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Abstract. The response of a harmonically excited Duffing oscillator with chaotic response is studied by replacing the 
excitation by harmonic excitation plus added noise, a harmonic motion with phase perturbations, and a narrow-band 
filtered noise. The mean frequency and excitation energy for all the models are the same, assuming that these are basic 
parameters for the response of the oscillator. The resulting probability densities in the state space show that the chaotic 
attractor is very stable for the different kinds of perturbations. Also, a new conditional path integration method is described, 
which is shown to be robust and accurate while the CPU time is kept at a minimum. 
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Introduction 
 

A few papers have been published the last years with 
studies of nonlinear or chaotic systems under the influence 
of noise - or other kinds of perturbations, and a variety of 
phenomena has been discovered. There are however many 
ways noise can be introduced, and very little has been done 
to look at differences between the response under various 
noise models. 

The aim of this paper is to show some of the possibilities 
of using path integration for systems where the noise is 
filtered, increasing the dimensionality of the problem to 
four, when a state-space variable is an angle. Although the 
systems considered have some very basic properties in 
common, the notion of convergence and how the attractor 
finally appears are very different for the different cases. 
This paper also extends previous work [1,2] where a 
single-degree of freedom ODE with chaotic response is 
studied by the addition of noise using path integration. 

The Duffing oscillator has been studied extensively for 
many years because of its interesting dynamics combined 
with its simplicity, and it is still recognized 
that the Duffing class of oscillators plays a central role 
among harmonically excited systems that exhibit chaotic 
behaviour [3]. Parameter ranges for different structure 
levels has been mapped quite detailed, e.g. in [4], and the 
Duffing model is also used to model more complicated 
structures of coupled nonlinear oscillators [5]. As the 
deterministic single-degree-of-freedom oscillator is more 
understood, the interest is turned to stochastic models and 
higher-dimensional problems. 

Path integration (PI) is one tool for analyzing systems of 
SDEs. A Duffing oscillator with additive noise was studied 
using PI in [6]. Their method is very different from the 

method developed by Naess and described i.e. in [7], and 
with different limitations. The first is based on an idea 
described in [8], where moment equations are solved using 
the Gaussian closure technique to estimate the transition 
probability density (TPD) using fairly long time steps. The 
TPD multiplied with the PDF of the previous time step is 
then integrated using a Gauss-Legendre interpolation 
scheme, though with only two sub-intervals in each grid 
point. The longer time steps and direct evaluation of the 
PDF in the pre-defined grid points is computer efficient, at 
least for two-dimensional problems. The idea of Naess is, 
as will be discussed below, to take shorter time steps, and use 
a time discretization scheme where the noise has a known 
distribution and only appear in one variable of the 
discretized system of one-dimensional SDEs. This requires 
an efficient and accurate interpolation method over the 
density integrated over, but is more robust to non-Gaussian 
long-term TPDs which occur in strongly nonlinear systems. 
One important remark to the method presented in this 
paper, is that it is a very direct implementation. Some 
methods have been proposed for solving or studying 
nonlinear SDEs subjected to narrow-band random excitation 
involves the quasi-static method [9], stochastic averaging 
[10], equivalent linearization [11,12] and digital simulations 
[13], just to mention a few. These requires more involved 
analytical computations or adjustments before one can start 
simulations of the systems. 
 
System description 
 

A nonlinear single-degree-of-freedom (SDOF) system 
subject to periodic excitation is the basis for this analysis. 
This system is a Duffing oscillator where the response 
process X(t) satisfies the following equation 
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where F(t) is the stochastic excitation, with some specific 
properties. The motivation for this study is the 
corresponding deterministic ODE with Y(t) = (2/5) cos(Ωt), 
which has been studied extensively in [14] for various 
frequencies Ω. 

