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Abstract. The solution of the problem of hydrostatic compression of an elastomeric tube is 
based on the nonlinear theory of elasticity for incompressible materials employing the method 
of Ritz variations and the ANSYS finite-element solutions. The main purpose of the 
investigations is to obtain the loading diagrams in the total range of elastomeric tube 
thicknesses, without any kinematical and physical restrictions on the behavior of elastomer, 
e.g., neglecting the Kirchhoff and Timoshenko hypotheses or Hooke's law.  
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Introduction 
 
  A tube made of an elastomer of arbitrary thickness under the action of hydrostatic 
pressure is considered. Due to the highly elastic material, such a tube can be deformed without 
failure up to the total loss of its inner cavity. These tubes can be used in a wide range of 
applications, for example, as elements of resonance sound-proof coverings of transportation 
facilities. In the present study, these objects are investigated from the viewpoint of static 
deformation by an external pressure in the region of high strains. The circular symmetry of the 
tube and load leads to two deformation stages. The precritical stage is characterized by the 
symmetric form of compression with a simultaneous increase in the load and deformation (the 
Lame problem). After reaching the critical loading value, the deformation acquires an elliptical 
form. Depending on the relative thickness of the tube, variants of growing or falling loading 
diagrams can be realized. The aim of this study is to obtain the loading diagrams in the total 
range of elastomeric tube thicknesses, without any kinematical and physical restrictions on the 
behavior of elastomer, e.g., without Kirchhoff and Timoshenko hypotheses or Hooke's law. 
Thus, the problem is solved in the general statement of the nonlinear theory of elasticity. The 
resolving equations in a cylindrical coordinate system for the case of plane deformation will be 
presented below. The solution obtained is compared with the known results from the shell 
theory and linear elasticity theory, so that to estimate the bounds of their applicability. Along 
with the semi-analytical method, this problem is examined within the framework of the finite-
element method (ANSYS program) for different types of shell elements and in the statement of 
the problem of plane deformation for a two-dimensional element.  

L. Leybenzon (1913) [1] was the first to consider the problem of compression of a long 
circular tube by external pressure (plane deformation) in the classical statement of the 
(geometrically and physically) linear theory of elasticity. Later, this problem was analyzed by S. 
Lubkin (1957) [2] and E. Zeldich (1978) without essential differences in the statements. In each 
study, the finite dependence for the value of critical pressure was compared with the Bryan 
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formula from the theory of thin shells [3]. The problem of pressure compression of a circular 
cylindrical tube was also investigated in the nonlinear statement based on the method of 
superposing small deformations on finite ones [4, 5, 6]. In that case, the existence of an 
analytical solution for the precritical deformed state (the Lame problem) made it possible to 
deduce a system of differential equations for increments, which was further analyzed 
numerically. The similar scheme of solution was employed by C. Sensenig (1964) [7] for a 
semi-linear John material, where the effect of Poisson’s ratio on the magnitude of critical 
pressure was examined. In addition, it was shown that the transformation from the hollow 
cylinder to a solid one with particular features (zero radial stresses) retained on the cylinder axis 
led to the finite value of critical pressure. This result principally differs from the stable behavior 
of solid (compressible and incompressible) bodies at any magnitude of hydrostatic pressure 
proved by L. Zubov [8] and A. Guz’ [9]. An approach, similar to that described in [7], was 
developed in later studies [10, 11, 12] for a neo-Hookean material. Among these studies, of 
particular interest is the investigation of A. Wang and A. Ertepinar (1972) [12], where the 
problem in hand was considered more thoroughly. In particular, the numerical results were 
compared with the experiments performed by the authors over the range of cylinder wall 
thicknesses up to 0.5 of the outside radius, where a good agreement with the Bryan formula was 
observed. D. Haughton and R. Ogden (1979) [13, 14] discussed the relations between the 
magnitude of critical load and the type of elastic potential of deformations. It was demonstrated 
that the neo-Hookean potential does not allow one to obtain an extremum on the loading 
diagram experimentally observed in [15, 16].  

