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Abstract. In a normal power system, many generators are tipgfia synchrony. That is, they
all have the same speed or frequency, a systeradney. In the case of an accident a situation
might occur when one or more generators are runatrggdifferent speed, at much faster than
the system frequency. They are said to be steppingWe have been engaged in a series of
studies of this situation, and have found glob&laator-basin portraits. The electric power
system involving one generator operating into dimite bus is a well-established model with a
long history of research. We, however, have derivew mathematical model, in which there
is no infinite bus, nor fixed system frequency.the simple case of two subsystems (each a
swing pair) weakly coupled by an interconnectingngmission line, we have developed a
system of seven differential equations, which ideluthe variation of frequency in a
fundamental way. We then go on to study the behadighis model, using the straddle orbit
method of computer simulation to find the basic ¥é¢ succeed in finding many basic sets in
this new model. In addition, we consider unstabiaitl sets which have two- or three-
dimensional outset.

Keywords: Power system stability; no infinite bus; basinatifaction; straddle orbit.
1. Introduction

We have been engaged in a series of studies gdisteput in electric power systems, and
have not assumed an infinite bus having the nonsiystem frequency [Ueda et al., 2004]. That
is, we do not fix the frequency of operation of #estem, but instead take it as a dependent
variable. This is determined by balancing the pogererated with the power consumed in the
electric power system. Our new mathematical modslriot been found in other research works
on electric power systems. In this paper we reparthe basic sets of a model for a simple
electric power system, consisting of two swing sys connected by a somewhat lower
capacity interconnecting transmission line. By angwsystem we mean a generator and motor
pair, connected by a transmission line. Oscillatibthe relative phases of the generator and the
motor is similar to the simple pendulum of basiggibs, so the two-swing system is similar to
the double pendulum, or rather, two pendulums aliply a spring.

In our most general model for the double swingeystwe allow for arbitrary connection
points for the transmission lines. We have intraaliparameters to describe these connection
points, and have established a model for this gérese, as a system of seven differential
equations [Ueda et al., 2004].

Then we specialize to two cases which we studyomesdetail (referred to as Case 1 and
Case 2). As we will see below, Case 1 is a fadbalized system and results in a subsystem of
three dimensions that is independent of the reghefsystem, which we call the frequency
subsystem. In simulations we have determined thé subsystem has two attractors,
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corresponding to synchronous and asynchronous tiperaetween two power systems,
respectively. We have found attractors in which on¢he other or both of the swing systems
are in static equilibrium or swing with smallerlarger amplitudes or step out. Then, using the
straddle orbit method [Battelino et al., 1988], w&ry out a series of simulation runs to
organize our study. We find many basic sets (ufstaquilibria or unstable limit cycles), and
clarify connections among steady states. Next, basethe results of the Case 1 system as
above, we carry out many simulation experimentstormore realistic Case 2 system.

Significant state from the viewpoint of normal ogtion in electric power system is only
one stable equilibrium, and swinging (a stabletliayicle) or stepping out, which is caused by
accidents, is abnormal and must not occur. In @ddi, basic sets (unstable equilibria or
unstable limit cycles) have not been consideredise they are not observed in real systems.
For the purpose of stable operation, generatotbansystem are controlled so that swinging
does not begin, or load or transmission line wlareccident occurs is broken before leading
to stepping out. In order to detect indication @firging or stepping out, it is essentially
important to take into consideration the fact thatindary between two states, including normal
operation and swinging or stepping out, consis® loésic set, its insets, and its outset.

The paper is organized as follows. In Sec. 2 wensarize the derivation of the equations of
motion of our new models. In Sec. 3 we discuss@ase 1 model, and describe its attractors
and unstable limit sets. We also describe our mpieéry simulations for basic sets. In Sec. 4,
we use our knowledge of Case 1 to describe sortigedbasic sets for Case 2 systems. Finally,
in Sec. 5, we summarize and present our conclusions

2. Construction of the Electric Power System Model

In this section we summarize our new system, amdpaoe with earlier works [Ueda et al.,
2004].

2.1 The Interconnection of Two Systems

In Figure 1, we represent two generator/motor systdabeled with subscripts 1 and 2, and
tied by interconnecting transmission line, havinductancd.. We assume ideal conditions, in
that the generators and the motors are identigalgefficiency is 100%, and there is no loss in
the step-up and step-down transformers nor inrdresinission lines. The symbols indicated in
Figure 1 are as follows. The points of connectibthe interconnection line are determined by
the parameter§ and(, (0<¢; < 1; 0< ¢, <1) discussed below.

