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Abstract. The solution of the problem of hydrostatic congsien of an elastomeric tube is
based on the nonlinear theory of elasticity foroimpressible materials employing the method
of Ritz variations and the ANSYS finite-element wains. The main purpose of the
investigations is to obtain the loading diagramstle total range of elastomeric tube
thicknesses, without any kinematical and physiestrictions on the behavior of elastomer,
e.g., neglecting the Kirchhoff and Timoshenko hyieses or Hooke's law.
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Introduction

A tube made of an elastomer of arbitrary thiclnaader the action of hydrostatic
pressure is considered. Due to the highly elastiterral, such a tube can be deformed without
failure up to the total loss of its inner cavityhéBe tubes can be used in a wide range of
applications, for example, as elements of resonaoced-proof coverings of transportation
facilities. In the present study, these objects iakestigated from the viewpoint of static
deformation by an external pressure in the regiomgh strains. The circular symmetry of the
tube and load leads to two deformation stages. grkeritical stage is characterized by the
symmetric form of compression with a simultanequgéase in the load and deformation (the
Lame problem). After reaching the critical loadivejue, the deformation acquires an elliptical
form. Depending on the relative thickness of thigetuvariants of growing or falling loading
diagrams can be realized. The aim of this study isbtain the loading diagrams in the total
range of elastomeric tube thicknesses, withoutlamgmatical and physical restrictions on the
behavior of elastomer, e.g., without Kirchhoff ahonoshenko hypotheses or Hooke's law.
Thus, the problem is solved in the general stat¢rokthe nonlinear theory of elasticity. The
resolving equations in a cylindrical coordinatetsys for the case of plane deformation will be
presented below. The solution obtained is compavitd the known results from the shell
theory and linear elasticity theory, so that tdneate the bounds of their applicability. Along
with the semi-analytical method, this problem ismined within the framework of the finite-
element method (ANSYS program) for different typéshell elements and in the statement of
the problem of plane deformation for a two-dimenaicelement.

L. Leybenzon (1913) [1] was the first to consider problem of compression of a long
circular tube by external pressure (plane defonatiin the classical statement of the
(geometrically and physically) linear theory ofstlaity. Later, this problem was analyzed by S.
Lubkin (1957) [2] and E. Zeldich (1978) without essal differences in the statements. In each
study, the finite dependence for the value of @altipressure was compared with the Bryan
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formula from the theory of thin shells [3]. The ptem of pressure compression of a circular
cylindrical tube was also investigated in the nosdir statement based on the method of
superposing small deformations on finite ones [46p In that case, the existence of an
analytical solution for the precritical deformedtst (the Lame problem) made it possible to
deduce a system of differential equations for im@ets, which was further analyzed
numerically. The similar scheme of solution was Eyped by C. Sensenig (1964) [7] for a
semi-linear John material, where the effect of &wmis ratio on the magnitude of critical
pressure was examined. In addition, it was shovat the transformation from the hollow
cylinder to a solid one with particular featuresr(zradial stresses) retained on the cylinder axis
led to the finite value of critical pressure. Thesult principally differs from the stable behavior
of solid (compressible and incompressible) bodiesryy magnitude of hydrostatic pressure
proved by L. Zubov [8] and A. Guz’ [9]. An approadiimilar to that described in [7], was
developed in later studies [10, 11, 12] for a nemkéanmaterial. Among these studies, of
particular interest is the investigation of A. Waagd A. Ertepinar (1972) [12], where the
problem in hand was considered more thoroughlypdrticular, the numerical results were
compared with the experiments performed by the astlover the range of cylinder wall
thicknesses up to 0.5 of the outside radius, whageod agreement with the Bryan formula was
observed. D. Haughton and R. Ogden (1979) [13, diddussed the relations between the
magnitude of critical load and the type of elagtitential of deformations. It was demonstrated
that the neo-Hookean potential does not allow anelitain an extremum on the loading
diagram experimentally observed in [15, 16].

