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Abstract. Substructuring is to subdivide an overall struetinto two or more substructures to
reduce the model-order of the huge structural syst&he problem to synthesize the
substructures is established by a mathematicagmsysbnsisting of equilibrium equations and
prescribed compatibility conditions. Consideringatththe compatibility conditions are
constraints, this study derives the analytical méshfor describing the responses of constrained
static and dynamic systems and provides a structyrghesis method based on the Guyan
condensation method and the derived equations. dr@adysis process is carried out by
partitioning into two regions of interior and bowamy regions, and giving the compatibility
conditions. And the dynamic analysis reduces modaér based on the constraint conditions
between modal coordinates by the first several nsbdge matrix. The validity of the proposed
method is illustrated through the structural syathef stable and unstable substructures, and
the structural reanalysis to evaluate the strutt@sponse for changes in the design without
solving the complete set of modified simultaneogisagions.

Keywords: substructures, compatibility, constraints, strumtgynthesis, equilibrium equation,
mode shape.

1. Introduction

Substructuring includes a procedure that condeaggsup of finite elements into one
element represented as a matrix. The substructising reduce computer time and to allow
solution of very large problems with limited comeutesources. A very large structural system
is composed of substructures interconnected bygprand supports. The entire structure keeps
the static equilibrium state by reactions and tedise externally provided vertical as well as
lateral loads. Such structures include grid stmestu longitudinal trusses, and slabs as
diaphragms subjected to lateral forces, etc. Thee@se in the number of structural components
yields a number of compatibility conditions andatéan forces to be determined, and requires
more simplified analysis. Based on elastic analythis proper structural analysis depends on
the determination of constraint forces at the fatss of substructures to satisfy the given
compatibility conditions.

There has been much research to consider structyrghesis of substructures.
Substructure coupling methods are the techniquesdace the model-order of huge structural
systems. Hurty [1] introduced the component modett®sis (CMS) method in 1960. The
method is to combine subdivided substructures amt@pproximate mathematical model of the
full structural system using the displacement cmmsts and the interface forces at the
interfaces. A number of variants of the methodsawepposed and employed [2-7].

Structural reanalysis refers to the analysis oftracture which has been slightly
modified by the addition or deletion of structuraémbers as substructures and is to evaluate
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the structural response for changes in the desigrout solving the complete set of modified
simultaneous equations. The combined approximatmmsoach to combine local and global
approximations was developed for linear static abais [8]. Kirsch [9] presented a general
approach for structural optimization and the methiotkgrated the constraint values and
constraint derivatives into an effective optimipatiprocedure. Kirsch and Papalambros [10]
proposed a method not based on calculation of aliévas unlike common approximations of
the structural response and the proposed methodillwasated in different types of design
variables and structures. It is necessary to gatisé compatibility conditions between
substructures in combining the substructures interdire structure. The CMS method has been
derived based on the constraint conditions andtegface forces requirement, and leads to
model-order reduction.

This study proposes static and dynamic method&saoribe the constrained responses
and to synthesize fixed-free or free-free end subsires into a complex structure in the
satisfaction of the compatibility conditions. Thanthesis approach is performed by partitioning
into two regions of interior and boundary regioasdd on the Guyan condensation method [11]
and the derived equations. All the DOFs exceptitterface are eliminated by means of static
reduction to generate system matrices exclusivelycerning the interface DOF. And the
dynamic analysis reduces model-order based on émstmint conditions between modal
coordinates by the first several mode shape maifitre validity of the proposed method is
illustrated through the structural synthesis ofblaand unstable substructures, and the
structural reanalysis to evaluate the structurapeese for changes in the design without
solving the complete set of modified simultaneogisagions.

2. Description of constrained responses

2.1 Constrained equation of static systems

Static responses of many practical structural systare affected by the constraint
conditions that include the support conditions,¢bmpatibility conditions in structural systems
and geometric requirements, etc. If constraints giken to a static system, the initial
equilibrium equation must be modified to satisfgrth

The existence of the constraints needs to deterrtiiee displacement or force
variations to be deviated from the initial stat&ieTconstraint forces prevent the system from
deviations of the constrained manifold and are esged by stiffness variation. The equilibrium
equation of the constrained system is derived byhining the equilibrium equation of initial
unconstrained system and the constraint equations.