The rotating speeds (angular frequencies) of tleepsirs arev; andw,. The states of the
four rotors are given b, O, b4, andbmp. The relative phases of the four rotors are giwen
Yg1s Ym1, Vg2 @Ndymp. According to the familiar relations,

G =wit + g1, Om1 = wit +7mi
By = wat + 759, Oma = wat + ma.

1)

Note that herev; andw, are variables, rather than constants usually asdumhich are the
angular velocities of the (commercial) infinite busthis research, we consider changes in both
the angular frequencies and the relative phased, vea introduce assumptions that time
variations of the relative phases may be negleictedmparison to the angular frequencies. We
denote phase differences by,

Y1 =gl — TYml: T2 = Vg2 — Ym2- )
2
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Mechanical power variables aRy, Py, Py, andPyp, while the electric power variables are
Pget, Prets Pgez, @nd Prep. In addition, we have flows of interchange powbrotgh the
interconnection line from system 1 to syster®3,andPr,, as

Pﬂ = Pg,lr-] - Pr.liﬁ]' PJ'Q - Pmr-? - P_f,lr-'j:- (3)

We assume that the angular frequency in each sysi®®es not change when the power
imbalance is zero, we have,

duny |
21 =—[P(|] _Pui] _Pf'l}
dt wy "
21 oy = —llqu — Pma + Pro)
dt  wa - (4)

wherel is the inertial moment equally of the generatars] of the motors.

No.1 No.2
Py Py

U J

-
0L, < Loy
-
L
(1 ”““ €12
' — — !
PT1 PT2
—-—
(l—//l)Ll - (l—[z)Lz
-

€m1 @ €m2

Pml Pm2
Fig. 1. Two swing systems are connected by an intercharagesmission line of inductancé, The
parameterd; and ¢, determine the points at which the ends of therghi@nge line connect to the two
swing pairs

Note that in this study, we consider systems ctingiof generator/motor pairs, in which
the generator and the motor have exactly the sampacity (our model might apply, for
example, to a pumped-storage power station in waitdrge synchronous motor is used), and
we assume that the coefficients of inertia of @lifmachines are identical.
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2.2 Representation of Speed Governor and Load Chacteristics

Because of the speed regulation characteristichef governor, as the rotating speed
decreases, the mechanical power input to the gemarzreases. Similarly, when the rotating
speed increases, the mechanical power input tgeherator decreases.

On the other hand, with an appropriate frequen@yatdteristic of the load, as the frequency
decreases, the power of the load decreases alsaudee the rotating speed of the motor
decreases. And when the frequency increases, thermd the load increases. Such a frequency
characteristic is called self-regulating. This l®wn in Figure 2, where in addition, we have
shown a characteristic which is approximately lmea

Wi

_ : : Fyi
z z Z > P
PgiO Pgi - sz PmiO e
Fig. 2. Frequency characteristics of an electric powetesys The speed regulation characteristic of the

governor is labeled G. The self-regulation charistie of the load is labeled M. Characteristicekn
shown in the figure are applicable for neighborhobéectual equilibrium state

Mechanical power into the generator and that outputthe motor depend thus on the
frequencies of operation and the speed versus pokamacteristics of the generator and the
motor, for which we assume the equations,

Fyi = Fyn+ %KgiPrlws —w;i)/2m
Ppri = Ppin+ %Ki Paiwi — wg)/2m
wg = 1207 (5)

in whichi = 1, 2 and the parameters appearing ar; %peed/power characteristic of the
generator, %, speed/power characteristic of the mofy,, the set value of the mechanical
power into the generatdp,;,, the set value of the mechanical power output fieenmotor Pg,

the base power capacity of the system, @pdthe base angular frequency of the system. Here,
we assume a 60 Hz system, see the last equat{&i. of

4
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2.3 Thévenin Equivalent Circuit

Figure 3 shows the Thévenin equivalent circuithef two-swing system shown in Figure 1.
Letting yr1, yro, denote the phase differences of the fictitiousages,e;, ande,, againse,, and
emn, respectively, the fictitious voltages, ande;,, are represented by the equations,

i ﬁgﬁ sin(fm: + 7)) = (1 — &) egi + Liems, (1= 1,2) (6)

where
Efi = Eif;
fi=\[€ + (1 — :)? + 26,(1 — &)cos;
£+ (1 —fi)eosy T —
COS Yy = ) TR el L )
fﬁ | ' )
No.1 No.2

er1 = (1—0l)eg + e era = (1 —La)ego + laepma

Fig. 3. Schematic diagram of the interconnection lineha two-swing system presented in Figure 1,
showing equivalent circuits for the fictitious ermdts

