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Abstract. The response of a harmonically excited Duffingilzgor with chaotic response is studied by repigcthe
excitation by harmonic excitation plus added nomeharmonic motion with phase perturbations, anthaow-band
filtered noise. The mean frequency and excitatioargy for all the models are the same, assumingtiiese are basic
parameters for the response of the oscillator. fEiselting probability densities in the state spslbew that the chaotic
attractor is very stable for the different kindspefturbations. Also, a new conditional path inéign method is described,
which is shown to be robust and accurate whileaR& time is kept at a minimum.
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Introduction method developed by Naess and described i.e. jraf]
with different limitations. The first is based om &ea
described in [8], where moment equations are solgag
the Gaussian closure technique to estimate thesitiam
probability density (TPD) using fairly long timeegis. The
TPD multiplied with the PDF of the previous timestis
then integrated using a Gauss-Legendre interpolatio
scheme, though with only two sub-intervals in eactl
point. The longer time steps and direct evaluatiérthe
PDF in the pre-defined grid points is computercéfit, at
least for two-dimensional problems. The idea of $¢ais,

as will be discussed below, to take shorter tirapsstand use

a time discretization scheme where the noise Hawan
distribution and only appear in one variable of the
discretized system of one-dimensional SDEs. Thisires

an efficient and accurate interpolation method otrex
density integrated over, but is more robust to G@ussian
long-term TPDs which occur in strongly nonlineasteyns.
One important remark to the method presented is thi
paper, is that it is a very direct implementati@ome
methods have been proposed for solving or studying
nonlinear SDEs subjected to narrow-band randontatiari
involves the quasi-static method [9], stochastieraging
[10], equivalent linearization [11,12] and digisinulations
[13], just to mention a few. These requires moreived
analytical computations or adjustments before arestart
simulations of the systems.

A few papers have been published the last yeais wi
studies of nonlinear or chaotic systems underrfadance
of noise - or other kinds of perturbations, andaaety of
phenomena has been discovered. There are howewgr m
ways noise can be introduced, and very little reenbdone
to look at differences between the response undeous
noise models.

The aim of this paper is to show some of the pdiigb
of using path integration for systems where theséds
filtered, increasing the dimensionality of the dewb to
four, when a state-space variable is an angle.oAgh the
systems considered have some very basic propdrties
common, the notion of convergence and how thecitira
finally appears are very different for the differazases.
This paper also extends previous work [1,2] where
single-degree of freedom ODE with chaotic respoisse
studied by the addition of noise using path intégra

The Duffing oscillator has been studied extensiviely
many years because of its interesting dynamics twdb
with its simplicity, and it is still recognized
that the Duffing class of oscillators plays a cahtmole
among harmonically excited systems that exhibitotiba
behaviour [3]. Parameter ranges for different $tmec
levels has been mapped quite detailed, e.g. inajd], the
Duffing model is also used to model more complidate
structures of coupled nonlinear oscillators [5]. &
deterministic single-degree-of-freedom oscillaternnore
understood, the interest is turned to stochastideisoand
higher-dimensional problems.

Path integration (PI) is one tool for analyzingteyss of
SDEs. A Duffing oscillator with additive noise wsisidied
using Pl in [6]. Their method is very different fnothe

System description

A nonlinear single-degree-of-freedom (SDOF) system
subject to periodic excitation is the basis fos thhalysis.
This system is a Duffing oscillator where the rewm
processX(t) satisfies the following equation
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pre-set phase. In a realization of the systemrangom de-
lay compared to that phase at a specific time wonddte
the damping effect try to "speed up” the angle, dinel
more the angle is ahead of the phase due to thioman

whereF(t) is the stochastic excitation, with some Specmcfluctuations, the larger the probability is for domting

properties. The motivation for this study is
corresponding deterministic ODE witf{t) = (2/5) cosQt),
which has been studied extensively in [14] for vasi
frequencies.

This system is separated into displacemahtand
velocity V as
X, =V,

. 1 1 8
Vi=-——V,+=X,—— 3

t o5 t 5 t 15 ( )

The four kinds of excitation studied here, denoged
through D are

)

XE+F(1).

