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Abstract. A method for global and robust stabilization of aeroelastic wing vibrations based on 
optimal feedback control concepts is described in the present paper using Lyapunov stability 
theory. The method consists in decomposing the system model into a stabilizable linear part and 
a nonlinear part that satisfies sector-bound inequality; then a control law is designed to guarantee 
the global stabilization of the system and a specified robustness degree of the closed-loop 
dynamics. The validation of the method on aeroelastic wing section demonstrates better control 
performances over existing methods. The main contribution of the proposed method is that it 
allows one to design a linear controller that globally stabilizes a highly nonlinear system up to a 
specified degree of robustness without assuming any stability condition about the linear part, or 
matching conditions about the nonlinear uncertainties, contrarily to existing methods about 
optimal robust control. 

Keywords: aeroelastic vibrations, stabilization, optimal robust control, Lyapunov stability 
theory. 

 
 
Nomenclature 
 

 V 
 h 
α  
 ρ 
 a 
 
 b 
 s 
 kh 

 ch 

 cα 
 mwing 
mW 

 

freestream velocity 
plunge displacement 
angle of attack 
air density 
non-dimensional distance from 
midchord to elastic axis position 
semichord of wing section 
wing section span 
plunge stiffness 
plunge damping 
pitch damping 
mass of wing section 
total wing section plus mount 
mass 

 mT 

Icam 

Icgwing 

 

Clα 
Cmα 
β 
 
Clβ 

Cmβ 
x, u 
A 
Q, P 
K 

total mass of pitch-plunge system 
pitch cam moment of inertia 
wing section moment of inertia 
about the center of gravity 
∂l/∂α, where l is the lift force 
∂m/∂α, where m is the pitch moment 
trailing-edge control surface 
deflection angle 
∂l/∂β 
∂m/∂β 
state vector, and control variable 
state matrix 
positive definite matrices 
control gain matrix 
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Introduction 

 
 It is well known that the structure of an airplane is not completely rigid as it seems to be, but 
rather elastic. It happens that the aerodynamic forces acting upon the body of the airplane induce 
deformations in its elastic structure, and that these structural deformations induce, in a feedback 
manner, changes in the aerodynamic forces. These additional aerodynamic forces cause 
increases in the structural deformations, which results in greater aerodynamic forces, and so 
on… The interactions between the structural deformations and the resulting aerodynamic forces 
may become smaller until a balance is attained, or may be amplified across-time. Indeed, when 
the aerodynamic and the structural deformations are in balance, harmonic oscillations occur at a 
certain speed of the airstream called the flutter boundary; beyond this critical flow speed, there is 
an increase in the vibrations, which requires control actions to damp out the oscillations. The 
vibration phenomena, be they induced in an aeroelastic system or not, are in general governed 
by highly nonlinear dynamics [1-8], which may in some conditions degenerate to chaos [9, 10].  
 Present paper deals with the stabilization of the vibrations in an aeroelastic aircraft wing 
whose section is depicted in fig. 1 [3]. Existing methods for stabilizing aeroelastic wing 
vibrations are based on linear control which relies on linearized models of the actual nonlinear 
dynamics or on feedback linearization that aims at finding a nonlinear control law that linearizes 
the closed-loop system. Indeed, Platanitis and Straganac [1], as well as Ko and co-workers [11], 
resort to feedback linearization to ascertain the stabilization of aerolastic wing vibrations for 
small scale freestream velocity with a control surface deflection angle ranging from -15 deg. to 
15 deg. Demenkov and Goman [3] use a suboptimal linear control to suppress the vibrations of 
the same aeroelastic wing used by Platanitis and Straganac with the same control surface 
deflection angle value range. Their controller uses a method that maximizes the stability region 
of the linearized closed-loop system under actuator saturation constraints. They succeeded in 
effectively maximizing the stability region in that they could stabilize the aeroelastic wing 
vibrations for freestream velocities up to 30 m/s. Meanwhile, their method does not guarantee 
global stabilization, but local one, since the linearized model is only valid in a neighborhood of 
the equilibrium state. Similar linear and nonlinear methods were also used for controlling 
aeroelastic and smart wings of different characteristics as reported in [2, 6]. All the methods 
mentioned above deal with local stabilization of aeroelastic vibrations but not global 
stabilization, that is, they are not guaranteed to deal with vibrations that may have relatively 
larger amplitude or frequencies. Another limitation in existing methods is that they do not ensure 
robustness, i.e. they may be too sensitive to disturbances due to parameter uncertainties, 
measurement inaccuracies or atmospheric disturbances.  

