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Abstract. A method for global and robust stabilization ef@elastic wing vibrations based on

optimal feedback control concepts is describedha firesent paper using Lyapunov stability
theory. The method consists in decomposing theesyshodel into a stabilizable linear part and
a nonlinear part that satisfies sector-bound inkyughen a control law is designed to guarantee
the global stabilization of the system and a spatifobustness degree of the closed-loop
dynamics. The validation of the method on aeroielaging section demonstrates better control
performances over existing methods. The main daution of the proposed method is that it

allows one to design a linear controller that gligbstabilizes a highly nonlinear system up to a
specified degree of robustness without assumingstahility condition about the linear part, or

matching conditions about the nonlinear uncertagticontrarily to existing methods about

optimal robust control.

Keywords. aeroelastic vibrations, stabilization, optimalbust control, Lyapunov stability
theory.

Nomenclature

\% freestream velocity My total mass of pitch-plunge system
h plunge displacement lcam  pitch cam moment of inertia
14 angle of attack leguing  WiNG section moment of inertia
p air density about the center of gravity
a non-dimensional distance from Ce ol/oa, wherel is the lift force
midchord to elastic axis position  Cp, omfoa, wheremis the pitch moment
b semichord of wing section s trailing-edge control surface
S wing section span deflection angle
kn plunge stiffness Cy ollop
Ch plunge damping Cy  Omiop
C, pitch damping X, U  state vector, and control variable
Miing Mass of wing section A state matrix
My total wing section plus mount Q, P positive definite matrices
mass K control gain matrix
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Introduction

It is well known that the structure of an airplasenot completely rigid as it seems to be, but
rather elastic. It happens that the aerodynamaefacting upon the body of the airplane induce
deformations in its elastic structure, and thas¢hstructural deformations induce, in a feedback
manner, changes in the aerodynamic forces. Thesiicadl aerodynamic forces cause
increases in the structural deformations, whichultesin greater aerodynamic forces, and so
on... The interactions between the structural deftiona and the resulting aerodynamic forces
may become smaller until a balance is attainednay be amplified across-time. Indeed, when
the aerodynamic and the structural deformationsrabalance, harmonic oscillations occur at a
certain speed of the airstream called the fluttemiglary; beyond this critical flow speed, there is
an increase in the vibrations, which requires adractions to damp out the oscillations. The
vibration phenomena, be they induced in an aerbelagstem or not, are in general governed
by highly nonlinear dynamics [1-8], which may ims® conditions degenerate to chaos [9, 10].

Present paper deals with the stabilization of uifigations in an aeroelastic aircraft wing
whose section is depicted in fig. 1 [3]. Existingethods for stabilizing aeroelastic wing
vibrations are based on linear control which retiesinearized models of the actual nonlinear
dynamics or on feedback linearization that aimnaling a nonlinear control law that linearizes
the closed-loop system. Indeed, Platanitis andg8trac [1], as well as Ko and co-workers [11],
resort to feedback linearization to ascertain tadibzation of aerolastic wing vibrations for
small scale freestream velocity with a control acef deflection angle ranging from -15 deg. to
15 deg. Demenkov and Goman [3] use a suboptimedticontrol to suppress the vibrations of
the same aeroelastic wing used by Platanitis amdg&tac with the same control surface
deflection angle value range. Their controller usesethod that maximizes the stability region
of the linearized closed-loop system under actus#turation constraints. They succeeded in
effectively maximizing the stability region in th#éitey could stabilize the aeroelastic wing
vibrations for freestream velocities up to 30 nMeanwhile, their method does not guarantee
global stabilization, but local one, since the dirized model is only valid in a neighborhood of
the equilibrium state. Similar linear and nonlineaethods were also used for controlling
aeroelastic and smart wings of different charasties as reported in [2, 6]. All the methods
mentioned above deal with local stabilization ofroméastic vibrations but not global
stabilization, that is, they are not guaranteedi@al with vibrations that may have relatively
larger amplitude or frequencies. Another limitatiarexisting methods is that they do not ensure
robustness, i.e. they may be too sensitive to iiances due to parameter uncertainties,
measurement inaccuracies or atmospheric disturbance