The problem of compression of a long circular tuleler external pressure can be
solved within the framework of the finite-elemenetimod. A number of universal programs,
such as ANSYS, NASTRAN, ABAQUS, etc. contain eletsefor large deformations and
rotations suitable for calculating elastomers. Utfoately, the present authors are unaware of
such solutions. Therefore, in what follows, we présour own results of calculating the
problem in view using the ANSYS program for diffetéypes of shell elements.

Solution Algorithm Based on the Ritz M ethod

The solution of the elasticity problem of a cirqutabe under external pressure is
based on the principle of stationarity of the tqiatential energy for small deformations. The
functional of the internal potential ener@y/, associated with the finite deformations of an
ideally elastic isotropic incompressible body, isitien in the form of the integral of
undeformed volum¥;

I =pllfW+s@-1)]4dv, 1)

whereyp is the shear modulus at small strains, W is tmetfan of a specific internal potential
energy (elastic potential), a@l= V / V; is the relative change in the volume of the etastidy
with the Lagrangian multiplier S.

The functional of the hydrostatic pressuf# is determined from the purely
geometrical representation, namely:

1= gAv, )

where AV is the volume enclosed between the deformed ardtkformed positions of the
loaded surface.

Now, applying the procedure of Ritz method to thactional of the total potential
energyIl = IT° + I1% we can pass from the variation condition of staiity SIT = O to the
system of nonlinear algebraic equations:

F@ a)=01 (B q/op=0, ®3)
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wherep is the vector of unknown coefficients in the apgmation of displacements and the
hydrostatic pressure function S.

Let us reduce the solution of Egs. (3) to a stegaure of continuation with respect
to the natural parameter of loading g, with anaitien refinement at each step according to the
scheme of the Newton—Kantorovich method:

4=0o B’ =Pr1
J @Y * AR =-F B, 4)
Bkm+l — Bkm +A Bkm+l,

where k is the step number; m is the iteration remmbis the symbol of scalar productfy is
an increment of the vector of sought-for coeffitterd ¢) = {6 1> (B) / 6 p; & Bj} is the Jacobi
matrix of second derivatives.

After several solution steps with respect to thadlog, which is necessary for
determining the initial approximation, the parametiecontinuation is changed. In this case, the
previous continuation parameter joins the numbewraded quantities, namely = {B, q}.
System (3) is supplemented with a new equationestgd in [17], which links the generalized
parameter of continuation t with the vector of uokmn o

F@ a)=0, ®)
doy1 * o - (doyey * oyp +t) =0,
where the expression of the total differentla}.; can be given in finite differences:

dok-1=(0e1 = o2 )/ (01~ )*(Uk-l—(lk-z))llz- (6)
The Jacobian of an extended system of equationglgey not degenerate in the
neighborhood of local extrema of the loading partame:

J oFloq
b = : (7)
dp w1 dgu:

The step procedure of the solution to Eqgs. (5)ethasn the Newton—Kantorovich
iteration process, has the following form:

o = ageq + t ey,
JR( (ka ) *A (ka+l =-F ((lkm), (8)

m+l _ m
doger * Aoy =t - doyer* (ouc - Oer ),

o™ = o™ + Aa™?, where 3 = {J, 6F/6 q}.

It should be noted that Eq. (5), contrary to E, i@not symmetrical any more.
Potential of Elastic Finite Defor mations

One of the most universal forms of introducing flumction of specific internal
potential energy (elastic potential) W is the gefized form suggested by Ogden [18]:

W =Y v (A +202+ 252 -3), k=1,2,3, (9)

wherevy andy, are constants of the Ogden potential, larade the main elongation ratios bound
by the condition of incompressibility A, A3 = 1.
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Practically all the known potentials used earlier folving applied problems of
elastomers follow from Eq. (9) as special casedlEd). The parametép takes an arbitrary
value from the interval [-1, +1].