Expressing thatk , is an nxn stiffness matrix of initial system{i is an nx1

displacement vector, and F is ax1 given force vector, the equilibrium equation oé thitial
system can be written by

K,a=F. Q)
The displacements of the system are calculated by
U=KF, @)

where U represents the initial displacement vector. Arsliase that the responses of the static
system are restricted by m constraints

Au=b. 3)
where A is anmx n(m< n) coefficient matrix,b indicates themx1 vector andu is the nx1

actual displacement vector.
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The displacements due to the existence of the i@nt do not satisfy the equilibrium
equation of Eqn. (1) and the equilibrium equatibowdd be modified by the corrected stiffness
matrix K

Ku=F, (4)

where we assume that the external force veletis not changed.

The constraint force vector can be expressed asnetion of the newly updated
stiffness matrix. It can be obtained by minimiziagcost function in the satisfaction of the
constraints. This study utilizes the cost functimitten as

J =%HK;’2(K oK LK (5)
Inserting Eqn. (4) into Eqgn. (3), it can be written
AK 'F=b. (6)
Equation (6) is modified for minimizing the cosnfition as
AK*l/ZK 1/2K 7lK 1/2K71/2F:b- (7)

Letting R = AK ;%2 which is anmxn rectangular matrix ang = k ;*2r, and solving Eqn. (7)
with respect tok Y2k K ¥2p based on the generalized solution of Moore-Peniroagse [12],
we obtain that

KY2K K ¥?D=R*'b+(1 -R'Ry (®)
where y is an arbitrary vector, ‘+’ denotes the MBBenrose inverse and | is an identity matrix.

Inserting the condition to minimize the cost fuonatiof Eqn. (5) into Eqn. (8) and solving the
result with respect to the arbitrary vector, weaibthat

y=(-R'R)D-R'b)+R"Rz, Q)
where z is an arbitrary vector. Substituting E@).iito Eqn. (8), it can be written as
KY’K'KY’D=R*b+D-R*RD. (10)

Again, solving Eqn. (10) with respect ko¥2K K 12, it follows that
KY?K K ¥? =(R*b+D-R*RD)D" +h(l -DD"), (11)

where h is an arbitrary matrix. Using the condittonminimize the cost function of Eqgn. (5)
into Eqn. (11) and solving the result with respgedhe arbitrary matrix, we obtain that

h=[-(R"b+D-R*RD)D" || -DD* )+sDD* = -DD" +sDD", (12)
where s is an arbitrary matrix. The substitutiorEgh. (12) into Eqn. (11) results in
KY2K K ¥2 =(R*"b—R*RD)D" +1. (13)
Premultiplying and postmultiplying both sides ofrE§13) byK .2, the inverse of the updated
stiffness matrix is derived as
K=K +KM2(AK 22) (- AGYK V2F) K 2. (14)
Equation (14) represents the inverse matrix octireected stiffness matrix due to the existence

of the constraints and incorporates the constragffedts. Substituting Eqn. (14) into= K ~*F
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with the property of(K ;1’2F)+K;“2F=1, the equilibrium equation of constrained statistsyn
can be derived

u=0+K¥2(AK 2] (b—AQ). (15)

It is observed that this result corresponds with time provided by Eun, Lee and
Chung [13]. The second term of the right-hand sifldeqn. (15) denotes the displacement
variation deviated from the initial state and thenstraint force vector is obtained by
premultiplying k , on its second term as

Fo =K Y?(AK ;¥2) (b-AQ). (16)

The derived equilibrium equation can be utilized &ynthesizing partitioned
substructures into an entire complex system by @oimdp the equilibrium equations of all the
substructures and the compatibility conditions.

2.2 Constrained dynamic systems

The constraint forces for dynamic systems are egee by the mass variation of
inertia force term unlike the static systems. Letassume the stiffness and mass matrices of
initial dynamic system to bg and y,, respectively. The dynamic responses of a system

which is assumed to be linear and approximatelgrdized for n degrees of freedom (DOFs)
can be described by

M, g +Cq+Kag=f(t), a7
whereq=[q, @, -~ q,]'» CeR™ andK eR™ are the damping and stiffness matrices,
respectively. Or the dynamic equations can beesgad in matrix form as

MG =F(g.a.t), (18)

where F(q,q,t)=-Cq-Kq+f(t). The acceleration vector of unconstrained dynaswatem,
a(g,q,t), can be written as

a=M;'F. (29)
Let us assume that the system is constrainegh lgonstraint equations expressed as