2

Fa(t) = Zcos(Qt)+ 7aN;. 4
2 .

Fg(t) = £ COS(QU+ D),y = —kg®y + 75N, , (5)
2 .

FC(t)=€COS(®t),®t =Q+ycNg, (6)

Fo(t) = Z,Z, + kpQZ, + Q?Z, = ypN,. 7)

Here, N, is the standard zero-mean white noise process |

the o wer frequencies. In case C, the filter does nberit this

kind of memory. The angle can be seen as a stazéand
mean Brownian motion on a circle superimposed on a
fixed rotation, or a Brownian motion on the cireléth a
mean angular velocity, or say drif2, As the variance of the
Brownian motion on the real line is increasing withe, the
distribution on the circle converges towards a amif
distribution, which means that the phase for sysiamter a
long time is impossible to predict with any accyram
contrast to systenB. However, the value oB is the
current phase value.

The spectrum of ¢ in Equation 6 is, according to [15],

_12/9%75(Q% +0® + 75 14)

Z(Qz—a)2+7/é/4)2+a)2}/é .

S(w) (12)

This also shows the fairly obvious result that — 0 gives

harmonic excitation.

The fourth filter, D, is an oscillator that alsawgs a mean
frequencyQ. As in case C, the phase will be distributed over
the joint PDF, but can be retained from the valoEshe
two last state variables. Here, the amplitude walilo be

Gaussian white noise, also described as the form heavily affected by the noise. The output of admélter

derivative of a standard one-dimensional Browniartiom.
This process has uncorrelated increméifitéN...] = d(z),
whered(*) is a Dirac measure at zero.

As in equation 2, the filter in case D will be $piito
two first-order SDEs by introducing the filter velty W =

Z.

From here on,Y will be the vector of state space
variables, which for the four cases read

Y, =[XV]" € R? (8)
Y =[X,V,0]" € R® (9)
Yo =[X,V,0]" e R?xS (10)
Yp =[X,V,ZW]" ¢ R* (11)

HereSdenotes the circle; the real line modufo 2

with Gaussian noise is Gaussian, so the forcingtspa is
clearly different from the sinusoidal in the thf&st cases.

It is known that the purely deterministic systemthwi
harmonic forcing,y, =0 in Equation (4), gives rise to a

chaotic attractor. With all the noise models, iteipected
that the response should be similar to this atiraotore so
for noise with low intensity. As the noise makes
probability density, i.e. a surface, some of tme fstructure
of the chaotic attractor must disappear, like aclsastic
blanket” is thrown over the attractor.

To be a relevant comparison, approximately the same
amplitude should be delivered from the stochasticifg
models. This is clearly a question of definitiorg.evould
the addition of zero-mean noise in case A give dditian
in energy and mean amplitude, but a time averagenar
the peaks would give the correct amplitude. Foesd3
and C, the amplitude is fixed, but the frequenckiatian
would give a slight increase in energy to the systil the

a

The differences between the two three-dimensionqast case D, a choice has to be made, as the foijest
systems B and C require a comment. Both are modeq asi-harmonic without a maximum amplitude. Hefe t

where there is a perturbation in the frequency lof t
forcing, while preserving the mean angular veloeitgund
Q. In case B, the system is almost locked to a fixease
at every timet, perturbed by®d. Although @ is strictly an
angle, the noise variance is set small enough that
perturbation is much less than. By this, it is reasonable
to model this variable and the Brownian motion asna-
dimensional process on the real line. This alsurssthat
the forcing cannot stay a full period behind orahef the
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variance was chosen as the reference. The variaref
the system D is from equation (7)3/(2Q%,). The
variance of the deterministic forcing/82cos t) is 2/25. If
these two are set equal to each other, a given idgrkp
implies a noise leve}3 = 40% /25). This is equivalent
to scaling the forcing in equation (2). As the dargpand

noise intensity goes to zero, the respandecomes more
and more harmonic, as shown in Figure 1.
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Fig. 1. Four realizations of the two-dimensional filter thvi
dampingkp varying from 0.1 down to 0.0001, and noise level
chosen correspondingly

The concept of convergence for SDEs driven b
harmonic excitation has been discussed in [2].tRertwo
first excitation modelsA and B, the response is directly
depending on the value of the timeSince the damping is
positive, it can be assumed that the density besom
periodic after transients have died out, and thégdewill
be 2/Q. Existence and uniqueness of such a periodi
attractor for the response PDF is difficult to profor a
nonlinear system. However, if a PDF at timet, is found
to be periodic with perio®zn/Q, then the densityf ¥
obtained at timd; = t, + 27/Q also has the same period.
The average over all the obtained PDRg,&t...,t, tj =t; +
+ 27j/Q must then have periodrZ2.