The problem of compression of a long circular tube under external pressure can be 
solved within the framework of the finite-element method. A number of universal programs, 
such as ANSYS, NASTRAN, ABAQUS, etc. contain elements for large deformations and 
rotations suitable for calculating elastomers. Unfortunately, the present authors are unaware of 
such solutions. Therefore, in what follows, we present our own results of calculating the 
problem in view using the ANSYS program for different types of shell elements.  
 
Solution Algorithm Based on the Ritz Method 
  

The solution of the elasticity problem of a circular tube under external pressure is 
based on the principle of stationarity of the total potential energy for small deformations. The 
functional of the internal potential energy Пε, associated with the finite deformations of an 
ideally elastic isotropic incompressible body, is written in the form of the integral of 
undeformed volume V0: 
 

Пε = µ ∫∫∫ [W + S (Θ - 1)] dV,   (1) 
 

where µ is the shear modulus at small strains, W is the function of a specific internal potential 
energy (elastic potential), and Θ = V / V0 is the relative change in the volume of the elastic body 
with the Lagrangian multiplier S.  

The functional of the hydrostatic pressure Пq is determined from the purely 
geometrical representation, namely: 
 

Пq = q ∆V,     (2) 
 

where ∆V is the volume enclosed between the deformed and undeformed positions of the 
loaded surface.  

Now, applying the procedure of Ritz method to the functional of the total potential 
energy П = Пε + Пq, we can pass from the variation condition of stationarity δП = 0 to the 
system of nonlinear algebraic equations:  
 

F (β, q) = ∂ П (β, q) / ∂ β = 0,  (3) 
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where β is the vector of unknown coefficients in the approximation of displacements and the 
hydrostatic pressure function S. 

Let us reduce the solution of Eqs. (3) to a step procedure of continuation with respect 
to the natural parameter of loading q, with an iteration refinement at each step according to the 
scheme of the Newton–Kantorovich method: 
 

q = qk,   βk
0 = βk-1, 

 

J (βk) * ∆ βk
m+1 = - F (βk

m+1),     (4)   
βk

m+1 = βk
m + ∆ βk

m+1, 
 

where k is the step number; m is the iteration number; * is the symbol of scalar product; ∆βk is 
an increment of the vector of sought-for coefficients; J (β) = {∂ П2 (β) / ∂ βi ∂ βj} is the Jacobi 
matrix of second derivatives. 

After several solution steps with respect to the load q, which is necessary for 
determining the initial approximation, the parameter of continuation is changed. In this case, the 
previous continuation parameter joins the number of varied quantities, namely α = {β, q}. 
System (3) is supplemented with a new equation suggested in [17], which links the generalized 
parameter of continuation t with the vector of unknown α:  
 

F (β, q) = 0,      (5) 
 

dαk-1 * α  - (dαk-1 * αk-1 + t )  = 0,  
 

where the expression of the total differential  dαk-1 can be given in finite differences: 
 

dαk-1=(αk-1 - αk-2 )/( (αk-1-αk-2 )*(αk-1–αk-2))
1/2. (6) 

The Jacobian of an extended system of equations (5) does not degenerate in the 
neighborhood of local extrema of the loading parameter q: 
   

J ∂F/∂q 
J0     =      (7) 
  d βT

k-1 dqk-1 

 
 
The step procedure of the solution to Eqs. (5), based on the Newton–Kantorovich 

iteration process, has the following form: 
 

αk
0 = αk-1 + t dαk-1, 

 

JR( αk
m ) * ∆ αk

m+1 = - F (αk
m ),   (8) 

 

d αk-1 * ∆ αk
m+1 = t - dαk-1* ( αk

m - αk-1 ), 

αk
m+1 = αk

m + ∆αk
m+1, where JR = {J, ∂F/∂ q}. 

