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Abstract: Electromyography signal can be used for biomedical applications. It is complicated in 
interpretation, so it acquires advanced methods for detection, decomposition, processing, and classification. 
The techniques of EMG signal analysis such as: filtering, wavelet transform, and modeling will be presented 
in this paper to provide efficient and effective ways of understanding the signal. A comparison study is also 
given to show performance of various EMG signal analysis methods. This paper provides researchers a good 
understanding of EMG signal and its analysis procedures. This knowledge will help to develop more flexible 
and efficient applications. 
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1. Introduction 
 

The main purpose for the interest 
electromyography (EMG) signal is clinical application. It 
is usually used clinically for the diagnosis of neurological 
and neuromuscular problems. EMG is also used in many 
types of research laboratories, including those involved in 
biomechanics, motor control, neuromuscular physiology, 
movement disorders, postural control, and physical 
therapy. EMG is controlled by nervous system and 
depends on anatomical and psychological properties of 
muscles. It is an electrical signal acquired from different 
organs. EMG is usually a function of time, described in 
terms of amplitude, frequency and phase [1,16]. The first 
recording of EMG activity was made by Marey in 1890, 
who introduced the term electromyography. Clinical use of 
surface EMG for the treatment of different disorders began 
in the 1960s. Hardyck was the first practitioner who used 
EMG [1]. In 1980s, Cram and Steger introduced a clinical 
method for scanning a variety of muscles using an EMG 
sensing device [2]. During the past 15 years, research has 
resulted in a better understanding of the properties of 
surface EMG recording. Recently a surface 
electromyography is increasingly used for recording from 
superficial muscles in clinical protocols, where 
intramuscular electrodes are used for deep muscle only [3]. 
The technology of EMG is relatively new. There are still 
limitations in detection and characterization of  EMG 
signal, estimation of the phase, acquiring exact information 
due to derivation from normality. Traditional system 

reconstruction algorithms have various limitations and 
considerable computational complexity and many show 
high variance. Recent advances in technologies of signal 
processing and mathematical models have made it to 
develop advanced EMG detection and analysis techniques 
[4,5,6,7,16,19]. So far, research and extensive efforts have 
been made in the area, developing better algorithms, 
upgrading existing methodologies, improving detection 
techniques to reduce noise, and to acquire accurate EMG 
signals. It is quite important to carry out an investigation to 
classify the actual problems of EMG signals analysis and 
justify the accepted measures. Mathematical approach 
usually include: wavelet transform, time-frequency 
approaches, Fourier transform, Wigner-Ville Distribution, 
statistical measures, and higher-order statistics. Wavelet 
transform is well suited to non-stationary signals like 
EMG. Higher-order statistical methods may be used for 
analyzing the EMG signal due to the unique properties of 
statistical methods applied to random time series.  

This paper relates to the upgrading existing 
methodologies, filtering, processing, decomposition and 
modeling of EMG signal.  
 
2. Methods 
 

There were several phases to the signal approach 
such as: data acquisition, data pre-processing, data 
modeling, data analysis and interpretation. The research 
have been done by using the system EMG. A surface 
electrode  picked up on the main groups of muscles of 
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lower limbs: the Rectus Femoris, the Vastus Lateralis, the 
Medial Hamstrings, the Lateral Gastrocnemius, and the 
Anterior Tibialis with only minimal crosstalk from 
adjacent muscles. Functional evaluation was carried out on 
20 patients with spastic diplegia (the average age 12 yr.) 
after clinical evaluation.  The demographic data of subjects 
are presented in Tab.1. 

 
 

Table 1. Demographic data of subjects (±SD) 
 

Subjects Height (cm) Weight (kg) 

Typical 168 ± 10 65 ± 8 
Spastic diplegia 162 ± 6 61 ± 5 

 
 
 The standard deviation values of the demographic data 
of each group are also given in the same table. The 
difficulties that the patients most commonly complained 
about were: climbing stairs and bending down. Gait 
abnormalities of these persons were usually treated with a 
combination of rehabilitation, orthosis, and surgery. The 
subjects were analyzed while walking barefoot along a 
straight pathway 10 m long. Patients were recruited into 
Glenrose Rehabilitation Hospital in Edmonton (laboratory 
Syncrude Centre for Motion and Balance). The motion lab 
uses Instrumented Gait Analysis to provide quantitative 
data on a subject’s joint motion, net joint rotatary forces 
and muscle activation. Raw EMG offers valuable 
information in a particularly useless form. This 
information is useful only if it can be quantified [17]. 
Various signal-processing methods are applied on raw 
EMG to achieve the accurate and actual EMG signal. This 
section gives a review on EMG signal processing using the 
various methods. 
 