A(g,0,t)d =hb(q,9,t), (20)

where A is anmxn matrix andb is anmx1 vector. It is known that the dynamic responses of
constrained system must satisfy the constraint equationall aimes during numerical
integration. The corrected mass matrix incorporatesdmstraint forces required for satisfying
the constraints. The constrained dynamic equationtaluke constraints such as Eqn. (20) is
modified by

Mg +Cq+Kqg=f(t), (21)

whereM denotes the corrected mass matrix.
The cost function for predicting the corrected maasimis written as

(22)

a

J :EHM ;IZ(M S VER VEE )
2
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The corrected mass matrix can be obtained by minigizire cost function of Eqn. (22).
Utilizing Eqgn. (21) into Eqgn. (20), it follows that

AM *(-Cq-Kqg+f)=b, (23)
And the modification of Eqn. (23) leads to
AM*l/ZM 1/2M 71M 1/2M l/2a:b (24)

where a represents the acceleration vector of unconstraiystera of Eqn. (19). Letting
R =AM ;2 and solving Eqn. (24) with respectfprzm M ¥2m V2, it follows that

M2\ 1M Y2 Y28 — R+b+(l —R*R)y, (25)

wherey is an arbitrary vector. Utilizing the condition teinimize Eqn. (22) into Eqn. (25), it
satisfies

R'b+(-R*"Rly=M"2a, (26)
Solving Egn. (26) with respect to the arbitrary wectve obtain that
y=(-R'R[M¥?%a—R"b)+R'Rz, (27)
where z is another arbitrary vector. The substitutibBgn. (27) into Egn. (25) yields
MY*M*MY*MY?a=R*b+MY’a-~R*RM ?a. (28)

Again, solving Eqn. (28) with respect kp¥*M M Y2, it can be written as

MY2M M Y2 = (R°b + M ¥2a—R*RMYZa)M %) +r|l - (M2afM¥2a) |, (29)

where r is an arbitrary matrix. Using the conditionntinimize Eqn. (22) into Eqn. (29), it
follows that

(R'b+M2a-R"RM M %) +r|i - (M2?a)M¥?) |=1. (30)
The unknown arbitrary matrik can be obtained by solving Eqn. (30) as
r =1-(MY2afm22a) +d(MY2)mY2a) | 31)
where d is an arbitrary matrix. Substituting Eqnl)(8to Eqgn. (29) and arranging the result
with [| ~(M¥2a)Mm¥2a) l| ~(M¥2a)m gza)*lz | —(M¥2a)M ¥2a)’, we obtain that
MY2MMY? = (R"b—R*RMY?a|M %) +1 . (32)

-12
Premultiplying and postmultiplying both sides of EqB2) by Ma , the inverse of

the corrected mass matrix can be written as

ML=M M2 (AM 2 )* (b- Aa)(M Eli/za)Jr VIRE: | 33

Inserting Eqn. (33) into Eqn. (21), the acceleratiector of the constrained system with the
relation of(M ;’2a)*M .2(_cq-Kqg+f)=I can be obtained as
§=a+M;"2(AM"2) (b-Aa). (34)
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Premultiplying both sides of Eqn. (34) Qy_, the second term of the result represents the
constraint force vector as
Fe =MY2(AM*?) (b - Aa). (35)

The dynamic equation and the constraint force ved@ived in this study exactly
correspond with the ones provided by Udwadia andtéa[44] although the starting points are
different. The equation can be utilized in combinsubdivided substructures by constrained
conditions into a huge dynamic system.

3. Synthesis of partitioned substructures

3.1 Static synthesis of substructures

This section considers the analytical method to symtbesartitioned substructures
into an entire complex structure based on the demgggition. Let us consider an initial system
shown in Fig. 1(a). The static equilibrium equatiortha initial system 1 described by ax1
displacement vecton® can be written as

KOyu® —fo (36)

where the superscript (1) denotes the initial syst&f, is an nxn positive-definite stiffness
matrix andf @ is annx1 force vector.

Interfaces

(@)

Interfaces

Interfaces Interfaces
/ " "Fa<es
(b)

Fig. 1. Synthesis of substructures; (a) two substructb@several substructures

Let us assume that a subsystem 2 is newly interconntrtheé initial system shown
in Fig. 1(a). Describing its static responsesryl displacement vector?, its equilibrium
equation is written as

K@yu® @ (37)
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where the superscript (2) represents the subsystersantezcted to the initial system ard?
is an (rxr) positive-definite stiffness matrix. Let us partitiohetinitial system and the

subsystem into two regions of interior and boundaspeetively.