 

It should be noted that Eq. (5), contrary to Eq. (3), is not symmetrical any more. 
 
Potential of Elastic Finite Deformations 
 

One of the most universal forms of introducing the function of specific internal 
potential energy (elastic potential) W is the generalized form suggested by Ogden [18]: 
 
W = ∑ γk ( λ1

ν1 + λ2
ν2 + λ3

ν3  - 3),  k= 1,2,3,  (9) 
 

where νk and γk are constants of the Ogden potential, and λi are the main elongation ratios bound 
by the condition of incompressibility λ1 λ2 λ3 = 1. 
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Practically all the known potentials used earlier for solving applied problems of 
elastomers follow from Eq. (9) as special cases (Table 1). The parameter ξ0 takes an arbitrary 
value from the interval [-1, +1]. 
 
Table1. Potentials of Elastic Finite Deformations 
 

Potential γk νk 

Treloar [ 19 ] 0.5 2 
Bartenev,  Khazanovich [20] 2.0 1 

Mooney, Rivlin [21] 
 

0.25(1+ ξ0) 
0.25(1- ξ0) 

2 
-2 

Chernykh, Shubina [22] 1+ ξ0           

1- ξ0 
1       
-1 

   
The selected potential (9) allows us to write all the necessary physical relations, for 

example, basic values of the Cauchy–Green stress tensor: 
 

σi = ∑  γk νk λi + S, k = 1,2,3.    (10) 
 

For the following calculations, we introduce the cylindrical coordinates r, φ, and z and 
the corresponding components of the displacement vector u, v, and w. The main elongation 
ratios λi can be expressed in terms of components of the displacement vector only in the 
problems on plane and axisymmetric deformations:  
 
λ1 = g1

1/2,  λ2 = g2
1/2,  λ3 = 1+ χ u / r,  

     (11) 
where  
 g1 = 0.5 (G + (G2 – 4θ )1/2), 
   
 g2  = 0.5 (G - (G2 – 4θ )1/2). 

The parameter χ takes the values 0 and 1 in the case of the plane and axisymmetric 
deformations, respectively.  

Now, we will focus our attention on the problem of plane deformation. For this case, 
we have: 

 
G = (1 + ∂u/∂r)2 + (∂v/∂r)2 + ( (v - ∂u/∂ φ)2 + 
 ( r + u + ∂v/∂ φ)2)  / r2 , 
 
θ = ( ( 1+ ∂u/∂r ) ( r + u + ∂v/∂φ ) + 
 ∂v/∂r ( v - ∂u/∂φ ) ) / r .     (12) 
 
Potential of Hydrostatic Loading 
   

The value ∆V in the expression for the functional of hydrostatic pressure (2) can be 
presented through the respective potential Q as an integral of the smooth surface R (φ, z): 
 

∆V = ∫∫ Q R dφ dz.    (13) 
 

The general expression of specific work of hydrostatic pressure (potential) in 
cylindrical coordinates for the case of large displacements and rotations can be obtained from 
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consideration of the small surface element before and after the loading. For the particular case 
of a straight round cylinder R(φ,z) = R0 and plane deformation, we can write the following 
expression: 

 

Q = u + 0.5(u(u+∂v/∂φ) + v(v-∂u/∂φ))/R0.       (14)      
  
Approximation of Displacements and the Function of Hydrostatic Pressure 
 

The region occupied by the cylindrical body is presented in the form: 
 

 r1 ≤ r ≤ r2,    φ 1 ≤ φ ≤ φ2,   z1 ≤ z ≤ z2.  
 