This system is separated into displacement X and 
velocity V as 
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The four kinds of excitation studied here, denoted A 
through D are 
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Here, Nt is the standard zero-mean white noise process or 
Gaussian white noise, also described as the formal 
derivative of a standard one-dimensional Brownian motion. 
This process has uncorrelated increments E[NtNt+τ] = δ(τ), 
where δ(·) is a Dirac measure at zero. 

As in equation 2, the filter in case D will be split into 
two first-order SDEs by introducing the filter velocity W = 

Zɺ . 

From here on, Y will be the vector of state space 
variables, which for the four cases read 

2RVXY T
A ∈= ],[     (8) 
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Here S denotes the circle; the real line modulo 2π. 
The differences between the two three-dimensional 

systems B and C require a comment. Both are models 
where there is a perturbation in the frequency of the 
forcing, while preserving the mean angular velocity around 
Ω. In case B, the system is almost locked to a fixed phase 
at every time t, perturbed by Φ. Although Φ is strictly an 
angle, the noise variance is set small enough that the 
perturbation is much less than 2π. By this, it is reasonable 
to model this variable and the Brownian motion as a one-
dimensional process on the real line. This also ensures that 
the forcing cannot stay a full period behind or ahead of the 

pre-set phase. In a realization of the system, any random de-
lay compared to that phase at a specific time would make 
the damping effect try to ”speed up” the angle, and the 
more the angle is ahead of the phase due to the random 
fluctuations, the larger the probability is for dominating 
lower frequencies. In case C, the filter does not inherit this 
kind of memory. The angle can be seen as a standard zero-
mean Brownian motion on a circle superimposed on a 
fixed rotation, or a Brownian motion on the circle with a 
mean angular velocity, or say drift, Ω. As the variance of the 
Brownian motion on the real line is increasing with time, the 
distribution on the circle converges towards a uniform 
distribution, which means that the phase for system C after a 
long time is impossible to predict with any accuracy, in 
contrast to system B. However, the value of Θ is the 
current phase value. 

The spectrum of FC in Equation 6 is, according to [15], 
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This also shows the fairly obvious result that 0→Dγ  gives 

harmonic excitation. 
The fourth filter, D, is an oscillator that also gives a mean 

frequency Ω. As in case C, the phase will be distributed over 
the joint PDF, but can be retained from the values of the 
two last state variables. Here, the amplitude will also be 
heavily affected by the noise. The output of a linear filter 
with Gaussian noise is Gaussian, so the forcing spectrum is 
clearly different from the sinusoidal in the three first cases. 

It is known that the purely deterministic system with 
harmonic forcing, 0=Aγ  in Equation (4), gives rise to a 

chaotic attractor. With all the noise models, it is expected 
that the response should be similar to this attractor, more so 
for noise with low intensity. As the noise makes a 
probability density, i.e. a surface, some of the fine structure 
of the chaotic attractor must disappear, like a ”stochastic 
blanket” is thrown over the attractor. 

To be a relevant comparison, approximately the same 
amplitude should be delivered from the stochastic forcing 
models. This is clearly a question of definition, e.g. would 
the addition of zero-mean noise in case A give an addition 
in energy and mean amplitude, but a time average around 
the peaks would give the correct amplitude. For cases B 
and C, the amplitude is fixed, but the frequency variation 
would give a slight increase in energy to the system. In the 
last case D, a choice has to be made, as the force is just 
quasi-harmonic without a maximum amplitude. Here, the 
variance was chosen as the reference. The variance in Z of 
the system D is from equation (7) )/( DD k32 2Ωγ . The 

variance of the deterministic forcing (2/5)cos(Ω t) is 2/25. If 
these two are set equal to each other, a given damping kD 

implies a noise level )/ 254 32
DD kΩ=γ .  This is equivalent 

to scaling the forcing in equation (2). As the damping and 
noise intensity goes to zero, the response Z becomes more 
and more harmonic, as shown in Figure 1. 
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Fig. 1. Four realizations of the two-dimensional filter with 
damping kD varying from 0.1 down to 0.0001, and noise level 
chosen correspondingly 
 