The main objective of the present paper is to propose a method that guarantees global 
stability and robustness of the control law using Lyapunov stability theory. Indeed, the 
aeroelastic wing dynamic model is decomposed into a linear part that involves the state vector 
and the control, and a nonlinear part involving only the state; the linear part is required to be 
stabilizable and the nonlinear part sector-bounded, as is actually the case. Then, a linear control 
gain is computed to ensure global stabilization taking into account the linear part and the sector 
bound of the nonlinear part. Since the control law uses sector boundedness of the nonlinearities, 
the method ascertains robustness according to a specified degree as will be explained in the 
paper. It is shown that this control law is optimal in the sense that it minimizes a certain 
quadratic functional when no saturation occurs. The main contribution of the approach described 
here, and consequently its distinction with respect to existing literature on robust control [12-
17], is that the proposed method aims at determining a linear control that stabilizes a highly 
nonlinear system up to a specified degree of robustness without assuming the linear part to be 
stable or unstable, nor the nonlinear uncertainties to satisfy the matching conditions contrarily to 
existing methods on optimal robust control.  
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Fig. 1. Two-degree of freedom wing section 
 

 
 Problem statement 
 

The equations of motion of an aeroelastic wing section with two degrees of freedom [3] (fig. 
1) have been established in many references [1, 3, 6, 11]. Recently, Demenkov and Goman [3] 
showed that these equations can be expressed in the following form: 

 
      uαFy + Gy + C( )y = bɺɺ ɺ                                                                                                     (1) 

where: 
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The numerical values in equations (3) are related to a specific wing chosen for the 

application. The overall data of the system are given in table 1. 
  

Table 1. System parameters 
 

Parameter Value Parameter Value 

ρ 
a 
b 
s 
kh 

ch 

cα 
mwing 

1.225 kg/m3 
-0.6719 

0.1905 m 
0.5945 m 
2844 N/m 
27.43 kg/s 

0.0360 kg.m2/s 
4.340 kg 

mW 

mT 

Icam 

Icgwing 

Clα 
Cmα 
Clβ 

Cmβ 

5.230 kg 
15.57 kg 

0.04697 kg.m2 
0.04342 kg.m2 

6.757 
0 

3.774 
-0.6719 
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Setting 
T

h hα α =  x ɺ ɺ , equations (1) can be written as: 

( )f u= +x x bɺ ,                                                                                                                  (4) 

   
where: 

0
0 0 1 0

( ) , , , 0
( ) 0 0 0 1

f
α− −

−

 
       = = = =       − −        

2 2
2 21 1

1

0 I
x x 0 I b

F C F G
F b

.    (5) 

The problem to be solved consists in driving robustly the state vector x to zero, that is, 
cancelling the vibrations induced in the plunge displacement and in the angle of attack whenever 
this phenomenon occurs. Furthermore, the amplitude of the control surface deflection is known 
to be bounded as maxu u≤ . Therefore, the problem to be solved requires dealing with bound 

constrained robust control. 
  

Proposed Method 
 

Before presenting the robust control method that will be described in this paper, it is 
necessary to give some definitions and a theorem. 

 
Basic Definitions and Theorems 

 
Let us start this section with a definition: 
 

Definition 1. A matrix M  is said to be Hurwitz if any of its eigenvalues has negative real 
part. 
 