The main objective of the present paper is to psepa method that guarantees global
stability and robustness of the control law usingapunov stability theory. Indeed, the
aeroelastic wing dynamic model is decomposed inioear part that involves the state vector
and the control, and a nonlinear part involvingyothle state; the linear part is required to be
stabilizable and the nonlinear part sector-boundsds actually the case. Then, a linear control
gain is computed to ensure global stabilizationingknto account the linear part and the sector
bound of the nonlinear part. Since the control is&s sector boundedness of the nonlinearities,
the method ascertains robustness according to @fispedegree as will be explained in the
paper. It is shown that this control law is optinialthe sense that it minimizes a certain
quadratic functional when no saturation occurs. ilaén contribution of the approach described
here, and consequently its distinction with resgecexisting literature on robust control [12-
17], is that the proposed method aims at determimifinear control that stabilizes a highly
nonlinear system up to a specified degree of rolesst without assuming the linear part to be
stable or unstable, nor the nonlinear uncertaittiesatisfy the matching conditions contrarily to
existing methods on optimal robust control.
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Fig. 1. Two-degree of freedom wing section

Problem statement

The equations of motion of an aeroelastic wingisaawith two degrees of freedom [3] (fig.
1) have been established in many references [8, B1]. Recently, Demenkov and Goman [3]
showed that these equations can be expressed fiollthging form:

Fy + Gy +C(a)y =bu ) (1
where:

y:[h] F_[ m, mN)gtj, G:{ChﬂoVbsqx p VB sC(l/2- 2

a myxb 1, ~PVBSGy o G —p VB SG (12— 3
k V?2bs -pV?bs
Cla)=| " P Zq; , b= , S , u= g (rad).
0 k,(a)-pV°b SQnaeff pV 5 sgﬂeff
(2)
with:
x, =—(0.0998+a), I =1_,+]I cqwing T mwingrig, Cm, = (I 2ra ﬁl, + Z:m,

3
ro=bx,, C,.=@/2+a)G +2G, . k@)=127% 53.47+ 1008

The numerical values in equations (3) are relatedatspecific wing chosen for the
application. The overall data of the system aremiw table 1.

Table 1. System parameters

Parameter Value Parameter Value

P) 1.225 kg/mi  my 5.230 kg
a -0.6719 my 15.57 kg
b 0.1905m  leam 0.04697 kgn?
s 0.5945m  leguing 0.04342 kgn?
Kn 2844 N/m  C, 6.757

Ch 27.43kgls Cyy, 0

C, 0.0360 kg.rfis Cy; 3.774
Mying 4340kg  Cp -0.6719
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Settingx = [h a h d]T , equations (1) can be written as:

x = f(x)+bu, (4)
where:
0 I 0 0 10 0
2 2
= = = = . 5
He) [—FlC(a) —FlG}(’ 0 {o o}’ E {o 1] ° F‘?B ©

The problem to be solved consists in driving rolyutte state vectoX to zero, that is,
cancelling the vibrations induced in the plungeldisement and in the angle of attack whenever
this phenomenon occurs. Furthermore, the amplibidbe control surface deflection is known

to be bounded a|su|§ U...- Therefore, the problem to be solved requiresinigakith bound
constrained robust control.

Proposed Method

Before presenting the robust control method thdt e described in this paper, it is
necessary to give some definitions and a theorem.

Basic Definitions and Theorems
Let us start this section with a definition:

Definition 1. A matrix M is said to beHurwitz if any of its eigenvalues has negative real
part.

Let us consider a nonlinear system described bfolteving ordinary differential equation:
X = AX + o(X), (6)

where X € R" is the state of the systerf\ is a Hurwitz matrix withn rows and columns,
Q. R" — R is a nonlinear function satisfying a sector-boimatjuality for anyX , that is:

o0l <7 ™)
where ¥ > 0 is the bounding parameter.

Definition 2. The equilibrium statex. =0 is said to beglobally asymptotically stable if the
following two properties hold:
1. Stability: Ve>0,36>0 such that for each solution s(t) of equation (6),
| <& = |t <z ¥ t=0;
2. Global attraction: Any solution s(t) of equation) (8anishes in long term, that is:
lim g(t) =0.

t—>+0
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Theorem 1 (Lyapunov asymptotic stability theorem). Let x, = 0 be an equilibrium point of a
system described by the equati&s g(x) . Then that system &able at x, if there exists a
continuously differentiable functiovi(x) defined in a neighborhoo® < R" of x, that satisfies
the following conditions:

1.V(x)>0 and V(x)=V,(x))" g(x) < Ofor any xe D—{x.} ; where (V,(x))" denotes
the transpose of the gradient of functidrat x ;
2.V(x.)=0 andV(x.)=0.
The system iasymptotically stable at x, if:
1. V(x)>0 andV(x) < Ofor any xe D—{x} ;
2.V(x.)=0 andV(x.)=0.

One may notice thaV/ (x) < Ofor any x e D—{x} in case of asymptotic stability, whereas

V(x) < 0for any x e D—{x} in case of stability.