The concept of convergence for SDEs driven by 
harmonic excitation has been discussed in [2]. For the two 
first excitation models A and B, the response is directly 
depending on the value of the time t. Since the damping is 
positive, it can be assumed that the density becomes 
periodic after transients have died out, and the period will 
be 2π/Ω. Existence and uniqueness of such a periodic 
attractor for the response PDF is difficult to prove for a 
nonlinear system. However, if a PDF f † at time t0 is found 
to be periodic with period 2πn/Ω, then the density f ‡ 
obtained at time t1 = t2 + 2π/Ω also has the same period. 
The average over all the obtained PDFs at t1,t2,...,tn, tj = t1 + 
+ 2πj/Ω must then have period 2π/Ω. 

For the third and fourth cases, there is no explicit time 
dependence; the system is autonomous, and a stationary 
distribution could exist. 
 
The Path Integration Method 
 

The vector SDE for the n-dimensional state space vector 
is 

)()]([)( tbtYmtY ξ+=ɺ
    (13) 

Let pY(y, t) denote the PDF of Y at time t. To solve the SDE 
(13), the PI technique is used. It is based on the total 
probability law, which reads 
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This means that for each point y, the value of the PDF 
at time t can be calculated as an integral based on the 
previous PDF at time t' = t - ∆t, if the path between the 
points y and y' in the state space can be calculated. Time 
can therefore be discretized with constant time steps ∆t 
using the fourth order Runge-Kutta scheme (RK4). 

The integral in Equation (14) requires the (incremental) 

transition probability density (TPD). For a sufficiently 
small ∆t, this is a degenerate Gaussian distribution 
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where r j(y')∆t,j = 1, 2,...,n are the RK4 increments for y1, y2 
to yn, respectively. That is, mj has been replaced by r j in the 
discretized version of the SDE (13). Note that due to the 
occurrence of the delta functions in the expression for the 
TPD p(y,t|y',t') in equation (15), the integrals in equation 
(14) will be reduced to a single integral, cf. [7]. This is a 
significant remark, especially for the four-dimensional 
problem. An integral over all the state space variables, 
which would appear with a higher order time-discretization 
of the SDE or the use of moment equations, would be very 
time consuming. 

To evaluate the PDF at time t', a cubic B-spline 
interpolation [16] is used, made especially as a tensor 
product over the state space. This is an efficient choice, as 
the spline coefficients of a surface is represented by the 
spline coefficients in one direction of the spline 
coefficients in the second direction, and the value of a two-
dimensional B-spline basis function is the product of the 
corresponding basis functions in the two directions. This 
argument could similarly be extended to higher 
dimensions. As will be discussed below, interpolating on a 
conditional density makes linear interpolation acceptable 
for some systems. 

For the results obtained in this paper, a uniform grid 
has been used, which leads to splines with periodic 
blending functions. For all the systems, the PDF fall off to 
zero when one of the state space variables gets sufficiently 
far from the origin. The simplest endpoint condition 
numerically is to set the coefficient to zero for all basis 
functions with the peak outside the computation domain. 
This also leads to an interpolant that smoothly goes to zero 
at the boundary of the domain, which seems reasonable for 
the systems studied here. The system to be solved in each 
state space variable is then 
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where the vector [c1,...,cN]T is the spline coefficients and 
[υ1,...,υN]T contains the PDF values. 

The splines in case C have a bit different properties, as 
the state space includes S. In the discretized space the Θ 
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variable has the same number of basis splines and knots as 
there are values to interpolate, as the spline coefficients are 
fully determined under the periodic endpoint conditions of 
the space. The spline matrix system to be inverted is 
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So the only change is in the upper right and lower left 
corner of the matrix. In any case, the spline coefficient 
vector is found by one initial LU-decomposition of the 
matrices above, and back substitution at every time step. 