We allow the angular speeds of the machines tortetightly from the constanbg, so the
amplitudes of the electromotive forces, which arepprtional to the angular speeds, will be
slightly different. That is, the following substitons were used,

By—= 1}" (f=:1:2¥;

wg (8)
Note that the fictitious voltages; and e, are different from the voltages; ande, at the
endpoints of the interchange transmission line shdamwv Figure 1. The voltageg, is the
fictitious voltage behind the fictitious inductanégl1- ¢;)L;. Let

Lin=L+#(1 —£)01 +£3(1 — £a)Lo. 9)
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Note also here that the absolute values of théidigs voltagese; ande, may vary, as they
depend on the power input to and output from tletesy, and on the positions of the endpoints
of the interconnecting transmission line, thabisthe parameteis and/,.

Finally, lety;, denote the phase differenceegfagainse, as

Yio = Om1 + 71 — (Pma + ¥p2). (10)
Then appealing to the assumptions for the relgthases, we have from (1),

Y12
=W —wo

dt . = (11)

2.4 Differential Equations Describing the System

Applying circuit theory analysis, we may calculéte electric power flow®ge, Pmet, Pgeo,
andP, in the circuit. Then with swing equations, we h#ve differential equations describing

the system indicated in Figure 1,

dy

dr i

E%T = Z—f {Pg10 + Pmio + Ky (wp —wi)} — 2biafy fosin(yp — 7i2)
s —Maf1 fosinyia + 2byafy fisinyp — 2bysiny — Dhxg

ar <2

1 W
w2 B H{f' 0+ Pmao + Ky (We — wa)} — 2byads fi sinfvyre + 719)

dr
—buflfz siny1a + 2biafa fasinyps — 2basiny — Daxo

d-‘j.-;-: . l{ e
dr g T
EJ]LA:]_ al } fll . : i »
P 3 { {Pg10 — Pmio + Ky (wp —w1)} — biafifosinyie
T I .
II 2 \‘ {Pg20 — Pmoo + k3 (wp — wa)} + biafi fosin ’?13}
dr (12)
with
==l = \ PPI
B (13)
and
E? E? (@B
B T o opemess S Py
" wpliPg’ T wplLiaPp’ 3 “\ Pyl
b = Yol gi — Yo Kmi b Yol gi + VoK mi
i o e am
il mill
Pgi0 = —— Pmild = (i=1,2).
Py’ Pg (14)
6
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Note. In the situation in which the two generator/motmair systems lose synchrony, the
interchange power$r; andPq,, begin to swing. But in this derivation we havelided only
the lowest frequency term of their power swing comgnts.

3. Simulation of the System for Case 1

In this section we provide some considerationsndigg the system of equations obtained
in the preceding section. We consider the speeisg called Case 1 in the first section.

3.1 Differential Equations

We now consider Case 1, shown in Figure 4, in whjch1,£, = 0. Our equations (11) now
reduce to,

-ri’fr']

dr X1

{f:;:r] == :—f {.!'h;m + Pmio + ki (wp — wy ]} + brasinyia — 2bysiny; — Dy
-.ff”!"_}: )

dT =

dxa wg

o {.ﬂ"yzu + Pmao + k3 (wp — m‘e]} + byosinyya — 29 sin y2 — Dax o
dr  wo =

dypp 1

— (W — Lk
dT I 2)
{IE{L—'] a |wpg 2 i
T == 2 L"—l {J’_.;IU — Pmio -If]-l (g — WA J} — basinyya
diw o [w
2o {l {j"-"srﬁt? — Pm20 + .f;._;' (g — id-_}J} + bya sin ".r'm] ‘
dr 2 | wy (15)
691 @ 692
> >
Ly — L X L
- -
Fig. 4. Schematic diagram for the two-swing system inspecial Case 1
v

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2011.VOLUME 13,ISSUEL.ISSN1392-8716



610.BASIC SETS AND ATTRACTORS OF A DOUBLE SWING POWER SYEM.
Y. UEDA, H. OHTA

Note. Taking¢; = 1 corresponds to placing the bus inside the maftthe first generator/motor

pair, where the electromotive force &y,. But this is impossible in practice. Similar
considerations apply t& = 0. In this study, control devices such as AVBSPand governor

dynamics, are excluded.