Definition 3. The system (6) isobustly stable with degree y if the equilibrium state
X. = 0is asymptotically stable for any nonlinear tegix) that satisfies equation (7).

Definition 4. Given two matricesA and B, the pair (A,B)is said to bestabilizable if
there exists a matri such that matrixA — BK is Hurwitz.

Solution to the Stated Problem

Based on the definitions and theorem given abovebast control method that is optimal (in
some sense that will be explained later) can bpgeed in the sequel.
Since function f in equation (4) is nonlinear anéi(0) = O (but not equal to zero for all

X #0), it can be decomposed into the sum of two fumsticone being linear and the other
nonlinear in the following sense:

f(xX)=Ax+p(X), 8)

where A is a matrix withA # 0, A may be, for instance, the Jacobian matrix of fiomctf

at X=0, and ¢ a nonlinear function that is defined as(x) = f (x)—AX for all X.
Therefore, equation (4) may be written as:

X =AX+bu+e(x). 9)
The following assumptions are supposed to be gatisfith equation (9):

H: The pair (A, D) is stabilizable;
Hz: 3y > 0such thatx | X )< |-

17
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Since the paiA,b) is stabilizable, there exists a linear feedbaakrab law:
u(x) = -Kx (10)

such that the closed-loop state matAx= A —bK is Hurwitz. Using this control law, the
closed-loop system may be written as:

X = AX + o(X). (11)
To stabilize the system described by equation () the control law in equation (10), we

use Theorem 1 to find the appropriate malfixas described hereafter.
Consider the following quadratic Lyapunov function

V(x)=x"Px, (12)
where P is positive definite matrix, and assume matfixto be put on the form:
K =nb'P (13)

with77 > O, fixed by the control designer as the control ffienalizing weight (for instance,

n=1). Then, forA = A —bK to be Hurwitz, there shall exist two positive détB matrices
P and Q such that:

(A-bK)'P+P(A-bK)=-Q (14)
which can be written as (whdR is replaced in (14) by its expression):
ATP+ PA—277PbbTP+Q: 0. (15)

On the other hand, we would like the aeroelastitesy to be stabilized when the control law
in equation (10) is used, that is we would like system described by equation (11) to be stable.
Therefore, using Theorem 1, we express that the-tlarivative of the Lyapunov functiovi

shall be negative for ak # Oalong the solutions of equation (11):
V(X) = X" Px + X" PX = (AX + ¢(X)) "PX + X "P(AX + (X)) < 0 (16)

However, denoting byo,,;,(Q) the lowest singular value &, and byo .,

(P) the largest
singular value ofP, it comes:

18
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(AX + (X)) PX + X"P(AX + 9(X)) =X (A TP+ PA)X + 2 T (X )PX

<—x"Qx + 2| (x)| ||PX|

< —X"QX + 27 ||X]| e P[] (17)
X(Q=27.0,,P) )X,
(AX+ (X)) PX+ X"P(AX +¢(X)) <—X"(0,..(Q)—2y.0,.(P)X.

IN

ConsequentlyV/ (x) < O if:

O min (Q)

< .
"% P

(18)

We can now state the following theorem as theltesfithe reasoning above:

Theorem 2. In case of no control saturation, the system (9plsustly stabilized by control law
u(x) = —Kx = —7b"Px under the assumptidt, if there exist two positive definite matrices
P and Q such that the following two conditions are satigfie

(i) ATP+PA -27Pbb™P+Q =0,

fo

(i) y<—mn—— @ .

20,.,(P)
Theorem 2 provides a way to determine a robustrabsignal for stabilizing the vibrations

of the aeroelastic wing. This is accomplished myaby finding matricesP and Q that satisfy

the joint equality (i) and inequality (ii) of Themmn 2, then to compute the controller output as
given in the following equation due to actuatousation:

6(X) = SIgN (). MinUy UG}, (19)
where u(X) = —17b"PX.

The resolution of the equality (i) and inequalityi) (above may be performed
straightforwardly by solving rather the followingtimization problem (instead of proceeding
by trial-and-error):

Max o-min(Q)
Q| o..(P)
subject toA"P+PA— ZPbb'P+Q= 0, (20)
Q anB being positivefuhite.

This optimization problem can be easily solved gsior instance, the Dynamic Canonical
Descent method described in detail in [18].