The chaotic attractor of the deterministic system 
described above is a complicated structure in three di-
mensions, x, xɺ  or υ, and time or phase angle. For the two 
non-autonomous systems A and B, the latter variable is 
represented by the time steps, and hence the accuracy 
depends on the size of the time step and the time stepping 
method. For the two cases C and D, however, the grid 
needs to be sufficiently dense in all dimensions to see the 
fine structure of the system. That is, in case C where Θ, the 
phase angle, is a state space variable, it cannot be regarded 
as less important than the two first, even if it will not be 
shown in the main results. This is basically irrespective of 
the order of the interpolation scheme, as both a linear and a 
cubic B-spline interpolant will smear out the attractor’s 
fine structure. 
 

Conditional Path Integration 
 

With the increase of computer power, also systems of 
higher dimensions can be studied. However, most work on 
path integration deals with one- or two-dimensional 
systems. The main obstacle and challenge with the PI 
method is the interpolation in many dimensions, because it 
requires a lot of programming, and it is the bottleneck for 
the CPU-time. An additional pitfall is that in higher 
dimensions the accuracy of the interpolation is lower than 
in one-dimensional systems. 

For case B, the stationary density of the Φt process is 
Gaussian with density )/exp()( 22

BBxkCf γφ −= , i.e. zero 

mean and variance BB k22 /γ . (C is just the constant 

scaling). The marginal PDF of Φ from X, V, Φ must also be 
the same Gaussian distribution, as the three-dimensional 
system only has introduced ”auxiliary” variables X and V 
and then they are integrated out for the marginal. In case 
D, the joint stationary - and marginal - PDF of Z,W is 
bivariate Gaussian with density /exp(),( Ω−= DkCzf ω  

])[/ 2222 ωγ +Ω zD . That is, zero-mean, zero covariance, 

and variances )/( DD k32 2Ωγ  and )/( DD kΩ22γ  for the 

response of Z and W respectively. 

The question is whether this knowledge could be 
utilized to reduce both the grid resolution and the in-
terpolation cost. A proposed solution is to consider the 
conditional densities f(x,υ|φ ) and f(x,υ|z,ω) for these two 

cases respectively, and just interpolate linearly in the 
conditional variables. This will work well if the conditional 
density f(φ |x, υ) for fixed x, υ has a sufficiently similar 

shape to f(φ ) in case B, and similarly for case D. 

Let us go through the procedure for case B in detail. 
Assume that the PDF fi∆t(y) is already calculated in every 
grid point yk,l,m, and denote this for short by fi(y). Write 
fi(xk,υl|φ m) = fi(yk,l,m) /f(φ m) for every grid point. For each 

fixed m, represent fi by the cubic spline interpolant    
gm(x,υ) = (I4,xυfi)(x,υ|φ m). For each point in the integration 

domain the density is evaluated as  

fi(x,υ,φ ) = [(1 - λm)gm(x,υ) + λmgm+1(x,υ)] f(φ ), where     

λm = λm(φ ) = (φ  - φ m)/(φ m+1 - φ m), and m is chosen such 

that φ m < φ  < φ m+1. 

In case D, the method is the same, except more in 

+−−= ),())([(),,,( , υλλωυ xgzxf nmnmi 11  

+−+−+ ++ ),()(),()( ,, υλλυλλ xgxg nmnmnmnm 11 11  (18) 

).,()],(, ωυλλ zfxg nmnm 11 +++  

A challenge with this fourth four-dimensional system, is that 
the filter has a transient time, which is very long for low 
noise levels. The main attempt to reduce this is by starting 

with the correct marginal density in Z and Zɺ . 

A final remark on conditional PI is that the procedure 
could also work for systems where the marginal density of 
the filter variables is unknown or not stationary, as this 
PDF can also be found for each time step with fair 
accuracy using the PI method. 
 

Numerical solution for response PDF by the PI method 
 

A Poincare section of the chaotic attractor obtained for 
the deterministic system, case A with 0=Aγ  in Equation 

(4) is shown in Figure 2. This is a well studied example, 
using Ω = 0.32, and this choice has been made for all the 
simulations with results shown in this paper. The sampling 
time is 2πk/Ω, k = 1,2,..., i.e. after every full period of the 
harmonic forcing. 