Tablel. Potentials of Elastic Finite Deformations

Potential Yk Vk
Treloar [ 19 ] 0.5 2
Bartenev, Khazanovich [2Q] 2.0 1
Mooney, Rivlin [21] 0.25(1+&) 2
0.25(1-&g) -2
Chernykh, Shubina [22] 18, 1
1-& -1

The selected potential (9) allows us to write b# hecessary physical relations, for
example, basic values of the Cauchy—Green straserte

Gi =Y YkVkAi + S, k=1,23. (10)

For the following calculations, we introduce thdirgrical coordinates rp, and z and
the corresponding components of the displacemettorvel, v, and w. The main elongation
ratiosA; can be expressed in terms of components of thgladisment vector only in the
problems on plane and axisymmetric deformations:

M=a =@ = hul,

(11)
where
0:=0.5 (G + (G- 4)"),

% =05 (G- (CG-4)".

The parametey takes the values 0 and 1 in the case of the madeaxisymmetric
deformations, respectively.

Now, we will focus our attention on the problempdéne deformation. For this case,
we have:

G = (1 +oulor)? + (vlor)® + ( (v -ould ¢)® +
(r+u+ovioe)?) I,

0= ((1+oulor) (r+u+oviop) +
ovior (v-ouldg))/r. (12)

Potential of Hydrostatic L oading

The valueAV in the expression for the functional of hydrostairessure (2) can be
presented through the respective potential Q astegral of the smooth surface & &):

AV =[] QR dp dz. (13)

The general expression of specific work of hydristgpressure (potential) in
cylindrical coordinates for the case of large dispiments and rotations can be obtained from
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consideration of the small surface element befork a&fter the loading. For the particular case
of a straight round cylinder B(z) =R, and plane deformation, we can write the following
expression:

Q = u + 0.5(u(udv/ioe) + v(v-ouloe))/R,. (14)
Approximation of Displacements and the Function of Hydrostatic Pressure

The region occupied by the cylindrical body is praed in the form:
r<r<n, P10 =0 2)<727,
Let us introduce the dimensionless coordinatesingriy the interval [-1, +1]:
E=(2r-h-1rR)/(KpL-n),
Vv=(20-01-92)/(@2—¢1),
n=(2z-2-2)/(z-2z). (15)

The approximation of displacements and the hydtiegtaessure function is shown in
the following form, with separation of variables:

u=Y > YAiTi(@D(v)TM),
i=1. .1, J=1 o, k=1. N3,

v =33 YBik Ti(&)Di(w)TM),
i=1..rb1, j:l..n_ag, kzl.-r&&

w =32 Y CuTi( D (w) Te(n),
i=1..ngy,j=1..15p,k=1..1p3,

S22 DiTi(Q) P (w) Tw(n), (16)
i=1. .Ny1, J:l .y, k=1. T3,

whereAjy , Bk , G, andDjy are unknown constants forming the earlier-intr@glieector of
unknownso; T; andT are the Chebyshev polynomials of first kind.

Such approximation allows us to consider two clgiseé elastic bodies, namely
cylindrical panels and cylindrical tubes. In thesficase, for the approximation in terms of an
angular coordinate, we can also take the Chebygbgwmomials. The fixity conditions can be
satisfied, for example, by multiplying into the fiion (1 -y?). In the second case, owing to
the closed contour, we select an expansion in terrtsigonometrical functions sing) and

cos(jo).
Imperfection of the Geometry

Approximation (16) allows us to introduce the imfpetion of the circular cross-
section, for example, in the form of small ellifitiyc

r1 = oaf (9), 12 = 1oof (9),  (9)=(1— cosB )™ (17)
where e is the parameter of imperfection.

The introduction of imperfection is governed by faet that the nonlinear solution has
to pass through the bifurcation point, which sefesrshe precritical and postcritical branches of
the solution.
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Results of Calculating an Elastomeric Tube

Let us consider the plane deformation of a caculbe with external;r= 1 and
internalr, = p radii. The elastomeric material is regarded agmaompressible (Poisson’s ratio
0.5) elastic material with a shear modulus

The loading diagram of a circular cylindrical tubeder an external hydrostatic load
contains three sections (Fig. 1):

Y
- |
4 2 ;-
o" [ |
| | |
| L
. |
a G s, s

Fig. 1. Loading diagram p &

e sectionOA (precritical branch) of the axisymmetric deforroati

e sectionAB (postcritical branch), which after e appearancea afontact in the tube
cavity;

e sectionBC, after the formation of internal contacts up te tomplete vanishing of
cavity volume.