Let us consider a nonlinear system described by the following ordinary differential equation: 
 

ˆ ( )ϕ= +x Ax xɺ ,                                                                                                      (6) 

 

where nR∈x  is the state of the system, Â  is a Hurwitz matrix with n rows and columns, 

: n nR Rϕ →  is a nonlinear function satisfying a sector-bound inequality for any x , that is: 

 

           ( )ϕ γ≤x x ,                                                                                                         (7) 

 
where 0γ >  is the bounding parameter. 

 
Definition 2. The equilibrium state * 0=x  is said to be globally asymptotically stable if the 

following two properties hold: 
1. Stability: 0, 0ε δ∀ > ∃ >  such that for each solution s(t) of equation (6), 

(0) ( ) 0s s t tδ ε< ⇒ < ∀ ≥ ; 

2. Global attraction: Any solution s(t) of equation (6) vanishes in long term, that is: 
lim ( ) 0
t

s t
→+∞

= . 
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Theorem 1 (Lyapunov asymptotic stability theorem). Let * 0=x be an equilibrium point of a 

system described by the equation )(xgx =ɺ . Then that system is stable at *x  if there exists a 

continuously differentiable function ( )V x defined in a neighborhood nD R⊆ of *x that satisfies 

the following conditions: 

1. ( ) 0V >x  and 0)())(( ≤= xxx) gVV T

x
ɺ for any *{ }D∈ −x x ; where ( ( ))T

xV x denotes 

the transpose of the gradient of function V at x ; 
2. *( ) 0V =x  and 0( =)x*Vɺ . 

The system is asymptotically stable at *x  if:    

1. ( ) 0V >x  and 0( <x)Vɺ for any *{ }D∈ −x x ; 

2. *( ) 0V =x  and 0( =)x*Vɺ . 

 

One may notice that 0( <x)Vɺ for any *{ }D∈ −x x in case of asymptotic stability, whereas 

0( ≤x)Vɺ for any *{ }D∈ −x x in case of stability. 

 
Definition 3. The system (6) is robustly stable with degree γ  if the equilibrium state 

* 0=x is asymptotically stable for any nonlinear term ( )ϕ x that satisfies equation (7). 

 
Definition 4. Given two matrices A and B , the pair ( , )A B is said to be stabilizable if 

there exists a matrix K  such that matrix −A BK  is Hurwitz. 
 

Solution to the Stated Problem 
 
Based on the definitions and theorem given above, a robust control method that is optimal (in 

some sense that will be explained later) can be proposed in the sequel. 
Since function f  in equation (4) is nonlinear and (0) 0f =  (but not equal to zero for all 

0≠x ), it can be decomposed into the sum of two functions, one being linear and the other 
nonlinear in the following sense: 
 

( ) ( )f ϕ= +x Ax x ,                                                                                                            (8) 

 
where A  is a matrix with 0≠A , A  may be, for instance, the Jacobian matrix of function f  

at 0=x , and ϕ  a nonlinear function that is defined as ( ) ( )fϕ = −x x Ax  for all x . 

Therefore, equation (4) may be written as: 
 

( )u ϕ= + +x Ax b xɺ .                                                                                                          (9) 

 
The following assumptions are supposed to be satisfied with equation (9):  

 
 H1: The pair  ( , )A b  is stabilizable; 

 H2: 0 such that , ( )γ ϕ γ∃ > ∀ ≤x x x . 
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Since the pair ( , )A b  is stabilizable, there exists a linear feedback control law:  

 
 ( )u = −x Kx                                                                                                                        (10) 

 

such that the closed-loop state matrix 
ˆ = −A A bK is Hurwitz. Using this control law, the 

closed-loop system may be written as:  
 

ˆ ( )ϕ= +x Ax xɺ .                                                                                                                 (11) 

 
To stabilize the system described by equation (9) with the control law in equation (10), we 

use Theorem 1 to find the appropriate matrix K as described hereafter. 
 Consider the following quadratic Lyapunov function: 
 

 ( ) TV =x x Px ,                                                                                                                    (12) 

 
where P  is  positive definite matrix, and assume matrix K to be put on the form:  
 

 Tη=K b P                                                                                                                           (13) 

 
with 0η > , fixed by the control designer as the control effort penalizing weight (for instance, 