Snapshots of the PDF of the additive noise model A, 
Equation (4), after 30 periods are shown in Figures 3 to 8, 
for experiments with varying amount of noise. As 
expected, the higher noise levels give less fine structure 
and more spreading of the PDF. There is hardly any 
difference between the estimated response for the two 
lowest noise levels. This could indicate that for these 
results, at least for the lowest noise level, the interpolation 
is the main source of smearing out the attractor, and the 
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limit of structure detail obtainable has been reached. It is 
also interesting to see that the strongest peak at the upper 
left tip of the structure gradually becomes lower with 
increasing noise, while the vertical structure around x = 1.5 
remains strong. Similarly, one of two peaks near the center 
of the figures gradually disappear with increasing noise, 
while the other remains a maxima. 

 

    
Fig. 2. Poincaré section of the chaotic attractor 

 

 
Fig. 3. PDF of the response of the 2D system, additive noise, with 

0050.=Aγ  at time 60π/Ω, i.e. 30 full periods from the initial 

distribution 

 

Fig. 4. PDF of the response of the 2D system, additive noise, with 
0100.=Aγ  at time 60π/Ω, i.e. 30 full periods from the initial 

distribution 

 
Fig. 5. PDF of the response of the 2D system, additive noise, with 

0250.=Aγ  at time 60π/Ω, i.e. 30 full periods from the initial 

distribution 
 

 
Fig. 6. PDF of the response of the 2D system, additive noise, with 

0500.=Aγ  at time 60π/Ω, i.e. 30 full periods from the initial 

distribution 
 

 

 
Fig. 7. PDF of the response of the 2D system, additive noise, with 

1000.=Aγ  at time 60π/Ω, i.e. 30 full periods from the initial 

distribution 
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Fig. 8. PDF of the response of the 2D system, additive noise, with 

2500.=Aγ  at time 60π/Ω, i.e. 30 full periods from the initial 

distribution 
 

Similar snapshots are shown for system B in Figures 9 
through 13. In spite of the fact that the phase is varying and 
the amplitude is constant, while case A is opposite, the 
increasing noise seem to have the same effect on the 
system. 
 

 
Fig. 9. PDF of the response of the 3D system, damped noise in 
the phase, with 0050.=Bγ  at time 60π/Ω, i.e. 30 full periods 

from the initial distribution 

 
Fig. 10. PDF of the response of the 3D system, damped noise in 
the phase, with 0100.=Bγ  at time 60π/Ω, i.e. 30 full periods 

from the initial distribution 

 
Fig. 11. PDF of the response of the 3D system, damped noise in 
the phase, with 0500.=Bγ  at time 60π/Ω, i.e. 30 full periods 

from the initial distribution 

 

 
Fig. 12. PDF of the response of the 3D system, damped noise in 
the phase, with 1000.=Bγ  at time 60π/Ω, i.e. 30 full periods 

from the initial distribution 

 

 
Fig. 13. PDF of the response of the 3D system, damped noise in 
the phase, with 5000.=Bγ  at time 60π/Ω, i.e. 30 full periods 

from the initial distribution 
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For the filtered noise version, case D, the results are 
shown in Figures 19 to 21. Even for the low damping, and 
hence low noise, one cannot see the same level of detail as 
in the previous results. This indicates that some averaging 
process is dominant for this system much more than for the 
previous cases. The location and size of the maxima is 
similar to what is seen for high noise levels in the other 
models.  When  studying  the  two  Figures  19 and 20, it is 
 

 
Fig. 14. PDF of the response of the second 3D system, free noise 
in the phase, with 0050.=Cγ . Number of grid points in Θ is 22 
 

 
Fig. 15. PDF of the response of the second 3D system, free noise 
in the phase, with 0050.=Cγ . Number of grid points in Θ is 44 