Here, we introduce the dimensionless load parangetergft and the dimensionless
parameter of relative change in the volume of iraaaiity , for the critical values of which the
designations p* and* are selected. The precritical deformation is daieed by the known
solution of Lame problem :

A
q=Jb(aw/ax)/(x2-1)dx, (18)

Aa

wherel is the relative multiplicity of the radial elongat: 1, =X (p ) andi, =X ( 1). The latter
parameters are connected by the condition of inceagbility:

w=1-(14)p% (19)

Relation (18) for a neo-Hookean material (Treloateptial) allows for an analytical
integration:

p=q/n=05ANZ-1/%%)—In (k! ). (20)

The load diagrams for axisymmetric loading and casgion of elastomeric tubes for
different types of elastic potential are preseriteéfig. 2a,b. The influence of the type of the
potential is clearly traced in the case of loadimg tube, beginning with increase in volume by
100%; however, in the problem of compression, jwally all over the total range of
deformations, such influence is insignificant. Thllows us to restrict our calculations for the
compression problem to the Treloar potential.

Formula (20) makes it possible to investigate thevergence of the result, depending
on the number of terms of a series in the tatiiaction in approximation (16).
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Fig. 2a. Loading diagrams: 1 — Treloar, 2 — Ogden, 3 —&®vt- Khazanovich

From the calculation results for a rather thickeyb= 0.4 (Table 2), it follows that the
four first Chebyshev polynomials in the radial difen give at least a 0.4% accuracy in the
deformations.

Using the results of calculating the tubes of défe thickness, the relation between the
necessary number of series terms in the radiattitire and the relative thickness s&e =4 is
constructed (Fig. 3).

p
_ n—
. — Y
i
6 | /
i | ::
l | ;
| ;
W 4 M;/i ~
2k @
| | I
e 9z g4 gF a8 v 4 92 Q4 g6 x=/-0
Fig. 2b. Loading diagrams: 1 — Treloar, Fig. 3. Necessary number of series terms

2 — Bartenev-Khazanovich

For calculating the critical load, in the theorytbin shells (within the framework of
Kirchhoff hypothesis), the Bryan formula exists,[@hich, for the Poisson’s ratio of 0.5, in the
designations assumed above, takes the form:

Per =8 ((1-p)/(1+p)). (21)
Similar formula in the linear theory of elasticityas obtained by L. Leybenzon [1].
For the case of the Poisson’s ratio of 0.5, wewedie the following expression:
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pe’ = 0.5 (1p”-1)((2(L +p)**~(1 +p%) . (22)

These relations are used below for predicting itligal step of loading and for
estimating the bounds of applicability of the cleaktheory of shells and the linear theory of
elasticity to the problem considered, by comparisith numerical results obtained without the
use of Kirchhoff (or Timoshenko) kinematic hypotbsgor a neo-Hookean material.

The dimensionless critical load p* and the corresiiog relative change in the volume
of inner cavityt* (point A on the loading diagram in Fig. 1) weretermined according to the
following scheme (Fig. 4).

o
—07
_C
4 e
|
|
e=go5 ]
|
]
i
%
a o= v

Fig. 4. The resonance in the parameter of singularity itimmd

The solution was performed directly for a relatwsignificant imperfection of circular
form of the tube: e = 0.05 in relations (19). Théne imperfection in the postcritical region was
eliminated (e = 0), and the reverse step with auesetipl decrease in the parameter of
continuation was realized. On each step, the samiylcondition of the resolving system of
equations (8) was controlled. The resonance inergathe parameter of singularity condition,
calculated by the procedure described in G. Foesy@h Moler [28], indicated that the critical
point A on the loading diagram had been passed. ceteulation results for the tubes of
different thickness according to the scheme sugdeate presented in Table 2. The elastic
potential was presented by the Treloar potentieb{Hookean material). This table shows also
the values of the approximation formula obtainedh®gyminimization method of least squares:

Papr = €XP( 5.95 + 6.18%5.21 X+ 1.06X - 7.50 x°%9),
where x=1.18 . (23)

The small discrepancy between the approximationrafetence values of delta = (1-
Papr/P*) 100 < 2% allows us to recommend formula (&) calculating the critical pressure of
compression of elastomeric tubes of arbitrary théds.