1η = ). Then, for  ˆ = −A A bK  to be Hurwitz, there shall exist two positive definite matrices 

P and Q such that: 
  

 ( ) ( )TA - bK P + P A - bK = -Q                                                                                     (14) 

 
which can be written as (when K is replaced in (14) by its expression): 
 

 2 0T Tη+ − + =A P PA Pbb P Q .                                                                                  (15) 

 
On the other hand, we would like the aeroelastic system to be stabilized when the control law 

in equation (10) is used, that is we would like the system described by equation (11) to be stable. 
Therefore, using Theorem 1, we express that the time-derivative of the Lyapunov function V 
shall be negative for all 0≠x along the solutions of equation (11): 
 

 ˆ ˆ( ) ( ( )) ( ( )) 0T T T TV P P ϕ ϕ= + = + + + <x x x x x Ax x Px x P Ax xɺ ɺ ɺ                          (16) 

 

However, denoting by min( )σ Q  the lowest singular value of Q , and by max( )σ P  the largest 

singular value of P , it comes: 
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 max

max

min max

ˆ ˆ ˆ ˆ( ( )) ( ( )) ( ) 2 ( )

2 ( ) .

2 . ( )

( 2 . ( ) )

ˆ ˆ( ( )) ( ( )) ( ( ) 2 . ( ))

T T T T T

T

T

T

T T T

ϕ ϕ ϕ

ϕ

γ σ

γ σ

ϕ ϕ σ γ σ

+ + + = + +

≤ − +

≤ − +

≤ − −

+ + + ≤ − −

Ax x Px x P Ax x x A P PA x x Px

x Qx x Px

x Qx x P x

x Q P I x

Ax x Px x P Ax x x Q P x

              (17) 

 

Consequently, ( ) 0V <xɺ  if: 

 

 min

max

( )

2 ( )

σ
γ

σ
<

Q
P

.                                                                                                                   (18) 

 
 We can now state the following theorem as the results of the reasoning above: 
 
Theorem 2. In case of no control saturation, the system (9) is robustly stabilized by control law 

( ) Tu η= − = −x Kx b Px  under the assumption H2 if there exist two positive definite matrices 

P and Q such that the following two conditions are satisfied: 

 (i)  2 0T Tη+ − + =A P PA Pbb P Q , 

 (ii) min

max

( )

2 ( )

σ
γ

σ
<

Q
P

. 

 
Theorem 2 provides a way to determine a robust control signal for stabilizing the vibrations 

of the aeroelastic wing. This is accomplished mainly by finding matrices P and Q that satisfy 
the joint equality (i) and inequality (ii) of Theorem 2, then to compute the controller output as 
given in the following equation due to actuator saturation:  
 

 maxˆ( ) sign( ( )).min{ , ( )}u u u u=x x x ,                                                                            (19) 

 

where ( ) .Tu η= −x b Px  

 
The resolution of the equality (i) and inequality (ii) above may be performed 

straightforwardly by solving rather the following optimization problem (instead of proceeding 
by trial-and-error): 

 

min

max

( )
Max

( )

subject to: 2 0

                   and  being positive-definite

T T

σ
σ

η

 
 
 

+ − + =

Q

Q
P

A P PA Pbb P Q

Q P
                                                                        (20) 

 

This optimization problem can be easily solved using, for instance, the Dynamic Canonical 
Descent method described in detail in [18]. 

,

. 

, 

  . 
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 Optimality of the Robust Control Solution 
 

Consider the following cost functional: 
 

 1 2

0

1
( ) ( )

2
TJ u u dtη

+∞ −= +∫ x Qx ,                                                                                   (21) 

 
where η  and Q are the same as used above.  

It is known [17] that the control that minimizes the cost functional ( )J u  above for the 

system described by the equation u= +x Ax bɺ , is given by equations (10) and (13) where 
matrix P  satisfies equality constraint (i) in Theorem 2. This fact gives rise to the following 
theorem: 
 
Theorem 3. In the absence of control saturation, the robust control law 

( ) Tu η= − = −x Kx b Px  given in Theorem 2 is optimal in the sense that it minimizes the cost 

functional in equation (21) for the system with model: u= +x Ax bɺ (which is the linear part of 
the model in equation (9)). 
 