 
Fig. 16. PDF of the response of the second 3D system, free noise 
in the phase, with 0500.=Cγ . Number of grid points in Θ is 88, 

while the number of grid points in x and y is reduced by 2/3 to 81 

 
Fig. 17. PDF of the response of the second 3D system, free noise 
in the phase, with 1000.=Cγ . Number of grid points in Θ is 88, 

while the number of grid points in x and y is reduced by 2/3 to 81 

 

 
Fig. 18. PDF of the response of the second 3D system, free noise 
in the phase, with 5000.=Cγ . Number of grid points in Θ is 88, 

while the number of grid points in x and y is reduced by 2/3 to 81 
 

 
Fig. 19. PDF of the response of the 4D system, filtered noise, 
with 00010.=Dk  

 
quite surprising that the PDF doesn’t seem to change when 
the damping is increased from 10-4 to 10-1, as the 
realizations of the forcing shown in Figure 1 are so 
different. Simulations were performed with a grid of 
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81×81×44×45 grid points over the state space. In the z-
direction, the grid was from -0.8 to 0.8, i.e. twice the value 
of interest, 0.4. The grid for the ω-direction was chosen 
correspondingly based on the maximal velocity (0.4Ω). As 
discussed above, the deterministic harmonic forcing 
corresponds to an ellipse in the z, ω -space. With the 
choice of computational grid, this ellipse crosses 22 grid 
lines in each direction - twice, so the interpolation was 
expected to be fairly good. It is possible that interpolation 
in four dimensions smears out the structure much more 
than in the previous cases, also since just two points on the 
ellipse actually intersects grid points. Also note that the 
separation between the two peaks is clearly decreased as 
the noise increases, while the main shape is preserved.  For  
the case with highest damping and noise, Figure 21, very 
little shape is preserved, the maxima is almost circular, 
although the total variation is about the same as in Figure 
18 and Figures 8, and not much larger than in 13, all of 
which has a clearly non-circular maximum. However, the 
added noise model is much more similar to the 4D case 
than the two 3D models. This clearly indicates that the fil-
tered noise model and the added noise model affect the 
oscillator in a very different way than the phase 
perturbation for high noise values. 

 

 
Fig. 20. PDF of the response of the 4D system, filtered noise, 
with 100.=Dk  

 
Fig. 21. PDF of the response of the 4D system, filtered noise, 
with 01.=Dk  

Conclusion 

 
Two slightly modified versions of the path integration 
method is presented; a conditional routine to reduce cpu-
time, and a way to treat periodic boundary conditions when 
the variable with noise is an angle. These methods are used 
to study the behaviour of a  nonlinear system  excited  by a  
harmonic motion with additive noise, two different models 
with slowly varying phase, and a filtered noise process. 
The PDF for the response of the system is obtained 
numerically for all these excitation types, and with varying 
amount of noise. The pure deterministic system is known 
to produce a chaotic periodic attractor, and the main lo-
cation of this attractor seems to be stable in the different 
stochastic models, although the level of detail varies. 

The paper shows that low levels of noise combined 
with a dense grid gives a lot of detail or structure in the 
resulting PDFs. This structure becomes more spread out 
and less detailed as the noise level is increased or fewer 
grid points are used in the interpolation. It is shown that for 
the PI technique, all the variables must represented by a 
sufficiently accurate discretization technique to obtain a 
detailed final accuracy. 

The conditional path integration is a new method 
presented here, based on the knowledge of the stationary 
distribution  in  some  of  the  variables.   This  gives  faster  
computation time, and preserves the marginal density of 
the full PDF. At the same time, one to a large extent avoids 
the main drawback of linear interpolation in PI, namely 
consistent under-estimation of peaks, i.e. in areas with 
negative curvature, and similarly over-estimation of tails. 

The Path Integration technique is able to produce full 
PDFs of even four-dimensional nonlinear systems, and 
with our interpretation, the results are reasonable. 
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