19
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Optimality of the Robust Control Solution

Consider the following cost functional:
1pee 1 -1, 2
J(u)zzj-0 (X' Qx+nu)dt, (21)

wherern and Q are the same as used above.
It is known [17] that the control that minimizesetlcost functionald (U) above for the

system described by the equatidn= AX + bu, is given by equations (10) and (13) where
matrix P satisfies equality constraint (i) in Theorem 2isTfact gives rise to the following
theorem:

Theorem 3. In the absence of control saturation, the robust ntod law
u(x) = —Kx = —b"Px given in Theorem 2 is optimal in the sense thatiitimizes the cost

functional in equation (21) for the system with ok = AX + bu (which is the linear part of
the model in equation (9))

Simulation

Four examples will be dealt with to validate thegmwsed method. The bound of the control
in each example s, =15deg= 0.261rac, therefore,-0.261<u< 0.261(rad. In all the

examples, matrid is computed as the Jacobian matrix of functibnat the equilibrium state
X, =[0, 0, 0, O] ; hence, one may notice that assumptibnholds in all the examples. We
choose the control penalizing weight gs=10.

The initial conditions on the state from which gimulation is done will be denoted b,

and their values in examples 1 to 3 are simildhtse used in most of the existing publications
on the subject [1, 3, 6, 11]. However, the initahditions in example 4 are more aggressive in
the sense that they are farther from the equilibritiate than the ones used by other researchers.
Existing work on the stabilization of the specifieroelastic wing model described in this
paper can only deal with the cases when the fremstivelocity is less than or equaBtm/s;

meanwhile, we show in examples 3 and 4 that théodethat is proposed in the present paper
enables us to stabilize vibrations even when thestream velocity is far beyor80m/s.

Example 1: V =23.15m /s, x, = [0.01, 115 /180, -0.05, -005 /18.

For this value of the freestream velocitywe have:

y =0.34; Q: diagonal matrix with diagonal element3;, =10.01,Q,,= 1Q,,= 2Q,,= ;

93.8016 6.9818 0.3861 0.5985
6.9818 4.1126 -0.3163 0.0771 o (Q)
0.3861 -0.3163 0.3237 -0.0182 20, (P)
05965 0.0771 -0.0182 0.0245

P=0.01x =0.53>y=0.34
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The simulation results for this case are depiateiih. 2. The uppermost charts illustrate the
plunge displacement and its derivative with respedime, the middle charts display the angle
of attack and its derivative, and the lower chdltstrate the control (in fact, the trailing-edge
control surface deflection angle). Stabilizatiortwrs in less than 1 second, which is similar to
the results reported in [3], but slightly fastemanhin [1]. Besides, the amplitudes of the
oscillations are globally less than those repoitegublications [1, 3, 6, 11] in the same
simulation conditions. Saturation of the controtws at startup and lasts during less than 0.1
second, which is much less than in other work [hEke the control is sometimes of bang-bang
type during the full stabilization process.

005 7 T T I
N h (m)
0 *IL/AV\\/—"—-*‘ — — — time derivative of h (m/s)[T
-0.05/ |
!
-0.1! B
|/
_015 \ | | | | | | | | |
0.5 1 15 2 25 3 35 4 4.5 5
T T
ol : : a (rad) -
— — — time derivative of a (rad/s)
0 =
/
/
/
ol |
| | | | | | | | |
0 0.5 1 15 2 25 3 35 4 45 5
0.4 I
u: control (rad)l
0.2 |
0 -
-0.2 \:ﬁ— . _
-0.4 | | | | | | | | |
0 0.5 1 15 2 25 3 35 4 4.5 5

Time (s)

Fig. 2. Wing vibration stabilization for freestream veliycV = 23.15m /s, and initial conditions:
X, =[0.01, 11.% /180, -0.05, -0.85 /18(

Example2: V =30m/s x,=[0.01, 11.5 /180, -0.05, -0.85 /18

For this value of the freestream veloditywe have:

y =0.98; Q: diagonal matrix with diagonal element3;, =20.0,Q,,= 1,Q,;= 1,Q,,=

21
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417255 59746 0.1787 0.2720
59746 43026 -0.2034 0.06%5 o (Q)
0.1787 -0.2034 0.1463 -0.0097 25, (P)
0.2740 0.0655 -0.0097 0.0159

P =0.01x =1.17>y = 0.98

The simulation results of this case are depictedig. 3. These results are qualitatively
similar to those of the previous example, with theeption that no saturation occurs in the
control and that the maximum amplitude of the plintisplacement time derivative is 0.145
m/s, that is, higher than in previous example wliteweas equal to 0.049 m/s, but anyway much
less than in the results obtained by [3] wherentla&imum plunge displacement rate was 0.226
m/s.