Simulation 
 

Four examples will be dealt with to validate the proposed method. The bound of the control 
in each example is max 15 deg. 0.261 rad.u = = , therefore, 0.261 0.261 (rad.)u− ≤ ≤ . In all the 

examples, matrixA is computed as the Jacobian matrix of function f  at the equilibrium state 

* [0,  0,  0,  0]T=x ; hence, one may notice that assumption H1 holds in all the examples. We 

choose the control penalizing weight as: 10η = . 

The initial conditions on the state from which the simulation is done will be denoted by 0x , 

and their values in examples 1 to 3 are similar to those used in most of the existing publications 
on the subject [1, 3, 6, 11]. However, the initial conditions in example 4 are more aggressive in 
the sense that they are farther from the equilibrium state than the ones used by other researchers.  

Existing work on the stabilization of the specific aeroelastic wing model described in this 
paper can only deal with the cases when the freestream velocity is less than or equal to30 /m s; 

meanwhile, we show in examples 3 and 4 that the method that is proposed in the present paper 
enables us to stabilize vibrations even when the freestream velocity is far beyond 30 /m s.  

 

Example 1: 23.15 / , [0.01,  11.5 /180,  - 0.05,  - 0.05 /180]TV m s π π= =0x . 
 
 For this value of the freestream velocity V, we have: 
   
 0.34γ = ; :Q  diagonal matrix with diagonal elements: 11 22 33 4410.01, 1, 2, 1Q Q Q Q= = = = ;  
 

  min

max

93.8016 6.9818 0.3861 0.5965

6.9818 4.1126 -0.3163 0.0771 ( )
0.01 ; 0.53 0.34.

0.3861 -0.3163 0.3237 -0.0182 2 ( )

0.5965 0.0771 -0.0182 0.0245

Q
P

P

σ
γ

σ

 
 
 = × = > =
 
 
 

 



 
522. OPTIMAL ROBUST CONTROL OF AEROELASTIC SYSTEM VIBRATIONS.  K. BOUSSON 

 

 
 VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING.   MARCH 2010. VOLUME 12, ISSUE 1. ISSN 1392-8716 

21 

 The simulation results for this case are depicted in fig. 2. The uppermost charts illustrate the 
plunge displacement and its derivative with respect to time, the middle charts display the angle 
of attack and its derivative, and the lower charts illustrate the control (in fact, the trailing-edge 
control surface deflection angle). Stabilization occurs in less than 1 second, which is similar to 
the results reported in [3], but slightly faster than in [1]. Besides, the amplitudes of the 
oscillations are globally less than those reported in publications [1, 3, 6, 11] in the same 
simulation conditions. Saturation of the control occurs at startup and lasts during less than 0.1 
second, which is much less than in other work [1] where the control is sometimes of bang-bang 
type during the full stabilization process.   
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Fig. 2. Wing vibration stabilization for freestream velocity 23.15 /V m s= , and initial conditions: 

[0.01,  11.5 /180,  - 0.05,  - 0.05 /180]Tπ π=0x  

 

 

Example 2: 30 / , [0.01,  11.5 /180,  - 0.05,  - 0.05 /180]TV m s π π= =0x . 
 

 For this value of the freestream velocity V, we have: 

  

 0.98γ = ; :Q  diagonal matrix with diagonal elements: 11 22 33 4420.0, 1, 1, 1Q Q Q Q= = = = ;  
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  min

max

41.7255 5.9746 0.1787 0.2740

5.9746 4.3026 -0.2034 0.0655 ( )
0.01 ; 1.17 0.98.