Expressing the partitioned displacements of the Initjstem asu® :[ug’ ul()l’]T
where y® denotes anmx1 interior displacement vector ang® is an (n—m)x1 boundary
displacement vector, the equilibrium equation camwh#en as

1 1 1 f 1
Ka(a) Ka(b) Ua() a() ) (EE)
1 1 1 f 1

Similarly, the equilibrium equation of the subsysteam be expressed as
e @ 27,,@ 2
g e ]
| Kpa  Kis JLUp fy
where u® = [uf) ul‘f)]T and u® denotes(n—m)x1 boundary displacement vector angp

represents(r -n+ m)xl interior displacement vector. Solving the first etipra of Eqn. (38)
with respect tay®, it can be expressed as

-1
uf =K Qe Buf 1] (40)

And solving the second equation of Eqn. (38) with eespo yl”, substituting Eqn. (40) into
the result, and arranging it, we obtain that

Koud =f,, (41)
where K, =1 -K § 'K 2K 87K § andf; =K 71,0 —K Q7K QK Q70
By the similar procedure, Eqn. (39) can be resolved as

u® =K 27K Qu® -2, (42)

Ku® =f, (43)
whereK = | —K @K @K @K @ andf; =K @ F@ _K @K OK @@

The entire system must satisfy the compatibility conddiat the interfaces between
the initial and added structures. The compatibilitpditions at the(n_m) interfaces can be

written as
u® =u®. (44)

Substituting the equilibrium equations of Eqgns. (4d4)l 443), and the constraint equation of
Eqgn. (44) into Eqgn. (15), and solving it, the stadsponses at the interfaces are calculated and
the substitution of the results into Egns. (40) and (d&{ls to the displacements of the interior
regions of the initial system and the subsystem. Itvedtigated that the structural analysis of
the entire structure is performed by two stages ondhedary regions and the interior regions.
The proposed equation is extended to a generalizedoohéd synthesize a series of

substructures. Let us consider the structural synthesis efitire system composed of an initial
system and two or more subsystems shown in Fig. 1(l0).assume that the stiffness matrices
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of all substructures are full-rank. The equilibriuguations of the initial system and t(e_l)
subsystems can be written as

& ® @) ®
K aa K ab ua _ fa
@ @) O s |’ (453)
_K ba K oo || Ub fb
'k @ 2 (@] @) @]
K aa K ab K ac ua fa
@) (2 (2 @ |_|f®@
Ko Kg Kgo [Ug |[=[fp" [ (45b)

cc

) @] @] @ @]
_K ca K cb K u c fc

M () (@) 7,0 £ ()

Kaa Kab Kac ua fa

S R (5c)
() () () ) ()

_Kca ch ch__uc _fc

[ () (s) (9] )]

I e

Kb K JLuy’ | [y

where the superscript (1) denotes the initial systemsubscript ‘b’ in Egn. (45a), the ‘a’ and
‘c’in Egns. (45b), (45c) and (45d) denote the bargdegions. And the subscript ‘a’ in Eqn.
(45a) and ‘b’ in Eqn. (45d) represent the interegions.

The displacements between two adjacent systems musty sttes compatibility
conditions. The(s_l) compatibility conditions can be written as

u =u®. (46a)
u@=u®.... (46b)
uld =u®.... (46c)
ul® =u®. (46d)

The first and second equations of Egn. (45a) foirttial system can be written as

K®u® =K 9u® - 9], (47)
KOyu® =fo, (48)
whereR ® =1 -K § 'K OK 'K § andf® =K 71,0 —K 37K QK 70
And Eqgn. (45b) can be solved as
u® =K 27K Qu@ + K 2u@ £ 2], (49a)
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2 _ @ e @, 2, (2

u,” =-Kg [Kbaua +Kue” —f, ]’ (49b)
a

u?=-kK® [K Oy® LK QuP -t @ ] (49¢)

Solving the three simultaneous equations of Eqns. \{A®) respect toy®@, y® and u®, they

can be derived as

K Ou@ —f© (50a)
K Qu® =f@, (50)
KPu® =K 2f@ +{@, (50¢)

where

2@ _ 1 @Y @O @ @ @ @1 (2) (2) -1 (2)