0.4 I
h (m)
0.2 — — —time derivative of h (m/s)[]
0 \—//\—\—*—/“\ ==
; P
-0.2}+/ .
-0.4 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 4.5 5
I I
2 o (rad) H
— — —time derivative of a (rad/s)
OF —Y—/———===
7
J
_2 - -
1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 45 5
0.4 I
u: control (rad)|
0.2 -
0 -
_02 K\_ﬁ* -
-0.4 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 4.5 5

Time (s)

Fig. 3. Wing vibration stabilization for freestream veliydi = 30m/ s, and initial conditions:
X, =[0.01, 11.% /180, -0.05, -0.85 /18«

Example3: V =45m/s x,=[0.01, 11.5 /180, -0.05, -0.85 /18.

For this value of the freestream velocity, we have
22
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y =1.18; Q: diagonal matrix with diagonal element3;, =20.0,Q,,= 1,Q,;= 2,Q,,=

P =0.01x

The simulation results of this case are depictedig. 4. In this example, the freestream
velocity is 45 m/s, which is higher than in anyatitase considered in existing work [1, 3, 6,
11] where former methods enable, as shown expetéathgin [3], to stabilize the vibrations in
case when the velocity is less than 30 m/s. Hethé® gexample aims at showing clearly that the
method that is proposed in the present paper ishmuare efficient than other methods. It is
noticeable with the charts in this figure that teillations are stabilized in much less than 1
second, but with higher amplitudes of the plungspldicement and angle of attack rates at
startup. There is also a saturation of the coratdtartup, but this occurs during less than 0.1
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31.8928 11.5465 -0.2786 0.1296
-0.2786 7.5311 -0.2981 0.0713 & _ (Q)
-0.2981 0.1255 -0.0113 20, _ (P)
-0.0113  0.0070

0.1787
0.1296

second.

0.0713

=1.37>y=1.18

T
h (m)
— — — time derivative of h (m/s)[]

1.5

25

3.5 4 4.5 5

a (rad)
— — — time derivative of a (rad/s)||

1.5

25

3.5 4 4.5 5

I
u: control (rad)l

15

2

25
Time (s)

3

3.5 4 4.5 5

Fig. 4. Wing vibration stabilization for freestream veliydf = 45m/ s, and initial conditions:

X, =[0.01, 11.% /180, -0.05, -0.85 /18(
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1 T T T T T T T T T
h (m)
Ob——— — — — time derivative of h (m/s)
!
!
\/
_2 Il Il Il Il Il Il Il Il Il
[0} 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
5 T T T T T T T T T
a (rad)
o) ©~ — — — time derivative of a (rad/s) ||
{
|
-5 L/ -
v
10 i i i i i i i i i
0] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4 T T T T T T T T T
u: control (rad)‘
0.2 -
0
-0.2 -
—0.4 i i i i i i i i i
0] 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Time (s)
Fig. 5. Wing vibration stabilization for freestream veliydi = 45m/ s, and initial conditions:
X, =[0.1, 15.5r /180, 0.08, -0.@7 /18(

Example4: V =45m/s x,=[0.1, 15.%5 /180, 0.08, -0.87 /18

In this example, the value of the freestream v@jois the same as the one used in the
previous example, therefore, the parameters tha¢ wemputed in the previous example are
identical to those of the present example; herwey will not be repeated here. However, to
demonstrate the efficiency of the proposed meth@dchoose the initial conditions farther from
the equilibrium state than those already used.

The simulation results of this case are depictefiigi. 5. The results show that even in this
case where the initial state is very far away friva equilibrium state, the oscillations are
stabilized in much less than 1 second as well,thatloscillations occur at startup but during a
short time-interval. Qualitative results are simita the former cases above, noting that the
amplitudes of the oscillations at startup are mhigher.

Conclusion

A control method that enables global, robust anihtg stabilization of aeroelastic system
vibrations has been described in the present p@perproposed method is described as follows:
the nonlinear model of the system is decomposedargtabilizable linear part that involves the
state vector and the control, and a sector-boundetinear part involving only the state; then, a
linear control gain is computed taking into accotirg linear part and the sector-bound of the
nonlinear part to ensure global and robust stattibn using Lyapunov stability theory. It is
shown that the control law is optimal in the setis#, in fact, it is the solution of an optimal

24
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linear quadratic regulation (LQR) problem when ratusation occurs. The validation of the

method on the aeroelastic wing system demonsteatesllent performances of the proposed
method. Indeed, the simulation results demonstifsde the stabilization of the vibrations is

faster, has fewer oscillations in the responselassl saturations in the control than reported in
former work for the same inputs of the simulatisagedure.
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