For the third and fourth cases, there is no exgiicie
dependence; the system is autonomous, and a station
distribution could exist.

The Path Integration M ethod

The vector SDE for the n-dimensional state spactove
is

Y(t) = miY(t)] + bé(t) (13)

Let pW(y, ) denote the PDF of at timet. To solve the SDE
(13), the PI technique is used. It is based on tdtel
probability law, which reads

B = [ - ] PO VOOP (Y )y

—00 —00

(14)

This means that for each poiptthe value of the PDF
at timet can be calculated as an integral based on tt
previous PDF at timé = t - At, if the path between the
pointsy andy' in the state space can be calculated. Tim
can therefore be discretized with constant timesste
using the fourth order Runge-Kutta scheme (RK4).

The integral in Equation (14) requires the (incrata§
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transition probability density (TPD). For a suféatly
smallAt, this is a degenerate Gaussian distribution
n-1
p(y,t|y,t) = _Hlé(yi —¥i — i (Y)At)-
iI=

(15)

' ' 2
exp(— (yn ~—Yn— rn(y )At)

20°At )

2752 At

wherer;(y"At,j = 1, 2,...,nare the RK4 increments fgr, v,
to y,, respectively. That isyy has been replaced Ibyin the
discretized version of the SDE (13). Note that tlue¢he
occurrence of the delta functions in the expreséimrthe
TPD p(y,ty',t) in equation (15), the integrals in equation
(14) will be reduced to a single integral, cf. [This is a
significant remark, especially for the four-dimeorsl
problem. An integral over all the state space \deis
which would appear with a higher order time-diszetton
of the SDE or the use of moment equations, woulsdrg
time consuming.

To evaluate the PDF at tim&, a cubic B-spline
interpolation [16] is used, made especially as @sde
product over the state space. This is an efficidoice, as
the spline coefficients of a surface is represettgdhe
spline coefficients in one direction of the spline
coefficients in the second direction, and the valfia two-
dimensional B-spline basis function is the prodofcthe
corresponding basis functions in the two directiohkis
argument could similarly be extended to higher
dimensions. As will be discussed below, interpagtn a
conditional density makes linear interpolation gtable
for some systems.

For the results obtained in this paper, a unifomud g
has been used, which leads to splines with periodic
blending functions. For all the systems, the POFof to
zero when one of the state space variables gdisisnfly
far from the origin. The simplest endpoint conditio
numerically is to set the coefficient to zero fdr lzasis
functions with the peak outside the computation diom
This also leads to an interpolant that smoothlysgoezero
at the boundary of the domain, which seems reaseiiab
the systems studied here. The system to be sotveddh
state space variable is then

4 1 0 00 ¢ | [ o]

1 4 1 0 0| vy
(0 1 4 0 0| ¢ |_| vs | (16)
6|: . - P :

0 0 O 4 1|cyy| |ona

0 0 0 1 4]|cy | [on]

where the vectord],...,a]" is the spline coefficients and
[v1,....n] " contains the PDF values.

The splines in case C have a bit different propseytas
the state space includ&sIn the discretized space tl@e

543

2008 DECEMBER VOLUME 10,IssuUE4, ISSN1392-8716



414.A NUMERICAL STUDY OF THE EXISTENCE AND STABILITY OFSOME CHAOTIC ATTRACTORS BY PATH INTEGRATIONA. NAESS™, E. M0?®

variable has the same number of basis splines aois las
there are values to interpolate, as the splineficoaits are
fully determined under the periodic endpoint coiodié of
the space. The spline matrix system to be invasted

41 0 - 01 ¢ | [ v |
1 4 1 -0 0| ¢ vy
1014'-.oo%=03' a7
6l .o | :
0 0 0 . 4 1fcyy| |vona
1 0 O 1 4] cy | [ on]

So the only change is in the upper right and loleér
corner of the matrix. In any case, the spline goiefiit
vector is found by one initial LU-decomposition tife
matrices above, and back substitution at every $itep.