3. Results 
3.1. Filtering of EMG signal by using hardware filter 
 

Filtering of the signal is important. It is used to 
focus on a narrow band of electrical energy that is of 
interest to us rather than all the electrical signals that the 
sensors will pick up. Electromyography (EMG) signals are 
usually affected by noise, which may be generated by 
different sources, such as the hardware employed for signal 
amplification and digitization, the movement of cables 
during data collection and the activity of motor units 
distant from the detection point. There are many types of 
filters and several methods to determine the “optimal” cut-
off frequency. Types of filters include the classic 
Butterworth, Fourier series, Kalman, cubic and quintic 
spline, and finite impulse response (FIR) filters. Filter 
equations, such as in the Butterworth filter, are frequently 
recursive. Current values depend on the previous values, 
which introduces a phase lag into the signal. These filters 
are, therefore, applied in both forward and reverse 
directions in order to remove the phase lag. Some useful 

procedures aimed at minimizing the influence of noise on 
the detected signal are highlighted by Cram et al. [2]. In 
practice, the collected signal may still be corrupted by 
noise. If the type of noise present in a signal is known a 
priori then the Wiener filter, may be applied to attenuate its 
presence [8]. The main disadvantage of this approach is 
that in many practical applications the noise is unknown. 
Design of application specific integrated circuit for the 
biomedical instrument has become quite important 
recently. Hardware chips have also been designed to filter 
EMG signal to achieve the accurate signal for the 
prosthetic arm control and other applications like human 
computer interactions [9]. This paper introduces a 
procedure for filtering electromyography signals. There is 
presented the polynomial filter based on microprocessor 
Zilog 8 [10]. The filter consists of the following modules: 
AC preamplifier, oscillator, CA preamplifier, and 
microprocessor Zilog 8 (Z8). Communication with the 
filter is established via the serial port (RS232).  The 
schematic of data filtering is presented in Fig.1.  

 

Fig. 1. Schematic of data filtering by using microprocessor   
Zilog 8 
 

The velocity of data transmission is around 9600 
bps. The raw information from the subject is a collection of 
positive and negative electrical signals, their frequency  
and their amplitude give us information on the contraction 
or rest state of the muscle. Figure 2 shows output of the 
filter algorithm.  

 

 
Fig. 2. EMG signal after filtering 
 

Results obtained from the analysis of synthetic 
and experimental EMG signals show that the method of 
filtering can be successfully and easily applied in practice 
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to attenuation of background activity in EMG signal. The 
main advantages of using the filter are that it is easy to 
implement and fast in real-time applications. 

The maximization of the quality of EMG signal 
can be done by the following ways: the noisy signal should 
contain the highest amount of information from EMG 
signal as possible and minimum amount of noise 
contamination. 
 
3.2. Wavelet transform 
 

Various signal-processing methods are applied on 
raw EMG to achieve the accurate and actual EMG signal. 
Attempts to gain quantitative information from EMG 
recordings have been extensively investigated when signal 
is represented as function of time. Both the time and 
frequency domain approaches have been attempted in the 
past. I will propose the wavelet transform (WT) as an 
efficient mathematical tool for local analysis of non-
stationary and fast transient signal. One of the main 
properties of wavelet transform is that it can be 
implemented by means of a discrete time filter bank. The 
WT represents a very suitable method for the classification 
of EMG signals [12,27]. It is an alternative to other time 
frequency representations with the advantage of being 
linear, yielding a multiresolution representation and not 
being affected by crossterms [18,20,21,22,23,24]. Under 
certain conditions, the EMG signal will be considered as 
the sum of scaled delayed versions of a single prototype. 
The WT is described by Eqn.1 [25,26]: 

 

∫
+∞

∞−

⋅= )1(),,()(),( dttpositionscaletfpositionscaleC ψ  

 
where: 
 
C (scale, position) – wavelet coefficient, 
 
f(t) – signal, 
 
ψ(scale, position) – wavelet function. 
 
 

WT will be also used to analyze signals at 
different resolution levels. It will be analyzed the 
relationship between wavelet coefficients and the time-
frequency plane.   The DWT is a transformation of the 
original temporal signal into a wavelet basis space. The 
time-frequency wavelet representation is performed by 
repeatedly filtering the signal with a pair of filters that cut 
the frequency domain in the middle. Specifically, the DWT 
decomposes a signal into an approximation signal and a 
detail signal. The approximation signal is subsequently 
divided into new approximation and detail signals. This 
process is carried out iteratively producing a set of 
approximation signals at different detail levels (scales) and 
a final gross approximation of the signal. This can be 
expressed as follows (Fig.3-4):  

