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Abstract. A well known chaotic mapping in symbol space is a shift mapping. However, other chaotic mappings in symbol 
space exist too. The basic change is to consider the process (physical or social phenomenon)  not only at a set of times 
which are equally spaced, say at unit time apart (a shift mapping), but at a set of times which are not equally spaced, say if 
we cannot fixed unit time (an increasing mapping). Hence we regard tx  is being the flow of discrete signals when t is 

restricted to values …,,, 210  but )(tfx  the detection of these signals.  Such interpretation simulates the observation. Our 

results reveal why we can detect chaos even our experiment is not shared in strict equally spaced time intervals. This as 

every mathematical treatment leads to a rigorous definition of chaos.  We restrict ourselves with symbol space ωA , that is, 
we consider one sided infinite sequences …… ,,,, 10 txxx  with elements from a fixed set ( Axt t ∈∀ ). Our results is proved 

for such space, namely, the increasing mapping ωω
ω AAf →:  is chaotic in the setωA , where 

…… )()2()1()0()( iffff xxxxxf =ω ,    ∈i N,  ωAx∈ ,  )0(0 f<  and  )]()([ jfifjiji <⇒<∀∀ . 

 
Keywords: alphabet, infinite and finite sequences (or words), prefix metric, infinite symbol space, chaotic map, increasing 
mapping, dense orbit. 
 
 
1 Introduction 

 
The Chaotic dynamics has been hailed as the third great 

scientific revolution of the 20th century, along with 
relativity and quantum mechanics. The explosion of 
interest in nonlinear dynamical systems has led to the 
development of new mathematics. Chaotic and random 
behavior of deterministic systems is now understood to be 
an inherent feature of many nonlinear systems. 

The basic goal of the theory of dynamical systems is to 
understand the eventual or asymptotic behavior of an 
iterative process.  If the process is a discrete process such 
as the iteration of a function, then the theory hopes to 
understand the eventual behavior of the points 

…… ),(,),(),(, 2 xfxfxfx n                                         

as n  becomes large. That is, dynamical systems ask to 
somewhat nonmathematical sounding question: where do 
points go and what do they do when they get there? In this 
article, we will attempt to answer this question at least 

partially for one of the simplest classes of dynamical 
systems, functions of a single variable in symbolic space. 

The technique of characterizing the orbit structure of a 
dynamical system via infinite sequences of "symbols" is 
known as symbolic dynamics. Symbolic dynamics were 
first introduced by Emil Artin in 1924, in the study of Artin 
billiards [14]. 

The first exposition of symbolic dynamics as an 
independent subject was given by Morse and Hedlund [11], 
1938). They showed that in many circumstances such a 
finite description of the dynamics is possible. Other ideas 
in symbolic dynamics come from the data storage and 
transmission.  D.Lind and B.Marcus in 1995 have 
published first general textbook [7] on symbolic dynamics 
and its applications to coding. This book and B.P.Kitchens 
([6], 1998) give a good account of the history of symbolic 
dynamics and its applications. 

 A well known chaotic mapping in symbol space is a 
shift mapping ([5], [6], [7], [12], [13]). However, other 
chaotic mappings in symbol space exist too. The basic 
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change is to consider the process (physical or social  
phenomenon)  not only at a set of times which are equally 
spaced, say at unit time apart (a shift mapping), but at a set 
of times which are not equally spaced, say if we cannot 
fixed unit time (an increasing mapping). 

There is a philosophy of modeling in which we study 
idealized systems that have properties that can be closely 
approximated by physical systems. The experimentalist 
takes the view that only quantities that can be measured 
have meaning. This is a mathematical reality that underlies 
what the experimentalist can see.  

Our results reveal why we can detect chaos even our 
experiment is not shared in strict equally spaced time 
intervals. 