The chaotic attractor of the deterministic systen

described above is a complicated structure in tldiee

response of andW respectively.

The question is whether this knowledge could be
utilized to reduce both the grid resolution and fhe
terpolation cost. A proposed solution is to consitiee
conditional densitie§(x,0| ¢) andf(x,v|zw) for these two
cases respectively, and just interpolate lineary the
conditional variables. This will work well if theoaditional
densityf( ¢ |x, v) for fixed x, v has a sufficiently similar

shape td(¢) in case B, and similarly for case D.
Let us go through the procedure for case B in Hetai

Assume that the PDfy(y) is already calculated in every
grid pointyx,m and denote this for short Hyy). Write

fiXo | é m) = filvim /f(4 ) for every grid point. For each
fixed m, representf; by the cubic spline interpolant
In(X,0) = (l4xf)(X,0] ¢ m). FOr each point in the integration
domain the density is evaluated as

fix,o.¢) = [(1 - Angn(X,0) + AnGma(X,0)] f(¢), where
Im=Am(@) = (¢ - d (P me1- ¢ m), andmis chosen such

mensionsx, X or v, and time or phase angle. For the twathat ¢ < ¢ < @ .

non-autonomous systems A and B, the latter varigble
represented by the time steps, and hence the agcur:

depends on the size of the time step and the tieppimg

In case D, the method is the same, except more in
fi (X.l), Z w) = [(1_ ﬂm)(l_ ﬂ’n)gm,n(xi U) +

method. For the two cases C and D, however, the gri

needs to be sufficiently dense in all dimensionsde the
fine structure of the system. That is, in case @ne, the

phase angle, is a state space variable, it carogdarded
as less important than the two first, even if itl wibt be

shown in the main results. This is basically irextjve of

the order of the interpolation scheme, as botheali and a
cubic B-spline interpolant will smear out the attma’s

fine structure.

Conditional Path Integration

+)Vm(1_ )Vn)ngr],n(Xv U) + (1_ )Vm)lngm,nﬂ(xv U) + (18)

+AmAnGmen1 (X V)] T (2 @).

A challenge with this fourth four-dimensional systés that
the filter has a transient time, which is very Idiog low
noise levels. The main attempt to reduce this isthyting

with the correct marginal density #and Z .

A final remark on conditional Pl is that the prooesl
could also work for systems where the marginal itled
the filter variables is unknown or not stationaag this

With the increase of computer power, also systefns (PDF can also be found for each time step with fair

higher dimensions can be studied. However, mosk war

path integration deals with one- or two-dimensiona

systems. The main obstacle and challenge with the
method is the interpolation in many dimensions aoise it

requires a lot of programming, and it is the boitlek for

the CPU-time. An additional pitfall is that in high

dimensions the accuracy of the interpolation isdohan

in one-dimensional systems.

For case B, the stationary density of theprocess is
Gaussian with densityf () = Cexp(—kgx?/73), i.e. zero

mean and variancey3/2kg. (C is just the constant

scaling). The marginal PDF df from X, V,® must also be
the same Gaussian distribution, as the three-diowesls
system only has introduced "auxiliary” variabl¥sand V
and then they are integrated out for the margimatase
D, the joint stationary - and marginal - PDF DM\ is
bivariate Gaussian with densityf (z w) = C exp(-kpQ/

173[Q%2% + w?]) . That is, zero-mean, zero covariance,

and variances y3 /(20%p) and 3 /(20ky) for the
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accuracy using the Pl method.

Numerical solution for response PDF by the Pl method

A Poincare section of the chaotic attractor obihifoer
the deterministic system, case A wifh =0 in Equation

(4) is shown in Figure 2. This is a well studiechmple,
usingQ = 0.32, and this choice has been made for all the
simulations with results shown in this paper. Tamgling
time is27k/Q, k = 1,2,..., i.e. after every full period of the
harmonic forcing.