3.2 Establishment of Parameters

The values of system parameter that we use inithelaion experiments of this section
are,

a=6.0, Dy =Ds=0.005
bia=0.1, by =by=1.25
ky =k = 2 R ki =ky = L (=K
& 200 iz 40 (16)

where some parameters are made equat:Cy, Ky = Ky (= Kg), kmn = ke (= k), andLy = L.
We now set values for the mechanical power inpuaital the mechanical power output from,
each of the two swing systems:

Pgin = 0.45,  Pryp = 0.40
Pgan = 0.40, pop = 0.45. (17)

Then, values for the power imbalance are,
P10 = Pgio — Pmio = 0.05, pap = pyoo — Pmao = —0.05 (18)

We assume that the transmission power capacitigeointerconnection line is fairly small than
the steady state stability limit of either of theot swing systems. We establish the speed
regulation of the governor, and the self-regulatibthe load. We chose values for parameters —
for example k; andky, and the slopes in Figure 2 — to facilitate theewlbation of frequency
deviations, rather than for fidelity to realistigsteems. The equivalent circuits chosen for the
generators and motors are relatively simple. Otharameters have been selected more
realistically.

3.3 Steady States of the System

We now understand the dynamics of the system ie Cass follows.

The first two equations of (15) represent the fgafing system, and the third and fourth
equations represent the second swing system. Twer Ithree equations of the frequency
subsystem are separated, in the sense that in ttese lower equations, the variables of the
upper four equations do not appear. On the othed,hthe variables of the lower frequency
subsystem do appear in the upper four equations.systems 1 and 2 are also separated from
each other, in the sense that in the equations@&gstem, the variables of the other system do
not appear.

Thus, when the lower subsystem settles into a paitractor (static equilibrium), its
variables settle to constant values, and appetireiniwo upper subsystems as constant forcing
(bias) terms. On the other hand, when the lowesystbm settles into a periodic attractor (that

8
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is, a limit cycle, or oscillation), its variablepear in the two upper subsystems as periodic
forcing terms. The other can also settle into ticséuilibrium when one system steps out.

In the following, we describe the steady statemfbin the system, Case 1. We use the term
steady states to include both stable and unstabitdets. Attractors are classified in Table 1,
basic sets (unstable steady states which have-diomensional outset) are classified in Table 2,
and unstable steady states which have a two- eetiimensional outset are classified in Table
3. The attractors described here are obtained tmulation from the mathematical model
specified by Egs. (15), and may not be always oeskin actual electric power systems.

3.3.1 Steady States with Synchrony of the Two Swir8ystems
In the case in which the two swing systems areyntisrony, that ise; = w, = 120z, each

of the swing systems behaves independently aswislln,is also constant, that ig, = #/6 is
stable, angy, = 57/6 is unstable.

Table 1. Attractors in the System for Case 1

No. | Abbr. System 1 System 2 Between Systems
1 EE Equilibrinm Equilibrinum
2 EO Equilibrinm Stepping-Ont Synchrony
3 OE Stepping-Out Equilibrium {Equilibrium)
4 00s Stepping-Out Stepping-Out
5 S8 Small Amplitude | Small Amplitude
6 sSL Small Amplitude | Large Amplitude
7 LS Large Amplitude | Small Amplitude
E LL Large Amplitude | Large Amplitude
9 S0 | Small Amplitude Stepping-Out Asynchrony
10 0Ss Stepping-Out Small Amplitude
11 LO | Large Amplitude Stepping-Out
12 OL Stepping-Out Large Amplitude
13 | OO0a Stepping-Cut Stepping-Ont
Table 2.Basic sets in the System for Case 1
No. | Abbr. System 1 System 2 Between Systems
14 UE | Unstable Equilibrinm Equilibrium Equilibrium
15 EU Equilibrium Unstable Equilibrinm Equilibrium
16 | EEu Equilibrinm Equilibrinm Unstable Equilibrium
17 UOs | Unstable Equilibrinm Stepping-Out Equilibrium
18 | EOu Equilibrium Stepping-Out Unstable Equilibrium
19 | OUs Stepping-Out Unstable Equilibrinm Equilibrium
20 | OEu Stepping-Ont Equilibrinum Unstahle Equilibrium
21 | OOu Stepping-Out Stepping-Out Unstable Equilibrium
22 sU Small Amplitude Unstable Large
23 Us Unstable Large Small Amplitude
24 UL Unstable Large Large Amplitude Kasibicin
25 LU Large Amplitude Unstable Large CE s
26 | UOa Unstable Large Stepping-Out.
27 | OUa Stepping-Out Unstable Large
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No. | Abbr. System | System 2 Between Systems
28 | UEu | Unstable Equilibrium Equilibrium Unstahle Equilibrinm
29 | ElUn Equilibrinm Unstable Equilibrium | Unstable Equilibrinm
30 | UUs | Unstable Equilibrium | Unstable Equilibrium Equilibrium