The article is structured as follows. It starts with 
preliminaries concerning notations and terminology that is 
used in the paper followed by a definition of the chaotic 
mapping. The increasing mapping is considered in Section 
4, furthermore, it is proved that this map is chaotic. Some 
non-chaotic mappings in the infinite symbol space are 
investigated in Section 6 too. 

Much of what many researchers consider dynamical 
systems has been deliberately left out of this text. For 
example, we do not treat continuous systems or differential 
equations at all. For this reason the Section 5 is devoted to 
some interpretations.  

 
 

2 Preliminaries 
 
The section presents the notation and terminology used 

in this paper. Terminology comes from combinatorics on 
words (for example, [9] or [10]). 

We give some notations at first: 

,...},2,1,0{,and},,...,1,{, ∈≤+= nknknkknk  

Ζ  - the set of integers, }0&{ >Ζ∈=Ζ+ xxx , 

}0{∪+Ζ=Ν . 

From now on A will denote a finite alphabet, i.e., a 
finite nonempty set },...,,,{ 210 naaaa  and the elements are 

called letters. We assume that A contains at least two 

symbols. By *A  we will denote the set of all finite 
sequences of letters, or finite words, this set contains empty 

word (or sequence) λ  too. }{\* λAA =+ . A word +∈ Aω  

can be written uniquely as a sequence of letters as 

lωωωω ...21= , with Ai ∈ω , li ≤≤1 . The integer l is 

called the length of ω  and denotedω . The length ofλ  is 

0.   
An extension of the concept of finite word is obtained 

by considering infinite sequences of symbols over a finite 
set. One-sided (from left to right) infinite sequence or 
word, or simply infinite word, over A is any total map 

A→Ν:ω . The set ωA  contains all infinite words. 
ωAAA ∪

*=∞ . 

If the word ∞∈= Auuuu ...210 , where Auuu ∈,...,, 210 , 

then finite word nuuuu ...210  is called the prefix of u of 

length n+1. The empty word λ  is assumed to be the prefix 
of u of length 0.  

...},......,,,,,{)(Pref 210210100 nuuuuuuuuuuu λ=        

(that is, )(Pref u  is the set of all prefixes of word  u). 

Secondly we introduce in ∞A   a metric d as follows.  
 
Definition 2.1. Let ∞∈ Avu, . The mapping 

RAAd →× ∞∞:  is called a metric or prefix metric in the 

set ∞A  if  







=

≠
=

−

,,0

,,2
),(

vu

vu
vud

m

 

where )}(Pref)(Prefmax{ vum ∩∈= ωω  

 
It is easy to prove that the function d is a metric (see, 

for example, [10]). 
 

3 Definition of chaotic mapping 
 
The term “chaos” in reference to functions was first 

used in Li and Yorke's paper “Period three implies chaos” 
([8], 1975). We use the following definition of R.Devaney 
[2]. Let ),( ρX  be metric space. 

 
Definition 3.1 ([2]).  The function XXf →:  is 

chaotic if 
a) the periodic points of f are dense in X, 
b) f is topologically transitive, 
c) f exhibits sensitive dependence on initial conditions. 
 
At first we note  
 
Definition 3.2. The function XXf →:  is  

topologically transitive on X if  

.)),((&),(

:0,

ερερ
ε

<<

Ν∈∃∈∃>∀∈∀

yzfzx

nXzXyx
n  

Definition 3.3. The function XXf →:  exhibits 

sensitive dependence on initial conditions if  

.))(),((&),(

:00

δρερ
εδ

><

Ν∈∃>∀∈∀>∃

yfxfyx

nXx
nn  

 
Definition 3.4. Let XBA ⊆,  and BA⊆ . Then A is 

dense in B if  
.),(:0 ερε <∈∃>∀∈∀ yxAyBx  

 
Devaney's definition is not the only classification of a 

chaotic map. For example, another definition can be found 
in [12]. Also mappings with only one property - sensitive 
dependence on initial conditions -  frequently are 
considered as chaotic (see, [4]). Banks, Brooks, Cairns, 
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Davis and Stacey [1] have demonstrated that for 
continuous functions, the defining characteristics of chaos 
are topological transitivity and the density of periodic 
points.  