K=K (Kabeb Ko —Ka XI K JKey Kg
-1 -1 -1 -1

[Ké? ) NI

£ @k O @ @ @ (2) -1 (2) (2) -1 (2)
f -K (Kabeb Ky —Kg XI K Kg K

(2)-1 @k @7k @ @7 (2 @l @ @7k @ @ 2
( KoKe f? +Kg 17 )-Ka KuKy fo” +Ka 1,

A~

12 5 (2)-1 5 (2)-1p ~ (-1
f @ - _K (Z)K @~ f @ _ (2)K éZ) K ;ZZ)K ;2) féZ) —K éi)K ((:2) fc(2) +ftf2) '

- -1 -1
K£2)=| K(Z) K(Z)K(Z) Kt()i)'

~ -1 -1
K;?Z—Kg) K(Z) K(Z)K(Z) Kt()?’

£ _ @O @O @%@ @7k @
fc __ch chKbb fb +ch fc :

The equilibrium equations at the boundary regionshefinitial system and the first
subsystem are obtained by substituting Eqns. (48), (86d) (46a) into the equilibrium
equations of Eqn. (15). And the displacements at ttezian region of the initial system are
calculated by solving Eqn. (47) from the displacemmettits boundary. Repeating such process
between two adjacent subsystems such as the first aoddssubsystems, the second and third
subsystems, etc., we can obtain the equilibrium eguston the boundary regions of all
subsystems. They can be written as

. 0
KO o 0 0 [u® fo
Z© @) £(2)
0 K@ o0 0 | uf f
2 (2 @ |_|fe 2 ©)f (@2 51
0 0 R® - 0 |uf|=|f?+RGE o1
0 0 o0 KOJuo| | O
~ . -1 . -1 . ~ -1 -1
whereK @ =1 —K ) K OK QKO KO =1 _KO'KOKEP K,
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£0) _ e k) O e e O %O F _ e O e O 97k (9 (7% (9)
f _Kbb fb _Kbb KbaKaa fa ’f(s)_Kaa Kabeb 1:b _Kaa fa ’
)71

<) _ e 0 (i) (i M @ _ e (e H7Le @)
Kaz__ch [Km_chKbb Kba’Kc _I_ch chKbb Kbc’

£0) _ O e O O ) OR0)
fc =-K chKbb fb +ch fc )

cc

£0) — e O e e 7Y () 0) O e (e 7Y (i))l( Y e H7% () O (i))
fa __Kaa (Kabeb Kbc_KacXI_ch chKbb Kbc _ch chKbb fb +ch fc

i) (e ()7L (i) )L ()
_Kaa Kabeb fb +Kaa fa '

~A . . . . . . o . L . 1 o . . - .

R0 =k e -k -ke ok k) ke ke kg k@]
e e O e () i=1 2 -, s

+1-K, KKy K,

where (i) indicates the i-th subsystem.

The static behavior at the constrained boundary nsgion the s subsystems is
described by substituting the equilibrium equationg&gf. (51) and the compatibility of Eqns.
(46) into Egn. (15). The equilibrium equations to aése the interior regions of the s
subsystems can be assembled as

K& 0 w0 Tud) [-(kQuf 1)
0 K - 0 u?l fi (52)
0 0 - kgfup iy

wheref ) = —K OR 070 _K OR O OROKFO _g O 07F 0 £ 0

L0 — Kk 07 @ M O e @)
Kalz __Kolc Kcla _Kcleblb Kbla :
The derived solutions can be utilized based on thengstson that the stiffness matrices are
full-rank. The following section considers the methodsynthesize the floating subsystems of
free-free end conditions.

3.2 Static synthesis of floating substructures

The derived method was obtained based on the assnriptt the stiffness matrix is
positive-definite full-rank matrix. When the substiwe has rigid body modes, the stiffness
matrix becomes semi-positive definite. The method camaodle the synthesis of unstable and
stable structures because the unstable structure hasfftresstmatrix of rank deficiency. The
derived method should be modified to utilize in désog the static responses to synthesize
partitioned floating substructures.