Snapshots of the PDF of the additive noise model A,
Equation (4), after 30 periods are shown in Figug¢s 8,
for experiments with varying amount of noise. As
expected, the higher noise levels give less fimecgire
and more spreading of the PDF. There is hardly any
difference between the estimated response for wee t
lowest noise levels. This could indicate that foege
results, at least for the lowest noise level, titerpolation
is the main source of smearing out the attractod, the
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limit of structure detail obtainable has been reacHt is

also interesting to see that the strongest pedkeatipper
left tip of the structure gradually becomes loweithw
increasing noise, while the vertical structure achx= 1.5

remains strong. Similarly, one of two peaks neardénter
of the figures gradually disappear with increasimgse,

while the other remains a maxima.

-1.5¢ R

-25 -2 15 -1 -05 0 05 1 15 2 25
Displacement

Fig. 2. Poincaré section of the chaotic attractor

Velocity

Displacement

Fig. 3. PDF of the response of the 2D system, additiveeaiith
v =0.005 at time 6@/Q, i.e. 30 full periods from the initial

distribution

05

Velocity

-0.a1

Displacement

Fig. 4. PDF of the response of the 2D system, additiveenatith
75 =0.010 at time 6@/Q, i.e. 30 full periods from the initial
distribution

12
1 -
1
0.5t
0.8
=
g
= Bp 0.6
-0.5F 0.4
0.2
_1 k=
0 0.5 1 1.5 ,

Displacement

Fig. 5. PDF of the response of the 2D system, additiveepaiith
7, =0.025 at time 6@/Q, i.e. 30 full periods from the initial

distribution

Velocity

Displacement

Fig. 6. PDF of the response of the 2D system, additiveaaiith
7, =0.050 at time 6@/Q, i.e. 30 full periods from the initial

distribution

Velocity

Displacement

Fig. 7. PDF of the response of the 2D system, additivee)aiith
7, =0.100 at time 6@/Q, i.e. 30 full periods from the initial

distribution
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Fig. 11. PDF of the response of the 3D system, damped fiise
the phase, withyg = 0.050 at time 6@/Q, i.e. 30 full periods

from the initial distribution

Fig. 8. PDF of the response of the 2D system, additiveeaiith
va =0.250 at time 6@/Q, i.e. 30 full periods from the initial

distribution
Similar snapshots are shown for system B in FigQres

through 13. In spite of the fact that the phasaiying and
the amplitude is constant, while case A is opppgtie

increasing noise seem to have the same effect en t 1t
system.
1.8 05
|
1.6 2
8
14 0
05 >
1.2
g 1
% . -05f
= 08
05 0.6 -1
0.4 0
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-t ] 92 Fig. 12. PDF of the response of the 3D system, damped fmise
0 g5 : 13 = the phase, withyg = 0.100 at time 6@/Q, i.e. 30 full periods

Displacement
Fig. 9. PDF of the response of the 3D system, damped noise from the initial distribution

the phase, withy, = 0.005 at time 6@/Q, i.e. 30 full periods

from the initial distribution 0.35
1L 0.3
0.25
05f ory
S 0.2
> £
3 >
g ° 0.15
0.1
70_5,
0.05
_1 F :
2
0 Displacement

1
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Fig. 13. PDF of the response of the 3D system, damped fiise

Fig. 10. PDF of the response of the 3D system, damped fmise ) . . .
the phase, withy, — 0.010 at time 6@/, i.e. 30 full periods the phase, withyg = 0.500 at time 6@/Q, i.e. 30 full periods

from the initial distribution
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from the initial distribution
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For the filtered noise version, case D, the resaitts
shown in Figures 19 to 21. Even for the low dampamg
hence low noise, one cannot see the same levedtail ds e
in the previous results. This indicates that soneraging .
process is dominant for this system much more fbathe 0%
previous cases. The location and size of the madsna i
similar to what is seen for high noise levels ie tither )
models. When studying the two Figures 192Mdt is 4
0.2
0.1
i L 0 L !
0 0.5 1 15 2
Displacement