 
Theorem 3.1.  Let A be an infinite subset of metric 

space X and AAf →:  to be continuous. If f is 

topologically transitive on A and the periodic points of f are 
dense in A, then f is chaotic on A. 

 
It means that we can not check up exhibits sensitive 

dependence on initial conditions of mapping. This property 
follows from others. 

See also [5] chapter 11. 
 
Theorem 3.2. Let A be a subset of a metric space X and 

AAf →: . If the periodic points of f are dense in A and 

there is a point whose orbit under iteration of f is dense in 
the set A, then f is topologically transitive on A. 

 
Therefore we conclude 
 
Corollary 3.1. Continuous function f is chaotic in 

infinite metric space X, if following conditions are met: 
1) the periodic points of  f are dense in the set X, 
2) either there exists a point orbit of which by map 
 f is dense in the set X, either f is topologically transitive 

in the set X. 
 

4  Increasing mapping 
 

Let ω
ω Axixxxxxf iffff ∈Ν∈= ,...,...)( )()2()1()0( . 

In this case the function f is called the generator 
function of mapping ωf . 

 
Definition 4.1. A function Ν→Ν:f  is called 

positively increasing function if  
)].()([and)0(0 jfifjijif <⇒<∀∀<  

The mapping ωω
ω AAf →:  is called increasing 

mapping if its generator function Ν→Ν:f  is positively 

increasing. 
 
Example 4.1. For example, let's take a look at 

positively increasing function: 13)(: +=Ν∈∀ xxfx . It is 

clear that every positively increasing function is increasing 
function in ordinary sense but not conversely. The 
function Ν∈= xxxf ,3)( , is increasing function in 

ordinary sense. Since )0(0 f=  the function f is not 

positively increasing function. 
If we consider 13)( += xxf  as generator function, then 

the corresponding generated mapping is increasing, it 

is ωω
ω AAf →: , where 

....,...)(:... 13741210 Ν∈=∈=∀ + isssssfAssss iω
ω  

The well known shift map is increasing mapping in one-

sided infinite symbol space ωA , in this case the generator 
function is a positively increasing function   Ν→Ν:f , 

where 1)( += xxf . 

 Let K be a set. The iterations of mapping 
KKg →:  we define inductively: 

(i) I=0g  (identical mapping); 

(ii) nn ggg =+1 .  

 
Lemma 4.1. If Ν→Ν:f  is a positively increasing 

function, then nfn +Ζ∈∀  is a positively increasing 

function and .)(: jifnji n >∃∀∀   

Proof. We make the proof by induction on number of 
iterations n. If n = 1, then f is positively increasing function 

by conditions of Definition 4.2. Now we assume that nf  is 

positively increasing function: Ν→Ν:nf  and fulfils the 

conditions )0(0 nf<  and )]()([ jfifjiji nn <⇒<∀∀ . 

We must show that 1+nf  is positively increasing function 

too. 

 Since )0(0 nf<  (first inductional assumption) 

then by second assumption )0())0(()0( 1+=< nn ffff . 

Since f is positively increasing function then )0(0 1+< nf . 

 If i < j , then by inductional assumption 

)()( jfif nn < . Since f is positively increasing function 

then )())(()())(( 11 jfjffififf nnnn ++ =<= , and 

therefore we have proved that 1+
+Ζ∈∀ nfn  is a 

positively increasing function. 
 Now we will prove the second part of Lemma. At 
first we notice that: 

).(: ifii <Ν∈∀  

The case i = 0 follows from definition of positively 
increasing function. We assume inductively that inequality 

)(ifi <  is true for every fixed Ν∈i  and prove that this 

inequality is true for 1+i  as well. Since 1+< ii , by 
second condition of positively increasing function a 
condition of inequality is fulfilled: )1()( +< ifif . Since by 

inductional assumption )(ifi <  and Ν∈)(if  

then )(1 ifi ≤+ . Summary it means that 

)1()(1 +<≤+ ififi . 