0.1787 -0.2034 0.1463 -0.0097 2 ( )

0.2740 0.0655 -0.0097 0.0159

Q
P

P

σ
γ

σ

 
 
 = × = > =
 
 
 

 

 

 The simulation results of this case are depicted in fig. 3. These results are qualitatively 
similar to those of the previous example, with the exception that no saturation occurs in the 
control and that the maximum amplitude of the plunge displacement time derivative is 0.145 
m/s, that is, higher than in previous example where it was equal to 0.049 m/s, but anyway much 
less than in the results obtained by [3] where the maximum plunge displacement rate was 0.226 
m/s.  
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u: control (rad)

 
 

Fig. 3. Wing vibration stabilization for freestream velocity 30 /V m s= , and initial conditions: 

[0.01,  11.5 /180,  - 0.05,  - 0.05 /180]Tπ π=0x  

 

Example 3: 45 / , [0.01,  11.5 /180,  - 0.05,  - 0.05 /180]TV m s π π= =0x . 
 

 For this value of the freestream velocity, we have: 
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 1.18γ = ; :Q  diagonal matrix with diagonal elements: 11 22 33 4420.0, 1, 2, 1Q Q Q Q= = = = ;  

 

 min

max

31.8928 11.5465 -0.2786 0.1296

-0.2786 7.5311 -0.2981 0.0713 ( )
0.01 ; 1.37 1.18.

0.1787 -0.2981 0.1255 -0.0113 2 ( )

0.1296 0.0713 -0.0113 0.0070

Q
P

P

σ
γ

σ

 
 
 = × = > =
 
 
 

 

 

 The simulation results of this case are depicted in fig. 4. In this example, the freestream 
velocity is 45 m/s, which is higher than in any other case considered in existing work [1, 3, 6, 
11] where former methods enable, as shown experimentally in [3], to stabilize the vibrations in 
case when the velocity is less than 30 m/s. Hence, this example aims at showing clearly that the 
method that is proposed in the present paper is much more efficient than other methods. It is 
noticeable with the charts in this figure that the oscillations are stabilized in much less than 1 
second, but with higher amplitudes of the plunge displacement and angle of attack rates at 
startup. There is also a saturation of the control at startup, but this occurs during less than 0.1 
second.   
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Fig. 4. Wing vibration stabilization for freestream velocity 45 /V m s= , and initial conditions: 

[0.01,  11.5 /180,  - 0.05,  - 0.05 /180]Tπ π=0x  
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Fig. 5. Wing vibration stabilization for freestream velocity 45 /V m s= , and initial conditions: 

[0.1,  15.5 /180,  0.08,  -0.07 /180]Tπ π=0x  

 

 

Example 4: 45 / , [0.1,  15.5 /180,  0.08,  -0.07 /180]TV m s π π= =0x . 
  

In this example, the value of the freestream velocity is the same as the one used in the 
previous example, therefore, the parameters that were computed in the previous example are 
identical to those of the present example; hence, they will not be repeated here. However, to 
demonstrate the efficiency of the proposed method, we choose the initial conditions farther from 
the equilibrium state than those already used.  
 The simulation results of this case are depicted in fig. 5. The results show that even in this 
case where the initial state is very far away from the equilibrium state, the oscillations are 
stabilized in much less than 1 second as well, and that oscillations occur at startup but during a 
short time-interval. Qualitative results are similar to the former cases above, noting that the 
amplitudes of the oscillations at startup are much higher. 
 
Conclusion 
 

A control method that enables global, robust and optimal stabilization of aeroelastic system 
vibrations has been described in the present paper. The proposed method is described as follows: 
the nonlinear model of the system is decomposed into a stabilizable linear part that involves the 
state vector and the control, and a sector-bounded nonlinear part involving only the state; then, a 
linear control gain is computed taking into account the linear part and the sector-bound of the 
nonlinear part to ensure global and robust stabilization using Lyapunov stability theory. It is 
shown that the control law is optimal in the sense that, in fact, it is the solution of an optimal 
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linear quadratic regulation (LQR) problem when no saturation occurs. The validation of the 
method on the aeroelastic wing system demonstrates excellent performances of the proposed 
method. Indeed, the simulation results demonstrate that the stabilization of the vibrations is 
faster, has fewer oscillations in the response and less saturations in the control than reported in 
former work for the same inputs of the simulation procedure. 
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