Consider the synthesis of a stable fixed-free systenmdlaa unstable free-free system
2 to be depicted in Fig. 2(a). The systems have alesibF at each node, horizontal
displacement. The two systems are interconnecteddasmo or . The equilibrium equations
of the systems 1 and 2 are written as
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Kk -k - 0 0wl [Hf]
KoKtk - 0 0 |u | |
: : : : N R (53a)
0 0 0 k,+k' —kilu,, foa

0 0 0 -k Kkt JLu, | [ 0]

S T o oul [f]

K2 OK24KE - 0 0 |ul||*
: : : : A (53b)
0 0 0 KL+k: —K|u.| |f.,

0 0 0 -k K|u||f

where y, (i=1, 2, ---, n) and u, (j=2, 2, ---, r) are the displacements of the

systems 1 and 2, respectively. Andand f, represent the applied forces of the systems 1 and
2, respectively.

systermn 1 system 2

7 u uz u u u u; ul_suk J
m 1 2 Un, n r o Mr1 g MUz o, 1y

"uli u"nl * n".l] : \'n% '|"i'|2 ‘n'é

kl kl km kr kr—] lkl

(a)

Y Uy . C .
’,4 Y Ly Y Ug Upyyy,, Uy 0 Upy ) UppUp 1

é il ) iy TV WV Wi 5t W

1 1 1 2 2z 2

4 kl kz km kr liI‘r—l Jkl

(b)
Fig. 2. A synthesis of fixed-free end and free-free enthbstuctures; (a) two substructures, (b) a
synthesized entire structure

The subsystem 2 has free-free end conditions and tkeofats stiffness isr —1. The
two systems can not be synthesized based on the demduedion because the stiffness matrix
is not full-rank, and the equation should be modifiEde entire system ((h+r) DOFs of the

systems 1 and 2 is described by tl@e+r_1) displacements excluding the common

displacement at the interface. The compatibility dibon at the interface between adjacent
subsystems can be written as

u,=u. (54)

n
As shown in Eqn. (54), the displacement at the iaterfis described by a single displacement
u, or u;. Extracting only the equilibrium equations at théeiface from the last equations of
Egns. (53a) and (53b), they can be written as
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ky O Uy | Kty | (55)
0 K Ju | [f+ku,
The modified stiffness matrix exhibits a full rank,dathe substitution of Egns. (54)
and (55) into Egn. (15) yields

u] [[1 0] [kt o™ kool U,
ul llo 1] o K2 L -1 0 k2 L -1 fu
r L r r-1

r

(56)

_ 1 _krj{ krz__ un—l
CKEkA K K2 f U |

Thus, the two displacements can be calculated as

=ty = [kn uy +k2(F +u ). (57)
The entire system is explicitly descnbed by tqtal r —1) equations of Eqn. (57) ar(d+r _2)
equations to insert Eqn. (57) into Eqns. (53). Frhenderivation, it is known that the proposed
method can be utilized in the synthesis method of sutistes to include floating
substructures.

The following considers the synthesis of substructuresléd at many overlapped
interfaces. For two substructures with overlap as degim Fig. 3, neighboring substructures
are allowed to have common, or overlap, members. Thtermyhas a DOF at each node,
horizontal displacement. An end must be supported ta table structure. Let us assume that
the two substructures 1 and 2 havém< n,m<r) common points of the substructures 1 and

2 to haven andr DOFs, respectively. The equilibrium equations are esged as

B! 1,1 1
Kii Kib l’Ii — fi , (583)
Ky Kb up| [0

M 2 27, ,2 2
Ki Ki | Ui _ f; ’ (58b)
_Kéi Kéb__ué fo

where i and b indicate internal and boundary DOFs, respectivélfie substructure 2 is a
floating structure with the stiffness matrix of raﬁk_l) and the entire structure is described in

(n+r —m) configuration space.

A,
/ IIIlI 111 m ”‘2 Uy M In-1 i Uy
fﬁﬁ |||11—v a"i"{'_“
kl kZ Ikn—l kn
2 2 2 2
Uyg J ur L+ EM Uy Hlll“l UymUg ,\’\ Uy
. Yyy - VY Vv i WY
2 2 2 2
kr kr m+l kr—m Ikl

m o comimoen nodes
Fig. 3. Two overlapped substructures
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The M compatibility conditions between the neighboring&uuctures can be written as

up=uz, (59)

where u! and u? are mx1 vectors. The2m equilibrium equations related to the boundary
displacements of the two substructures are written as

K:tL)b O u:tL) — _Ktiuil . (60)
0 Kgfug| [fs—Kgu?