 Since f is positively increasing function then 
 

).())(()(...

...)())(()(
11

2

ififfif

ififfifi
nnn =<<

<=<<
−−

 

 

We know that Ν∈)(if , therefore niif n +>)( . We 

conclude if 1≥n  and 1−> jn , then jif n >)( . 
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Definition 4.2. The mapping KKg →:  has a dense orbit 

in the set K if there exist a point Kx∈  such that the set 

{ }Ν∈kxg k )(  dense in the set K. 

 

Theorem 4.1. For increasing mapping  ωω
ω AAf →:   

exists a dense orbit in the set ωA . 
 

Proof.  Let  +→ AN:β  is a freely chosen bijection.  

(For example, if A ={0,1} and 

 },010,001,000,11,10,01,00,1,0{ …=+A , then  

,10)4(,01)3(,00)2(,1)1(,0)0( ===== βββββ   

…,000)6(,11)5( == ββ  

 We define inductively a sequence of words 
+∈ Auuu n …… ,,,, 10                                    (1) 

such that 
)].(Pr|||[| 11 ++ ∈∧<∀ iiii uefuuui  

We also define a sequence of integers 
…… ,,,, 10 mkkk  

The definition is as follows: 
1) We choose )0(0 β=u   and .00 =k  

2) Let  
111110)1(, lAa ββββ …=∈  and 

][]1[]0[)0( 00 suuuu …== β , where all  ][,1 juiβ  are  

letters of alphabet A. By Lemma 4.1 01 )0(1 sfk k >∃ .  

The word  ][]1[]0[ 11111 suuuu …= , where )( 11
1 lfs k= ,  

is defined following 
















==

=

=

∈

=

.,

;)(,

...

);1(,

);0(,

;,0],[

][

111

11

10

0

1

1

1

1

1

casesothera

slfjif

fjif

fjif

sjifju

ju

k
l

k

k

β

β
β

 

3) We assume that 
nnlnn βββ …10  and  

][]1[]0[ 11 −− = nn suuuu … , where all ][, juniβ   are letters  

of alphabet A. By Lemma 4.1 1)0( −>∃ n
k

n sfk n . We  

define the word  ][]1[]0[ nnnnn suuuu …= , where 

)( n
k

n lfs n= ,  following 
















==

=

=

∈

=

−

.,

;)(,

...

);1(,

);0(,

;,0],[

][ 1

0

1

casesothera

slfjif

fjif

fjif

sjifju

ju

nn
k

nl

k
n

k
n

n

n

n

n

n

n

β

β
β

 

4)  Since  )(Pr 1+∈∀ ii uefui  and  ∞=
∞→

||lim i
i

u   then 

there exists an infinite word 

ωAu∈  such that  i
i

uu
∞→

= lim . 

The orbit of word u is dense in the set ωA .  Let  0>ε .  

Then there exists m such that ε<−m2 . We assume that  
ωAx∈   and v is a prefix of word x of length m. Then there 

exists n such that vn =)(β . By construction of the 

sequence  (1)   

))((Pr)( ufefn nk∈β , 

therefore distance  ε<≤ −mk ufxd n 2))(,( .  

Remark. If the set A is countable, then  +A  is countable 
too, therefore the proof of Theorem 4.1 does not change if 
the set A is countable. 
 
Theorem 4.2. The periodic point set of increasing 

mapping  ωω
ω AAf →:  is dense in the set  ωA . 

 
Proof. The proof is similar as for the Theorem 4.1. Let  

0>ε . Then there exists m such that ε<−m2 . We assume 

that  ωAx∈   and v is a prefix of word x of length m. We 
define inductively sequence of words 

…… ,,,, 10 nuuu   such that 

)].(Pr|||[| 11 ++ ∈∧<∀ iiii uefuuui  

1) We choose vu =0 . 