Let us introduce the dimensionless coordinates varying in the interval [-1, +1]: 
 

ξ = ( 2 r - r1 - r2 ) / ( r2 – r1 ), 
 

ψ = ( 2 φ - φ 1 - φ 2 ) / (φ 2 – φ 1 ),  
 

η = ( 2 z - z1 - z2 ) / (z2 – z1 ).      (15) 
 

The approximation of displacements and the hydrostatic pressure function is shown in 
the following form, with separation of variables: 

 

u = ∑ ∑ ∑A ijkTi(ξ)Φj(ψ)Tk(η),  
 

i=1..n11, j=1..n12, k=1..n13, 
 

v = ∑ ∑ ∑Bijk Ti(ξ)Φj(ψ)Tk(η), 
 
 

i=1..n21, j=1..n22, k=1..n23,  
 

w = ∑ ∑ ∑CijkTi(ξ)Φj(ψ)Tk(η), 
i=1..n31,j=1..n32,k=1..n33,   
   

S=∑∑∑DijkTi(ξ)Φj(ψ)Tk(η),   (16) 
 

i=1..n41, j=1..n42, k=1..n43, 
 

where A ijk , Bijk , Cijk, and  Dijk are unknown constants forming the earlier-introduced vector of 
unknowns α; Ti and Tk are the Chebyshev polynomials of first kind. 

Such approximation allows us to consider two classes of elastic bodies, namely 
cylindrical panels and cylindrical tubes. In the first case, for the approximation in terms of an 
angular coordinate, we can also take the Chebyshev polynomials. The fixity conditions can be 
satisfied, for example, by multiplying into the function   (1 - ψ2). In the second case, owing to 
the closed contour, we select an expansion in terms of trigonometrical functions sin(jφ) and 
cos(j φ).  

 
Imperfection of the Geometry 
 

Approximation (16) allows us to introduce the imperfection of the circular cross-
section, for example, in the form of small ellipticity:  
 

r1 = r01 f (φ), r2 = r02 f (φ), f (φ)=(1– cos2φ )-1      (17) 
 

where e is the parameter of imperfection. 
The introduction of imperfection is governed by the fact that the nonlinear solution has 

to pass through the bifurcation point, which separates the precritical and postcritical branches of 
the solution.  
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Results of Calculating an Elastomeric Tube 
 
  Let us consider the plane deformation of a circular tube with external r1 = 1 and 
internal r2 = ρ radii. The elastomeric material is regarded as an incompressible (Poisson’s ratio 
0.5) elastic material with a shear modulus µ.  

The loading diagram of a circular cylindrical tube under an external hydrostatic load 
contains three sections (Fig. 1): 

 

 
Fig. 1. Loading diagram p - τ 

 
• section ОА (precritical branch) of the axisymmetric deformation; 
• section АВ (postcritical branch), which after e appearance of a contact in the tube 

cavity; 
• section ВС, after the formation of internal contacts up to the complete vanishing of 

cavity volume. 
Here, we introduce the dimensionless load parameter p = q/µ and the dimensionless 

parameter of relative change in the volume of inner cavity τ, for the critical values of which the 
designations p* and τ* are selected. The precritical deformation is determined by the known 
solution of Lame problem : 
   
     λb  
q = ∫ ( ∂ w / ∂ λ ) / ( λ2 -1 ) d λ,      (18)  
     λa     

 

where λ is the relative multiplicity of the radial elongation: λa = λ ( ρ ) and λb = λ ( 1). The latter 
parameters are connected by the condition of incompressibility:  
 

λb
2 = 1 – ( 1 - λa

2 ) ρ2.      (19) 
 

Relation (18) for a neo-Hookean material (Treloar potential) allows for an analytical 
integration:  

 

p = q / µ = 0.5 (1/ λa
2 – 1/ λb

2 ) – ln ( λa / λb ).    (20) 
 

The load diagrams for axisymmetric loading and compression of elastomeric tubes for 
different types of elastic potential are presented in Fig. 2a,b. The influence of the type of the 
potential is clearly traced in the case of loading the tube, beginning with increase in volume by 
100%; however, in the problem of compression, practically all over the total range of 
deformations, such influence is insignificant. This allows us to restrict our calculations for the 
compression problem to the Treloar potential. 