 
Fig. 3. Discrete wavelet transform: S – signal; HiFD – high pass 
filter; LoFD – low pass filter; cA – wavelet coefficients for high 
scale; cD – wavelet coefficients for low scale 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Inverse discrete wavelet transform: S – signal; HiFR – 
high pass filter; LoFR – low pass filter; cD – wavelet coefficients 
for low scale; cA – wavelet coefficients for high scale  
 
 

The A and D sequences obtained as the result of 
IDWT are still massive in terms of the number of samples, 
which contributes to large dimensionality of feature space. 
Besides, the sequences have a high noise component 
inherited from the original EMG signal (Fig.5-6).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. The reconstruction of detailed sequence; 0 – the signal is 
equal 0; HiFR – high pass filter; LoFR – low pass filter; cD – 
wavelet coefficients for low scale; D- detailed sequence 
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Fig. 6. The reconstruction of approximation sequence; 0 – the 
signal is equal 0; HiFR – high pass filter; LoFR – low pass filter; 
cA – wavelet coefficients for high scale; A- approximation 
sequence 
 

The scales c were chosen in conjunction with the 
sampling rate to give wavelets with a period in the 3-20 ms 
range. This range was reported for single human muscle 
action potentials.  The magnitude of C(a,d) was a measure 
of the matching of the original with the 'db4' scaled and 
translated wavelet. Results of the decomposition are shown 
in figure 7. Analysis was performed using the Matlab 6 
Wavelet Toolbox.  The level of decomposition is described 
by numbers close the signals. The sequences have different 
value of level and frequency. The signal a5 has high scale 
and low frequency. The detailed sequences (d1- d5) have 
the lower scale than a5. The biggest scale has signal d5, and 
the lowest scale has signal d1. Those are the signals with 
the highest frequency.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 7. Wavelet decomposition 

3.3. Regression model of EMG signal 
 

In 1975, Graupe and Cline first introduced the 
autoregressive moving average model (ARMA) to 
represent EMG signals. The empirical result of Graupe and 
Cline shows that the EMG could be considered stationary 
over sufficiently short time intervals [1]. Sherif has 
emphasized the non-stationary nature of the EMG and used 
an autoregression, integrated moving average model 
(ARIMA). He characterized the non-stationary nature of 
the EMG during different phase of muscle activity [5]. 
Since 1983, Doerschuk has approached a problem similar 
to Graupe and Cline, namely control of prosthetic devices 
from EMG signals, by autoregressive models of multiple 
EMG signals [6]. In 1986, Zhou represented the surface 
EMG as an autoregressive model with his delayed 
intramuscular EMG signal as the input [7]. The model, 
referred to as “tissue filter,” relate the intramuscular EMG 
signal waveform to the surface EMG. Assuming that 
prototypes of intramuscular and surface EMG signals are 
available, the parameters of the time series model that 
transforms the intramuscular signals to the surface signals 
are identified. The identified model is then used in 
estimating the intramuscular signal from the surface signal. 
This model is illustrated using real EMG waveforms. 
Hefftner in 1988 evaluated the previous models and 
selected an autoregressive model for EMG signature 
discrimination because of its computational speed [13]. 
Graupe in 1989 proposed a non-stationary identifier of 
time-varying autoregressive parameters [9]. In 1992, Tohru 
considered that the more precise model such as ARMA or 
ARIMA was not necessary for dynamic muscle 
movements [14]. The computation cost of ARIMA model 
is high, and the determination of the model order is 
complex and sometimes difficult. AR model was chosen 
by Tohru mainly because of its computational cost which 
is a problem in the simulation. Their investigation was 
based on AR model parameters computed by quasi-
stationary processing. The regressive (time series model) 
has been used to study EMG signal. A surface electrode 
were picked up EMG activity from all the active muscles 
in its vicinity, while the intramuscular EMG is highly 
sensitive, with only minimal crosstalk from adjacent 
muscles. Thus, to combine convenience and accuracy there 
is a great need to develop a technique for estimating 
intramuscular EMG and their spectral properties from 
surface measurement. Researchers have represented sEMG 
signal as an AR model with the delayed intramuscular 
EMG as the input. Model studies have been performed to 
characterize the human gait of typical subjects and patients 
with lower limbs deformities [11,15].  

Presented by author approach of muscle activity is 
based on regression function (Eqn.2).  

aunn ⋅=Υ
Λ

, n=1,2,…,N,  (2) 

where: 
Λ
Yn – output data of model (EMG signal in n instant), 
un –  input data of model (EMG signal in n instants before), 

A 
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a – unknown model coefficients, 

N – sample size. 
 

The matrix a  is determined by Eqn. 3-4: 

( ) ,
1

YUUUa TT ⋅⋅⋅=
−

           (3) 

where: 
U - the matrix of input data, 

Y  - the vector of output data, 

[ ]Tkaaaa …21= , k=1,2,…,K, (4) 

where: 
K – the coefficient size. 
 