2) Let s = m - 1. We assume that  Aa∈  and  
][]1[]0[0 suuuu …= , where all u[j] are letters of  the 

alphabet  A. By Lemma 4.1  sfk k >∃ )0( . We define the 

word ][]1[]0[ 11111 suuuu …= , where )(1 sfs k= , 

following 
















==

=

=

∈

=

.,

;)(],[

...

);1(],1[

);0(],0[

;,0],[

][

1

1

casesothera

ssfjifsu

fjifu

fjifu

sjifju

ju

k

k

k

 

Since  sf k >)0(  then  1
2 )()0( ssff kk => . 

3) We assume that  ][]1[]0[ 11 −− = nn suuuu … ,  where  

1
)1( )()0( −

− => n
knnk ssff  and  all ][1 jun− are letters of 

alphabet A. The word ][]1[]0[ nnnnn suuuu …= , where  

)( 1−= n
k

n sfs  is defined following 
















==
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=

∈

=
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);0(],0[

;,0],[

][

11

1

casesothera
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Since  1
)1( )()0( −

− => n
knnk ssff  then  

nn
knkkn ssfsff ==> −

+ )()()0( 1
)1( . 

4) Since  )(Pr 1+∈∀ ii uefui  and  ∞=
∞→

||lim i
i

u   then there 

exists an infinite word ωAu∈  such that  i
i

uu
∞→

= lim . 

According to construction of  u, it follows that d(u; x) 

ε<≤ −m2  and kf (u) = u. We have proved that u is a 

periodic point of mapping  ωf   such that the distance 

between u and x is less than  ε.  
 

Theorem 4.3. The increasing mapping  ωω
ω AAf →:  is 

continuous in the set  ωA . 
 

Proof. We fix word ωAu∈  and ε > 0. We need to prove 
that there is δ > 0 such that whenever d(u; v) <δ, then  

εωω <))(),(( vfufd . 

We choose m such that ε<−m2 2 and assume that 0 <δ < 
1)(2 +− mf , where f : N → N is corresponding positively 

increasing function of  ωf  .  If  d(u; v) <δ, then by 

definition of prefix metric follows that ii vu =   for all 

i=0,1,…, f(m).  
From definition of increasing mapping 

…… )()1()0()( mfff uuuuf =ω  

…… )()1()0()( mfff vvvvf =ω  

and  ,,,1,0,)()( mivu ifif …==   therefore 

εωω <<≤ −+− mmvfufd 22))(),(( )1( .  

 

Theorem 4.4. The increasing mapping ωω
ω AAf →:  is 

chaotic in the set ωA . 
 

Proof. The space ωA  is infinite space. Since the increasing 

mapping ωω
ω AAf →:  is continuous (Theorem 4.3), 

there exists a dense orbit in the set ωA   (Theorem 4.1) and 

its periodic point set is dense in the set ωA  (Theorem 4.2) 
then by Corollary 3.1 follows that increasing mapping 

ωω
ω AAf →: is chaotic in the set  ωA .   

 
5  Interpretations 
 

(i) Let 
…… ),(,),(),( 10 ntxtxtx   (2) 

be the flow of discrete signals. Suppose that we have the 
experimentally observed subsequence 

…… ),(,),(),( 10 nTxTxTx    (3) 

If  …… ,,,, 12110 +=== nn tTtTtT  we have the shift map. 

Notice if we have the infinite word …… nxxxx 10=  

instead of sequence (2), then we have respectively the 

infinite word …… nyyyy 10=  instead of (3). Here 

1−=∀ tt xyt . Hence, we obtain the shift map f(t) = t + 1, 

namely, …… )()2()1()0()( nffff xxxxxfy == ω  

We do not claim the function f(t) = t + 1 is chaotic on the 
real line R but we had proved that this function as a 
generator creates the chaotic map ωf  in the symbol space 

ωA . We had proved something more, namely, every 
positively increasing function g as a generator creates the 

chaotic map ωg  in the symbol space ωA . In other words, 

if we had detected in our experiment only subsequence 
…… ),(,),(),( 1231 −ntxtxtx  even then we can reveal chaotic 

behavior. 