Formula (20) makes it possible to investigate the convergence of the result, depending 
on the   number   of terms of a series in the radial direction in approximation (16). 



 
436. ELASTIC INSTABILITIES IN POLYMER TUBE OF RESONANT SOUND ABSORBERS UNDER HYDROSTATIC PRESSURE 

S. GLUHIH , A.KOVALOV, E. BARKANOV AND A. CHATE 

 

 
VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING.  2009  MARCH, VOLUME 11, ISSUE 1, ISSN 1392-8716 

98 

 
Fig. 2a. Loading diagrams: 1 – Treloar, 2 – Ogden, 3 – Bartenev- Khazanovich 

     
From the calculation results for a rather thick tube, ρ = 0.4 (Table 2), it follows that the 

four first Chebyshev polynomials in the radial direction give at least a 0.4% accuracy in the 
deformations. 
Using the results of calculating the tubes of different thickness, the relation between the 
necessary number of series terms in the radial direction and the relative thickness æ = 1 - ρ is 
constructed (Fig. 3). 
 

           
Fig. 2b. Loading diagrams: 1 – Treloar,              Fig. 3. Necessary number of series terms 

                           2 – Bartenev-Khazanovich 
 

For calculating the critical load, in the theory of thin shells (within the framework of 
Kirchhoff hypothesis), the Bryan formula exists [3], which, for the Poisson’s ratio of 0.5, in the 
designations assumed above, takes the form: 

 

pBR
* = 8 ( ( 1- ρ ) / ( 1+ ρ ))3 .                 (21) 

 

Similar formula in the linear theory of elasticity was obtained by L. Leybenzon [1]. 
For the case of the Poisson’s ratio of 0.5, we can write the following expression: 
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pLB
*
 = 0.5 (1/ ρ2 -1)((2(1 + ρ4))0.5 –(1 + ρ2)) . (22) 

 

 These relations are used below for predicting the initial step of loading and for 
estimating the bounds of applicability of the classical theory of shells and the linear theory of 
elasticity to the problem considered, by comparison with numerical results obtained without the 
use of Kirchhoff (or Timoshenko) kinematic hypotheses for a neo-Hookean material.  

The dimensionless critical load p* and the corresponding relative change in the volume 
of inner cavity τ* (point A on the loading diagram in Fig. 1) were determined according to the 
following scheme (Fig. 4). 

 
Fig. 4. The resonance in the parameter of singularity condition 

 
 

The solution was performed directly for a relatively significant imperfection of circular 
form of the tube: e = 0.05 in relations (19). Then, the imperfection in the postcritical region was 
eliminated (e = 0), and the reverse step with a sequential decrease in the parameter of 
continuation was realized. On each step, the singularity condition of the resolving system of 
equations (8) was controlled. The resonance increase in the parameter of singularity condition, 
calculated by the procedure described in G. Forsythe, C. Moler [28], indicated that the critical 
point A on the loading diagram had been passed. The calculation results for the tubes of 
different thickness according to the scheme suggested are presented in Table 2. The elastic 
potential was presented by the Treloar potential (neo-Hookean material). This table shows also 
the values of the approximation formula obtained by the minimization method of least squares: 

 
papr

* = exp( 5.95 + 6.18 x2 -5.21 x4 + 1.06x8 - 7.50 x -0.25),  
 
where   x = 1.18 æ.   (23) 
 

The small discrepancy between the approximation and reference values of delta = (1-
papr*/p*) 100 < 2% allows us to recommend formula (23) for calculating the critical pressure of 
compression of elastomeric tubes of arbitrary thickness. 

The results of numerical calculation, presented in Table 2, are compared with 
experimental data given in Wang A.S.D., Ertepinar A (Fig. 5).  