The results of numerical calculation, presentedTable 2, are compared with
experimental data given in Wang A.S.D., ErtepingF#. 5).
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Table 2. Results for the tubes of different thickness.

p p* Papr delta (%)
0.90 0.00117 0.00117 0.0
0.80 0.0112 0.0113 0.9
0.70 0.0466 0.0460 -1.3
0.60 0.139 0.138 -0.7
0.50 0.342 0.343 0.3
0.40 0.688 0.690 0.3
0.30 1.11 1.11 2.0
0.20 1.49 1.47 -1.3

Here, for comparison, the own calculated valuethefauthors of the above-mentioned
study are shown, which were obtained by the metifaliperposition of small disturbances on
the finite deformations of a neo-Hookean tube. \Waud point to the good coincidence in the
considered range of relative thicknesses=0&< 0.5. Unfortunately, no data in the range & >
0.5 were found in the literature.

The results obtained are also compared with forrfdd of the theory of thin shells
and formula (22) of the linear theory of elastidifjg. 6).

e
I z ‘ |
g3
3
15
g2
10
ar //
e a5
2//.
/ | 1 . | ! |
7 | j o | [ | \ |
g2 a3 4% 7 g2 a% a6 g5 o

Fig. 5. Loading diagrams: 1 — present resulEig. 6. Loading diagrams: 1 — present result,
2 —result [12], 3 — expeent [12] 2 — formula (21), 3oefrhula (22)

The best agreement was achieved in the case ohBoymula (21). In the range of
relative thicknesses &0.65, the discrepancy did not exceed 10%. Thigiie an unexpected
result, since, within the range indicated, the ligpses of the theory of thin shells formally are
not applicable. The amplitude of coincidence wittyhenzon formula (22) is slightly smaller:
< 0.6.

The calculation in the postcritical region of thelusion raises a question on the
number of terms in the approximation of requiredptiicements and function of hydrostatic
pressure in the angular direction necessary fatiafactory convergence of the solution. The
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calculations carried out for different values oé tharameten;, = n,, = ny, from Eqgs. (16)
indicate that the fraction of trigonometric ternfgle series above the fifth harmonics does not
exceed 2% (Fig. 7).

g057

9049

\ i

o 42 g4 486 [

0047

Fig. 7. Loading diagrams for different valueg#n,,= ny,

For an expansion in Chebyshev polynomials in tlgatalirection, we can assume the
dependence presented earlier in Fig. 3, which ohéters the parameter n1l. For the remaining
functions, we assume thatjF ny;+1 = nj.

Fig. 8 illustrates the numerical calculations ofstooitical branches of the loading
diagram for elastomeric tubes of different thiclses

Two groups of tubes can be distinguished heretheofirst group ¢ > 0.6), the load in
the postcritical region of the solution grows, whigrees with the results of the theory of thin
shells. The second group £ 0.6) is characterized by a drop in the load in postcritical
region. The difference in these two groups is atemifested in the form of deformed sections
(Figs. 9 and 10).

In the first group, by the moment of originationtb& inner contact zone, a noticeable
(about 30% of the initial) volume is still retainebh the second group, upon reaching the
critical pressure, a sudden vanishing of the imodume is observed.

o/p" —
1

e /
\f‘”x M/
—
~——

12

a7

a5

—_—

4981 —— 0% _|

/|

%, 4z 7 45 45 T
Fig. 8. Loading diagrams: different valups

This result, in particular, can explain such a kngnenomenon as the heart attack at a
"collapse" of a blood vessel with sclerotic degosi as a result of a sharp gradient of internal
pressure. As a first approximation, the relativiekhess of blood vessels exceeding & = 0.4 can
be considered dangerous.
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The imperfection of the circular geometry of elaséwic tubes is associated both with
the precision of manufacture and with the rheolalgisroperties of the material revealing
during the long-term storage.