 
(ii) Now we turn our attention to the interval [0, 1] of the 
real line R. Let us consider a dynamical system defined by 
the map 

y = 2x mod 1.    (4) 
The key step is to recognize that because the slope of the 
graph (Fig. 1) is 2 everywhere, the action of (4) is trivial if 
the coordinates ]1,0[∈x  are represented in the base 2. Let 

x have the binary expansion …… nxxxx 10.0=  

with  }1,0{∈∀ txt . It is easy to see that the next iterate 

will be ………… nn xxxxxxxy 21210 .01mod).( ==  Thus, 

the base 2 expansion of y is obtained by dropping the 
leading digit in the expansion of x. This map is chaotic in 
the interval [0, 1] (see, e.g., [3]). Notice the map 

……֏…… nn xxxxxxh 2110 .0:]1,0[}1,0{: →ω  

is the topological semi-conjugacy (see, e.g., [12]) from the 
shift map to the action of (4). Similarly we can obtain the 
chaotic map in the interval [0, 1] from every increasing 

mapping ωω
ω AAf →: . For example, let the positively 

increasing function  NN →:α  





≥+

∈+
=

.2,2

},1,0{,1
)(

ii

ii
iα  
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Then ωω
ωα }1,0{}1,0{: →  is the increasing mapping, and 

therefore it is chaotic in the set  ω}1,0{ . Now we can obtain 

the chaotic function in the interval [0, 1], namely, the 
function 
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The graph of the function  )(3 xE  is sketched in Fig. 2. 

 
6  Non-chaotic mappings 

 
At first we prove one result about case that we had not 
considered in section 4. 
 
Theorem 6.1. If generator function f of mapping  

ωω
ω AAf →:  is such that  f(0) = 0, then the generated 

mapping  ωf   is not topologically transitive in the set  
ωA . 

Proof. We prove the opposite of topological transitivity: 

).)),((),((0 εεε ω ≥∨≥∈∀∀>∃∃∃ yzfdzxdNnzyx n  

We assume that  …… nxxxx 10=   and  …… nyyyy 10=   

are chosen so that  00 yx ≠  and  ε = 1.  Let ωAz∈    be 

arbitrary. Two cases are possible: 
1) 00 xz ≠ , then by definition of  prefix metric d(z, x) = 

02  = 1 = ε; 
2) if  00 xz = ,  then we can not state that  d(z, x) ε≥  , but 

we have …
)2()1()0(

)( nnn fff
n zzzzfNn =∈∀ ω  

In this iteration  0)0(
zz nf

= , but  000 yxz ≠= , therefore   

.12)),(( 0 εω ===yzfd n  

 
Corollary 6.1. If generator function f of mapping  

ωω
ω AAf →:  is such that f(0) = 0, then the generated 

mapping ωf   is not chaotic in the set ωA . 

 
Similar as in Theorem 5.1 it is easy to show that generated 
mapping  ωf   is not topologically transitive (also not 

chaotic) in the set  ωA  if for corresponding generator 
function  iifNi =∈∃ )( . 

At second we prove one broader result for very large class 
of functions that 
is not chaotic. 
 
Theorem 6.2. If generator function f : N → N of mapping 

ωω
ω AAf →:  is not one-to-one function, then the 

mapping  ωf   is not topologically transitive in the set ωA . 

 
Proof.  We assume that generator function  f : N → N  of 

mapping ωω
ω AAf →:   is not one-to-one, then there  

exist two different numbers k and m (k < m) such that 
f(k)=f(m).  
 We assume that …… ixxxx 10=   and  

…… iyyyy 10=  are chosen so that mk yy ≠   and  

mm yx ≠ .  We assume that  m−= 2ε . We choose ωAz∈ . 