 
436. ELASTIC INSTABILITIES IN POLYMER TUBE OF RESONANT SOUND ABSORBERS UNDER HYDROSTATIC PRESSURE 

S. GLUHIH , A.KOVALOV, E. BARKANOV AND A. CHATE 

 

 
VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING.  2009  MARCH, VOLUME 11, ISSUE 1, ISSN 1392-8716 

100 

Table 2. Results for the tubes of different thickness. 
 

Ρ p* papr
* delta (%) 

0.90 0.00117 0.00117 0.0 
0.80 0.0112 0.0113 0.9 
0.70 0.0466 0.0460 -1.3 
0.60 0.139 0.138 -0.7 
0.50 0.342 0.343 0.3 
0.40 0.688 0.690 0.3 

0.30 1.11 1.11 2.0 

0.20 1.49 1.47 -1.3 
 
 

Here, for comparison, the own calculated values of the authors of the above-mentioned 
study are shown, which were obtained by the method of superposition of small disturbances on 
the finite deformations of a neo-Hookean tube. We should point to the good coincidence in the 
considered range of relative thicknesses 0.2 ≤ æ ≤ 0.5. Unfortunately, no data in the range æ > 
0.5 were found in the literature. 

The results obtained are also compared with formula (21) of the theory of thin shells 
and formula (22) of the linear theory of elasticity (Fig. 6).  
 

                     
Fig. 5. Loading diagrams: 1 – present result,    Fig. 6. Loading diagrams: 1 – present result, 

                        2 – result [12], 3 – experiment [12]                   2 – formula (21), 3 – formula (22) 
 

The best agreement was achieved in the case of Bryan formula (21). In the range of 
relative thicknesses æ ≤ 0.65, the discrepancy did not exceed 10%. This is quite an unexpected 
result, since, within the range indicated, the hypotheses of the theory of thin shells formally are 
not applicable. The amplitude of coincidence with Leybenzon formula (22) is slightly smaller: 
æ ≤ 0.6.    

The calculation in the postcritical region of the solution raises a question on the 
number of terms in the approximation of required displacements and function of hydrostatic 
pressure in the angular direction necessary for a satisfactory convergence of the solution. The 
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calculations carried out for different values of the parameter n12 = n22 = n42 from Eqs. (16) 
indicate that the fraction of trigonometric terms of the series above the fifth harmonics does not 
exceed 2% (Fig. 7). 

 

 
Fig. 7. Loading diagrams for different values n12=n22= n42 

 
For an expansion in Chebyshev polynomials in the radial direction, we can assume the 

dependence presented earlier in Fig. 3, which determines the parameter n11. For the remaining 
functions, we assume that n21 = n41 +1 = n11. 

Fig. 8 illustrates the numerical calculations of postcritical branches of the loading 
diagram for elastomeric tubes of different thickness.  

Two groups of tubes can be distinguished here. For the first group (ρ > 0.6), the load in 
the postcritical region of the solution grows, which agrees with the results of the theory of thin 
shells. The second group (ρ ≤ 0.6) is characterized by a drop in the load in the postcritical 
region. The difference in these two groups is also manifested in the form of deformed sections 
(Figs. 9 and 10). 

In the first group, by the moment of origination of the inner contact zone, a noticeable 
(about 30% of the initial) volume is still retained. In the second group, upon reaching the 
critical pressure, a sudden vanishing of the inner volume is observed. 
 

 
Fig. 8. Loading diagrams:  different values ρ 

 
This result, in particular, can explain such a known phenomenon as the heart attack at a 

"collapse" of a blood vessel with sclerotic depositions as a result of a sharp gradient of internal 
pressure. As a first approximation, the relative thickness of blood vessels exceeding æ = 0.4 can 
be considered dangerous. 
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The imperfection of the circular geometry of elastomeric tubes is associated both with 
the precision of manufacture and with the rheological properties of the material revealing 
during the long-term storage. 

 Figs. 9-10 indicate that even a 5%-imperfection of the circular form leads to a 
noticeable drop in the magnitude of critical pressure.   