The compatibility conditions of Eqn. (59) can bettem in a matrix form

Au, =0, (61)

. . T T
where A is anmx2m Boolean matrix whose elements are 0, -1 or 1, apet [ut us ]r

The substitution of Eqgns. (60) and (61) into Egn. (l&gds to the equilibrium equations
expressed by the displacements at the interfaces to sa#tisfycompatibility conditions.
Inserting their substitution into Eqns. (58) which @he equations to describe the interior
regions, the static behavior of the entire structarelme obtained.

3.3 Dynamic synthesis of subsystems

By the similar process as the static approach, the dgnamuations of each
substructure are firstly established and then they @ambined based on the constraints of the
dynamic responses at the interfaces between consideretiustires. Assuming that the
substructures in Fig. 1(a) are dynamic systems, let usdmrtsie dynamic synthesis of the two
dynamic substructures. The dynamic equations of two mudbstes can be written as

1) 1) i (@ 1 1) 1)
me MeTas] ke KkBTus]_[po o2
VT TSN M P

@ @@ @ @@ @
2 @ 1@ 2 (2 2 @ |’
Mg My, | Ug Kpa K JUp Py
whereu® andu® denote ther x1 and sx1 displacement vectors, respectively, and the second

and first dynamic equations of Eqns. (62a) and (62present the dynamic equations at
boundary regions. The constraints that the dynamioresgs at then(m< r,m< s) interfaces

between adjacent subsystems are the same can be wasitten
Ul()l) = uéZ) . (63)

Expressing the coupled dynamic equations of Eqns.i$2he modal coordinates and
the mode shape matrix corresponding to the fiiseigenvalues, they can be written as

MO§® +K Oq® =p®, (64a)
M(z)q(z) +K(2)q(2) :5(2), (64b)
where [ug)T uS)T]Tch(”q“), i=12, ¢® and ¢@ are rxm, and sxm mode shape

matrices, respectivelyy® andq® arem x1 modal coordinate vectors. And
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MO = (p(i)TM (p(i) , (65a)
K® :q)mTKq)(i), (65b)
p® :(mep(i), i=12 (65¢)

It is observed that the dynamic equation{roﬁ s) DOFs are reduced to the decoupled
dynamic equations ofm DOFs. And the constraint equations can be written as

Prmd” =000 (66)
Substituting Eqns. (64a), (64b) and (66) into Eqn),(8 is found that the dynamic responses of
the entire system can be described based on the naatdirate vectors.

4. Applications

4.1 Application 1

The validity of the proposed method is illustratedotlgh two simple applications.
First, consider a three-spring system of fixed-free@mtlitions shown in Fig. 4. Let us assume
that the initial structure is partitioned by thredstnuctures to be composed of a stable structure
and two floating substructures. Inversely, the ergiracture is formed by interconnecting the
three substructures. The equilibrium equations of tbstsuctures are expressed by

ku, = f,, (67a)

ke —kpfu | _[Of (67b)
-k, k, Ju,| |O

K kg fUp | | fof (67¢)
_k3 k3 U, f3
@ @ ®
% : ull,il) u}i_ . U;g_) Us },_fg) US&
(@)
2 ul'ﬂ uzl,ig ug, 1
% W W W
Ak k ,
(b)

Fig. 4. A three-spring system; (a) three substructurgsarfentire structure

Although the floating substructures are independemtistable, they can be stable by
restricting the horizontal displacements or providthg forces for keeping the equilibrium
state. For the synthesis of the substructures, the folipaompatibility conditions at nodes 2
and 3 are utilized:
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u, =u,, (68a)
U, = U,. (68b)

Equations (68) are modified to the equilibrium edurad with respect to the displacements at
the interfaces of substructures:

o clilles)

k 0w [ ku | (68b)
0 Kyju, f, + kU,

Utilizing Eqgns. (68) and (69) into Egn. (15), andraducing U, = ui and U, :u'2
into the result, the final equations with the seceqdation of Egn. (67c) are derived as

1
u =——-oI(f, +ku,) (70a)
= (k)
1
u2 :m(kzul+k3u3+ fz)a (7Ob)
U, :ki(kzu2+ fy)- (70c)
3

The derived results correspond with the equilibriumagigns of the initial entire
structure. Although the considered application isnaps structure, its concept can be easily
extended to complicated structures with various iate$.