If  d(z, x) ≥  m−= 2ε ,  then the proof is completed. If 

d(z,x)< m−= 2ε , then from definition of prefix metric 

follows that .,0 ii xzmi =∈∀  This means that  

mmm yxz ≠= , therefore  d(z, y) ≥  m−= 2ε . We have 

assumed that  f(k) = f(m) then 
 

………
)()()1()0(

)(
mfkfff nnnn zzzzzf =ω  

and  )()( mfkf zz = . But  mk yy ≠ , therefore 

1)  mk
kmfkf yzfdyzz −− >≥⇒≠= 22)),(()()( ω  or 

2)  m
mmfkf yzfdyzz −>⇒≠= 2)),(()()( ω . 
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Similar for every n in iteration  )(zf n
ω  the k-th and m-th 

symbols are equal and those are different from ky  or  my , 

therefore  myzfd −≥ 2)),(( ω .  
 

Corollary 6.2. If generator function f : N → N  of 

mapping  ωω
ω AAf →:  is not one-to-one function, then 

the mapping ωf   is not chaotic. 
 

Corollary 6.3. If  ωω
ω AAf →:  is chaotic map in the set 

ωA , then generated function f : N → N  of mapping  ωf   

is one-to-one. 
 

For example, the increasing function  ωω
ω AAf →:   is a 

special case for mapping with one-to-one generator 
function. But we remark that there exist non-chaotic 
mappings with one-to-one generator functions. For 
example, identical mapping 

xxfAx =∈∀ )(ω
ω  

is not chaotic mapping but its generator function 
iifNi =∈∀ )( is one-to-one. 

 
References 
 
[1] Banks J., Brooks J., Cairns G., Davis G., Stacey P. On 

Devaney's definition of chaos.  Amer.Math. Monthly, V. 99 

(1992), p.29-39. 

[2]    Devaney R.  An introduction to chaotic dynamical systems.  

Ben\-jamin Cum\-mings: Menlo Park, CA, (1986).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[3] Gilmore R.  The Topology of Chaos. Alice in Stretch and 

Squeezeland. John Wiley & Sons, Inc., New York, (2002). 

[4]  Gulick D.  Encounters with chaos.  McGraw-Hill, Inc., 

(1992). 

[5]  Holmgren R.A.  A first course in discrete dynamical 

systems. Universitext, sec. ed., Springer-Verlag, (1996). 

[6]  Kitchens B.P.  Symbolic Dynamics. One-sided, two-sided 

and countable state Markov shifts. Springer-Verlag, (1998). 

[7]  Lind D., Marcus B. An introduction to symbolic dynamics 

and coding. Cambridge University Press, (1995). 

[8]  Li T.Y., Yorke J. A. Period three implies chaos.  Amer. 

Math. Monthly, V.82(12) (1975), p.985-992. 

[9]  Lothaire M.  Combinatorics on Words. Encyclopedia of 

Mathematics and its Applications, Vol. 17, Addison-Wesley, 

Reading, MA, (1983). 

[10]  de Luca A., Varricchio S.  Finiteness and regularity in 

semigroups and formal languages. Monographs in Theoretical 

Computer Science, Springer-Verlag, (1999). 

[11]  Morse M., Hedlund G.  Symbolic dynamics.  Amer. J. 

Math., V.60 (1938), p.815-866. 

[12]  Robinson C.  Dynamical systems. Stability, symbolic 

dynamics, and chaos. CRS Press, (1995). 

[13]  Wiggins S.   Global bifurcations and chaos. Analytical 

methods.  Applied Mathematical Sciences V.73,  Springer-

Verlag, (1988). 

[14]  http: //en.wikipedia.org/wiki/Symbolic_dynamics 

 