 

        
Fig. 9. Loading diagrams: different values e                  Fig. 10. Loading diagrams: different values of e 

 
To a lesser degree, such a defect affects the postcritical behavior, which agrees with 

the results of the theory of thin shells. 
 
Finite-Element Method 
 

It is of interest to compare the results obtained above within the framework of the Ritz 
method with the solution from the finite-element simulations. For this purpose, we will use a 
widely-used ANSYS program. First, we will consider shell-type elements SHELL63, 
SHELL93, SHELL181, and SHELL281. To solve the nonlinear problem by the finite-element 
method, a macros-program was elaborated, which specifies the geometry, physical law, and 
properties of the material, boundary conditions, loading, division into finite elements, and the 
step scheme of the solution. The scheme is realized for assigning a geometrical imperfection in 
the first buckling mode at the first linear stage of the solution, which is then added, with a 
certain term, to the initial geometry. At the second stage, the Newton–Raphson step procedure 
with the choice of a generalized step of continuation of the solution is implemented. 

After a number of numerical experiments, minimum values of the geometrical 
imperfection, when the transition to the adjacent form of equilibrium occurs, are found. The 
critical values of the load, determined for different relative thicknesses, are presented in Table 
3. The results obtained earlier (Table 2) are also given for comparison. 

Upon comparing the results obtained from the finite-element method for different types 
of finite-elements with the solution from the Ritz method (Fig. 11), we should point to an 
unexpectedly good agreement with the simplest SHELL63 element.  

  
 

Table 2. Critical values of the load  p*. 
 

æ 3-D SHELL63 SHELL93 SHELL181 SHELL281 

0.1 0.00117 0.00116 0.001145 0.001145 0.001145 

0.2 0.0112 0.011 0.0107 0.0107 0.0107 

0.3 0.0466 0.045 0.043 0.042 0.042 

0.4 0.139 0.13 0.12 0.11 0.107 
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We should note that the Bryan formula also gave the same good agreement. 
Obviously, this can be connected with the Kirchhoff–Love hypothesis, based on which the 
SHELL63 element was obtained, and with the Bryan solution. It can be assumed that, for rather 
thick elastomeric tubes, the hypothesis of straight normals is fulfilled quite well. Apparently, 
this is associated with the incompressibility of the elastomeric material. 

 
 

 
Fig. 11. Comparing the results obtained from the finite-element method: 1 –SHELL63, 2 –SHELL93, 

3 – SHELL181, 4 – SHELL281 
 
 
 

Finally, we present the results of calculating the compression of an elastomeric tube by 
the finite-element method as a problem of plane deformation of elasticity theory (a PLANE183 
8-nodal element) (Figs. 14-16). We should note that the earlier-obtained effect of descending 
postcritical sections of loading diagrams for tubes of thickness æ > 0.4 proves to be true. In 
comparing the critical loads (Table 4), the coincidence between the results obtained by the 
classical Ritz method and the finite-element method lies within the limits of a 5% accuracy. 
 
Conclusions 
 

The nonlinear problem of hydrostatic compression of an elastomeric tube is considered 
within the framework of the nonlinear elasticity of an incompressible material. Based on the 
Ritz method with an expansion of displacements into Chebyshev polynomial series in thickness 
and trigonometrical functions in angle, the critical loads and the postcritical branches of loading 
diagrams of elastomeric tubes of arbitrary thickness are determined. These results are compared 
with the known results obtained from the shell and elasticity theories, with experimental data 
available in the literature, and with calculations within the framework of superposition of small 
deformations on the finite ones. For completeness of comparison, the present authors deliver 
their own calculations carried out based on the finite-element method with several types of shell 
elements, in the statement of the plane problem of elasticity theory. As a result, an analytical 
formula for calculating the critical load is constructed, and the effect of descending postcritical 
sections of loading diagrams for tubes of thickness æ > 0.4 is determined. 
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