Figs. 9-10 indicate that even a 5%-imperfectiontlod circular form leads to a
noticeable drop in the magnitude of critical pressu

g /N
a5 - - XX
e=q05 P04
o R i
4 02 7 01,5 7 T k4 LZ s 46 98 3
Fig. 9. Loading diagrams: different values e Fig. 10. Loading diagrams: different values of e

To a lesser degree, such a defect affects therjpmstcbehavior, which agrees with
the results of the theory of thin shells.

Finite-Element M ethod

It is of interest to compare the results obtainleova within the framework of the Ritz
method with the solution from the finite-elemennalations. For this purpose, we will use a
widely-used ANSYS program. First, we will considshell-type elements SHELLG3,
SHELL93, SHELL181, and SHELL281. To solve the noeér problem by the finite-element
method, a macros-program was elaborated, whichifsethe geometry, physical law, and
properties of the material, boundary conditionsdiag, division into finite elements, and the
step scheme of the solution. The scheme is realaredssigning a geometrical imperfection in
the first buckling mode at the first linear stadettee solution, which is then added, with a
certain term, to the initial geometry. At the set@tage, the Newton—Raphson step procedure
with the choice of a generalized step of contiraratf the solution is implemented.

After a number of numerical experiments, minimumluea of the geometrical
imperfection, when the transition to the adjacentrf of equilibrium occurs, are found. The
critical values of the load, determined for differeelative thicknesses, are presented in Table
3. The results obtained earlier (Table 2) are gigen for comparison.

Upon comparing the results obtained from the fieiment method for different types
of finite-elements with the solution from the Ritzethod (Fig. 11), we should point to an
unexpectedly good agreement with the simplest SHiBLélement.

Table 2. Critical values of the load p*.

& i 3-D i SHELL6ESHELL93;SHELL181SHELL281

0.1:0.00117 0.00116 : 0.0011450.001145: 0.001145
0.2:0.011z 0.011 0.0107 0.0107 0.010%
0.3:0.0466 0.045 0.043 0.042 0.042
0.4: 0.139 0.13 0.12 0.11 0.107
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We should note that the Bryan formula also gave shene good agreement.
Obviously, this can be connected with the Kirchhbffive hypothesis, based on which the
SHELLG63 element was obtained, and with the Brydnt&m. It can be assumed that, for rather
thick elastomeric tubes, the hypothesis of straigirimals is fulfilled quite well. Apparently,
this is associated with the incompressibility af #lastomeric material.

25.00 -
|4

!

2000

15.00
10.00 /
’1
5.00 A
F//‘P/
F¥
0.00

0 0.1 02 03 0.4 05
1.RO0

Fig. 11. Comparing the results obtained from the finitaveat method: 1 —-SHELL63, 2 —-SHELL93,
3 - SHELL181, 4 — SHELL281

delta

Finally, we present the results of calculating¢benpression of an elastomeric tube by
the finite-element method as a problem of planembedtion of elasticity theory (a PLANE183
8-nodal element) (Figs. 14-16). We should note thatearlier-obtained effect of descending
postcritical sections of loading diagrams for tulséghickness s > 0.4 proves to be true. In
comparing the critical loads (Table 4), the coiecide between the results obtained by the
classical Ritz method and the finite-element metiexiwithin the limits of a 5% accuracy.

Conclusions

The nonlinear problem of hydrostatic compressioaroglastomeric tube is considered
within the framework of the nonlinear elasticity @f incompressible material. Based on the
Ritz method with an expansion of displacements Citebyshev polynomial series in thickness
and trigonometrical functions in angle, the critice@ds and the postcritical branches of loading
diagrams of elastomeric tubes of arbitrary thickres® determined. These results are compared
with the known results obtained from the shell afakticity theories, with experimental data
available in the literature, and with calculatiomishin the framework of superposition of small
deformations on the finite ones. For completendssomparison, the present authors deliver
their own calculations carried out based on thigefislement method with several types of shell
elements, in the statement of the plane problemlasticity theory. As a result, an analytical
formula for calculating the critical load is constted, and the effect of descending postcritical
sections of loading diagrams for tubes of thickreess 0.4 is determined.
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