Fig. 17. PDF of the response of the second 3D systemnfrese
in the phase, witlyc = 0.100. Number of grid points i® is 88,

while the number of grid points inandy is reduced by 2/3 to 81

Velocity

0.2

0.18

2

Displacement 0.16

Fig. 14. PDF of the response of the second 3D systemnfres
in the phase, wittyc = 0.005. Number of grid points i® is 22
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0.12

Velocity

0.1

0.08
0.06
0.04

0.02

Displacement
Fig. 18. PDF of the response of the second 3D systemnfrese
in the phase, wittyc = 0.500. Number of grid points i® is 88,

while the number of grid points inandy is reduced by 2/3 to 81

0 015 ; 1?5 ﬁ

Displacement
Fig. 15. PDF of the response of the second 3D systemnfres
in the phase, wittyc = 0.005. Number of grid points i® is 44

- - \ - 11

0.8
1t 1 E
0.8 > ] 0.6
0kl 0.8
ar 1 0.4
g 0.6
=}
$ 9 05 | L
04 5
-0.5F 02 Displacement
G5 Fig. 19. PDF of the response of the 4D system, filterecs&oi
_ ' with kp = 0.0001
-1t . 0.1
0 2 . .
Displacement quite surprising that the PDF doesn’t seem to caamgen

Fig. 16. PDF of the response of the second 3D systemnie  the damping is increased from "‘l_Oto _101, as the
in the phase, withyc = 0.050. Number of grid points i® is 88, ~ realizations of the forcing shown in Figure 1 ame s

while the number of grid points inandy is reduced by 2/3to g1 different.  Simulations were performed with a grid o
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81x81x44x45 grid points over the state space. In the Conclusion
direction, the grid was fror0.8 to Q8, i.e. twice the value

of interest, 04. The grid for thew-direction was chosen Ty slightly modified versions of the path integoat
correspondingly based on the maximal velocitg{d). As  method is presented; a conditional routine to redegu-
discussed above, the deterministic harmonic forcingme and a way to treat periodic boundary conditiwhen
corresponds to an ellipse in the o -space. With the  the yariable with noise is an angle. These methodsised
choice of computational grid, this ellipse cros&@sgrid g stydy the behaviour of a nonlinear system tescby a
lines in each direction - twice, so the interp@atiwas  parmonic motion with additive noise, two differenbdels
.expected.to be.falrly good. It is possible thaeipblation \ith slowly varying phase, and a filtered noise qas.
in four dimensions smears out the structure muchemo The PDE for the response of the system is obtained
than in the previous cases, also since just twotpan the  merically for all these excitation types, andhaitrying
ellipse actually intersects grid points. Also ndtat the  gmount of noise. The pure deterministic systemnisvin
separation between the two peaks is clearly deeteas o produce a chaotic periodic attractor, and thénnia
the noise increases, while the main shape is prSeor  cation of this attractor seems to be stable indifierent
the case with highest damping and noise, Figurevety  siochastic models, although the level of detailegar

little shape is preserved, the maxima is almostur, The paper shows that low levels of noise combined
although 'Fhe total variation is about the samm_alélgure with a dense grid gives a lot of detail or struetim the
18 and Figures 8, and not much larger than in 13fa  yesyiting PDFs. This structure becomes more spoedd
which has a clearly non-circular maximum. Howewee  gng |ess detailed as the noise level is increasdéveer
added noise model is much more similar to the 4Beca gig points are used in the interpolation. It iswh that for
than the two 3D models. This clearly indicates thatfil-  he p technique, all the variables must represebie a
tered noise model and the added noise model affect gyficiently accurate discretization technique totain a
oscillator in a very different way than the phaseyegtailed final accuracy.

perturbation for high noise values. The conditional path integration is a new method
presented here, based on the knowledge of thersaayi
distribution in some of the variables. Tlywes faster
computation time, and preserves the marginal derudit
the full PDF. At the same time, one to a large eixéxoids
the main drawback of linear interpolation in Plnmedy
consistent under-estimation of peaks, i.e. in anedh
negative curvature, and similarly over-estimatidtads.

The Path Integration technique is able to produdie f
PDFs of even four-dimensional nonlinear systemsg] an
with our interpretation, the results are reasonable
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