T(h) itself accurate to(h®") . If in this caseyy =0 for

k=2,..,2m, then Y1 is called themth Lyapunov quantity X=Yy,

L. Note, that, according to the Lyapunov theorere, th y=-F(x)y-G(x),
first nonzero coefficient of the expansion is always of

an odd number and for sufficiently small initialtal& the
sign of y; (of the Lyapunov quantity) designates a

qualitative behavior (winding or unwinding) of the
trajectory &(th).y(th)) on plane [4]. G(X) = (Cx3 + Cyx? + Cax+Dx

(27)

where

F(x) = (Ax+B)x|x+1[972,

| x+1/%4 (28)
(x+1)3

Lyapunov quantitiesfor Lienard equation.

We have the following results [27;14].
Lemma 4 Suppose, for the coefficients
A B,C;,C,,C3,q of equation (26) therelations

We apply now stated above two method for Lienard
equation. Assuming inLf

dg(x, y) dgxo
f(X, y)EO,—:gXl(X),g(X,O):gxo(X), (O)ZO, (B—A)
d d 1-9)B —-2)A)=
Y ’ (2q—1)2(( DB+ (3-2)4) (29)
we obtain the following system =2C,-3C,-C,,
X=-Y, B=A (B12g-1a)=
Y= X+ 8,0 (9Y+ 0 (%) (29) (2q-1y 27207 (30)
—C,-2C,-1,

Let be g,q (X) = 911X+...,dyxg (X) = gllx2 +... Then
. are satisfied. Then by a nonsingular change, equation (26)
L, = 2 (920911 —921)- can be reduced to the quadratic system

X=p(X,y)=ax +bxy+ax+py,

If 921 =020911. thenl; =0 and . (31)
e y:C](X, y):a2xz+b2xy+czy2+a2x+ﬁ2y
L, = 4 (39415920931 — 3940911 +5920930911)-
with the coefficients
5 5
If g41= 3 920931+ 940011 7 920930911, thenL, =0 by=Lay=1p=Lc,=-qar=-2[;=-L
and =1+ B- A,
29-1
Vg s 2 ay = —(q+Daf — Aay —C, (32)
L3 = __(70920930911+ 10@ o8 st 10@ 39 9 st
576 b, =-A-3a;(29+D.
+ 63g4og31_ 6@ ug 4(g 30 10@ 3(g 39 20
-7095.0,,— 49,,— 109.,0,0 ,s+ 489 ,)- Then by the above relations for the Lyapunov qtiasti

L, and L,, we obtain the following in the point (0,0)

The computation of Lyapunov quantities by means of Lemmab
two different analytic methods with applying the deon if Ly =L, =0, 5A-2Bg-4B=0 and
software tools of symbolic computing permits usstow 1
that the formulas, obtained for Lyapunov quantitieee =~ A#= B, AB=0,q= = then
correct. 2
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B> (1+3) equilibrium, where the zero and first Lyapunov dités
C = (q+3)£— 5 are equal to zero. However in a number of computer
1 experiments we can distinctly see "large" cycles.
C,=(151- )+ B* )—, For example in Fig. 2 is shown a "large" cycle tfoe
25 s
ystem
C3=M, X=0.99+ Xy + X+V,
5 y=-0.58-0.1%y+ 0.§°— 2~y
__7B(a+2)(3a+ 5@+ 1)(H- 1j+B* G- 3)] _ _
L= 20000 : the parameters of which correspond to the point P.

Thus, if the conditions of Lemma 5 arid =0, then by

small disturbances of system we can obtain threeatts 9%,.( [  + 1 ¢ T

cycles around a zero equilibrium of system and see

"large" cycles on a plane of the rest two coeffitseB,q).
Lemma 6 For by = 0 system (31) can be reduced to 04

the Lienard equation (27) with the functions 05
F(x)=R(X) |8 +bx[, G(x)=P(X)| B +bx[. 08

B3

07

C2
Here q=——~ s

_ (bybp —2a,Cp +ayby )x* + (bp By + 185 — 204Cp +
(BL+b)?
+2a181)X+ a1 + P12
(B+b0®
azx2 +apX (b2x+ﬁ2)(a1x2 +a1X) .
Pr+bix (fr+bx)? = 5 5 5 ! 5
LG (alx2 + a1X)2 _ ; ; ; E E

(51 +by%)°

R(x) =

P() =~

-1II|-------------I R S, '
Computer experiments.

The above results were applied to quadratic system "
and the experiments for computing "large" cyclesewe Y
performed. In these experiments the reduction afdgatic =0
system to the Lienard equation of special fo26){(28)
was used and with its help a set of parameé@argFig. 1),
which correspond to the existence of "large" cydlas
estimated.

In Fig. 1 is shown a domain bounded by straighegdin
which correspond to the lines of reversal signhef third i
Lyapunov quantity. The curv€ in the 'graph is a curve of. L o - T R— i ]
the parameters B and g of the Lienard system, whicl. o o ]
correspond to parameters of quadratic system, thattor Fig.2. Stable limit cycle in quadratic system
these parameters the results on the existenceuotieles
were obtained in [29]. Since two Lyapunov quarsitée
equal to zero, by small disturbances it is possitoe In other experiments there occurs the interesting
construct systems with four cycles for the consider phenomenon of the existence of certain "domains of
domain of parameters: three small cycles round on#attening”, i.e. the "limit" points and "limit segents" of

100

il

equilibrium and one large cycle round another éopiilm. nonperiodic trajectories. The latter substantiaflyolves
These results were applied to quadratic systemgrend the qualitative analysis of quadratic systems.
experiments for computing "large" cycles were perfed. In Fig. 3 is shown the behavior of trajectory, whis

Our experience of computations shows that it itizally ~ "unwinded” from equilibrium and then extends airiity,
impossible to trace "small" cycles in the neighlarth of ~ for the Lienard system with the functions
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-

G(x) = (—2876x3 +—2175x2 +E X+1) X .
5 x+1

For this system the following condition =L, =0 and
L, =0 is satisfied.

032 A 0
I

Fig. 3. Domains

0.4 nz 0.6

of flattening

Here we have the intense flattening of trajectoniea
lower domain of graph. The trajectories in the dioma
flattening very closely approaches to stationarinp¢the
distance between the stationary point (0,0) anddtireain
of flattening is h=0.026).
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