4.2 Application 2

This application is to carry out the structural regsial of modified structure to add a
bar to the initial truss structure. Consider a plansstrstructure shown in Fig. 5. The nodal
points and the members are numbered. Correspondingcto pgedr of nodal displacement
components(ui ,vi) is expressed by a set of forqg,ls’\,‘). The initial truss structure is subjected

to 100kN and 20kN in the downward and right-hand side direction ate® All members have
elastic modulus afooGPa and cross-sectional area @65x10°m?. The equilibrium equations
of the truss are expressed by

[ 2617 0 0 -1042 0 -0533 -04u, 0
0 1575 04 0 0 -1042 0 |u, 0
0 04 1689 0 0 0 0 |v 0 (71)
10°x|-1042 0O 0 1042 0 0 0 |[u[=10x| 0
- 04 0 0 0 1.389 0 -1389|y, -100
-0533 -1042 0 0 0 1575 04 |u, 200
| -04 0 0 0 -1389 04 1689 |v| | 0 |
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k 4.8m " 4.8m 1

Fig. 5. A modified truss structure; The dotted line indésathe added bar

Premultiplying the inverse of stiffness matrix on both sidegqgn. (71), the displacements of
the initial truss can be obtained as

[uz U, vz U, v, U Vs]T:
[-13 76 -18 -13 -202 108 -194]mm. (72

Let us assume that we add a truss bar between noaes3 &he bar itself is unstable
structure with free ends and can be stable structure bwyggithie forces for keeping the
equilibrium state in plane. The forces are constraintef® and can be calculated by using
compatibility conditions.

The equilibrium equations of the truss bar correspondingh®® displacements

[u'3 v, U, v;]Tare written as

53333 -40 -53333 40 [u,] [0

, | -40 30 40 -30|v|_|O], 73)
~53333 40 53333 -40|u,| [0
40 -30 -40 30 |v,] [0

The stiffness matrix of Eqn. (73) exhibits the floating medthout supporting conditions.
Extracting the equilibrium equations corresponding to n@&laad 4 from Eqn. (71),
respectively, they can be written as

10 1575 04 |u, 10« 1.0417, 16 x 0.013, (743)
04 1.6889| v, 0 0

16 x 10417 0 |u,|_[ 1.0417x10°u, 10~ -0.0013] (74b)
0 13889|v,| |04x10°u,-100 0.0135

And the equilibrium equations of the added bar of Eqn). £/& modified by the stiffness matrix
of full rank as

U,

107.]53338 0w]_ [0 -40 -533 40]v| (75a)
0 30|y ~40 0 40 -30|u,
\
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Uy

1075|5388 Ou]_ 5 [-533 40 0 -40]y| (75b)
0 30]y, 40 -30 -40 0 |u
v,

In order to establish the relationship between the initiaks and the bar, the
compatibility conditions at nodes 3 and 4 between tweacgires are defined as

Uy =Ug, V5 = Vs, (76a)

u,=u,, V,=V,. (76b)

u] [, _0.494]J5+0.253J;‘—0.1897\/;,} (772)

v, | | ~0.20111; + 0.1508/,

[u;] [0.767, +0.2222 +0.29631, - 0.2222/, - 0.00016 a7y
v,| |v,| | 0418,+ 0875/ -0.1667,+0.125, - 0.00063

Substituting Eqns. (77) into the displacements of tha&lrituss of Egn. (71), the static
displacements of the modified truss as well as thelatisment variations due to the
modification can be explicitly calculated. Starting frélne displacements of initial structure,
this application exhibits that the proposed method carrrdate the structural responses for
changes in the design from the constrained displacemetite aiterfaces using compatibility
conditions without solving the complete set of modifiedudtaneous equations.

5. Conclusions

The problem on the structural synthesis of substructurescameected by interfaces
and overlapped points is established by a mathematicstére consisting of equilibrium
equations and prescribed compatibility conditions. Asegnthat the compatibility conditions
are constraints to govern the static or dynamic resporetegedn adjacent subsystems, this
study derived the constrained static and dynamic equatmmescribe their responses. The
approach is carried out by partitioning into two regionsntdrior and boundary regions, and
giving the compatibility conditions. The approaches carextended to the synthesis of the
unstable subsystems of free-free end conditions and tidityaif the proposed method was
illustrated in several applications.
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