The regression model presents the relationship between the 
muscle activity in n instant and muscle activity in n 
instants before. Below is presented the method of  model 
identification.  

 
 
Fig. 8. Method of  model identification: un – input data, Y– output 
data, a– unknown model coefficients, ε - noise 
 

The best results were obtained for approach where 
the EMG signal in n instant depends on EMG signal in 
three instants before. The relative error was around 2%. 

The vector Y and matrix U  are expressed as Eqn.5: 

 
 

 , (5) 
 
 

(5) 
 
 
 
 
where: 

U - the matrix of input data, 

Y - the vector of output data. 
 

To study the performance of the regression model 
of muscle activity, several realizations of a number process 
models were generated and the model coefficients were 
estimated. The regression model coefficients for patients 
with spastic diplegia are presented in Table 2. The standard 
deviation values of the model coefficients for muscles are 

also given in the same table.   EMG model coefficients of 
patients with spastic diplegia were compared to the EMG 
model coefficients of typical subjects [10]. 
 

 
Table 2. Regression model  coefficients of patients with spastic 

diplegia (±SD) 
 

Muscles a1 a2 a3 

 

Medial 
Hamstrings 

1,43±0,2 -0,93±0,13 0,42±0,08 

Rectus 
Femoris 

1,62±0,25 -1,15±0,15 0,55±0,13 

Tibialis 
Anterior 

1,27±0,11 -0,87±0,2 0,27±0,05 

Vastus 
Lateralis 

1,41±0,21 -0,95±0,18 0,23±0,05 

Lateral 
Gastrocnemius 

1,36±0,15 -0,76±0,15 0,35±0,07 

 
 

The value of model coefficient a1 and a3 for the 
Medial Hamstrings and the Tibialis Anterior is higher for 
subjects with spastic diplegia. For the Vastus Lateralis, the 
Rectus Femoris, and  the Lateral Gastrocnemius  the value 
of model coefficients a1 and a3 are higher for typical 
subjects. Analysis of model coefficients shows, that there 
is no significant difference of coefficient  a2  in each group. 
Statistical analysis was performed on the whole population 
of typical subjects, those with spastic diplegia. A 
characterization of the difference was obtained by 
computing the following parameters such as: the standard 
deviation, correlation, and variance. 

 
 
Table 3. Statistical parameters of the regression model (±SD) 
 

Groups Correlation Variance 

Typical subjects  0.91±0.04 0,005±0,001 
Spastic diplegia 0.92±0.06 0,007±0,002 

 
 
 The indicators show that proposed model is 
correct. The major advantage of mathematical modeling is 
description a signal just by few coefficients. The proposed 
method can be applied during clinical diagnosis, but it 
needs to determine model coefficients for different 
pathologies. 
 
4. Conclusion 
 
 Electromyography is a good tool for the 
documentation of muscle activity. EMG signal carries 
valuable information regarding the nerve system. Signal 
conditioning and signal processing are very critical to 
obtain a reliable results from surface EMG. Although, 
many literatures have already suggested various techniques 
to improve the quality of acquired signals, the noisy nature 
of EMG signals is still harness for enlarging the 























====

−−−−−−−− kN1NN

234

123

012

YYY

YYY

YYY

YYY

U

⋮⋮⋮























====

N

5

4

3

Y

Y

Y

Y

Y

⋮

ε 

Real data 

 

a=? 

u1 

u2 

u3 

un 

Y  

â=? 

u1 

u2 

u3 

un 

Mode

Y 



 
419. DIFFERENT TECHNIQUES FOR EMG SIGNAL PROCESSING. J.  PAUK  

 

 
 VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING.  2008  DECEMBER, VOLUME 10, ISSUE 4, ISSN 1392-8716 

 

576

application of EMG for various clinical studies. Hence, 
still there is an eminent request for novel techniques that 
address improving the quality of measured EMG signals. 
Therefore, this topic is highly significant and interesting 
for most investigators and clinicians in field of movement 
analysis and kinesiology. So the aim of this paper was to 
give information about methodology to analyze the signal. 
Techniques for EMG signal such as: filtering, 
decomposition process, and modeling were discussed in 
this paper. It is very likely that applying EMG data helps to 
define gait pathology in a large number of patients. With 
the help of advanced computing software, mathematical 
modeling has proved to be convenient and powerful 
method for monitoring human gait. The advantage of 
proposed model is possibilities to classify human gait to 
different groups of pathology. The considerations 
introduce an incomplete analysis of spacious problems 
connected with classification and improvement of 
apparatus of human gait, which is the result of the limited 
number of collected data.  
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