31 | UUu | Unstable Equilibrium | Unstable Equilibrium | Unstable Equilibrinm
32 | UOu | Unstable Equilibrium Stepping-Out Unstable Equilibrium
33 | OUn Stepping-Out Unstable Equilibrium | Unstable Equilibrinm
34 UlUa Unstable Large Unstable Large Asynchrony

System 1 is in a stable equilibrium, F 0.368268;y; = 0), or steps outy{ increases

indefinitely, but a limit cycle on cylindrical statspace). System 2 is also either in a stable
equilibrium ¢, = 0.368268;, = 0), or steps out increases indefinitely, but a limit cycle on

cylindrical state space). Thus, for the whole gystihis case comprises four attractors: No. 1 to
4 in Table 1. Each system also has an unstabldil@guin (y,, y,= 2.773325). Withy;, = 52/6,

there are seven unstable equilibria (both systeménathe equilibria): No. 14 to 16 in Table 2
and No. 28 to 31 in Table 3, and seven unstabtsigtstates (one or two systems step out): No.
17 to 21 in Table 2 and No. 32 and 33 in Table 3.

3.3.2 Steady States with Asynchrony of the Two SwgnSystems

In this case, the phases of the two systems arlcked, and;, increases without bound.
The termbyzsin y;, acts as a periodic forcing term in each of the $ming subsystems. Each
then occupies one of the three states: swinging wihall amplitude, swinging with large
amplitude, or stepping ougy(or y, increases indefinitely). Thus, for the whole systéhis case
comprises nine attractors: No. 5 to 13 in Tablarfd seven unstable steady states: No. 22 to 27
in Table 2 and No. 34 in Table 3.

A time series o, y,, andyy, for the LL, LU, and UL are shown in Figure 5, ahdse for

T i
2t'8]Ij[Lj " 25. LUy 72
5. L
-7 1 - ;
. T
8. LLg Y2 24. ULy M
24. UL
-7 L T I
T
T
24. ULy Mt
8. LLy 72
- 1
-7 L
T
T
Y12
25.LUqg 72
-7 L -
- . 0 S !

Fig. 5. Time series for the attractor LL and the basicld¢tand UL.y;'s of the Llg, LL,;, LU, and LY
are identicaly,'s of the Lly, ULy, and UL, are identical, ang,,'s of the all are identical. The waveform of
swinging with unstable large amplitude (U) is stighdifferent from that of swinging with stable
amplitude (L), and the waveform of the system Rlightly different from that of the system 1
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the SL, SU, LS, and US are shown in Figure 6(a).a¥Mdain Figure 6(b) in the next section.
The period ofy; andy, for small amplitude ¥ 0.5 [s]) is the same as thatgf, and that for
large amplitude ¥ 1[s]) is double. Therefore, recalling that two gyss are separated from
each other, if both systems swing with large amg# it is possible to shift the phase of one
system f, againsty;) by half period; the LL, UL, LU, and UUa are fuethclassified into two
steady states respectively. The phase differenweckee two systems is 0 or half period 0.5

[s]) for the LL, and for the UL and LU, about —Qs? or about 0.3 [s]. The SU and US are also
different from the SL and LS respectively not oimystability but also in phase.

0.5 -
6.SL . e T~ — e .
29.9U 't 7.LS N
O 1 -7 1
™ 7
6.SL. 72 23.US M
—T 1 -7 1
T 0.5
s . —" ~—
22.8U 72 23.U8
. ! 0 L
. T
Y12
7TLS M
- 1
- 1 0 1[s] 1
) (@)
0.5
115 e T~ ~ "
22.5U7 T
0 L 1
22.5U07 72

t[s]
(b)
Fig. 6. Time series for the attractor SL and LS and thecset SU, US, and SU's of the SL and SU are
identical,y,'s of the LS and US are identical, gngs of the all are identical. The slight differeneesong
waveforms are similar to Figure 5

3.4 Connections among Steady States

We now investigate basic sets by using the straoidig method. The results are illustrated
in Figure 7. The definitions of panels in the figuare shown in Figure 7(e), and the steady
states, No. 28, 29, 32, and 33, are not basic aetsye explain them in Sec. 3.6. The results
are summarized in the following laws:

11
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(1) In a system, the basic set between the equiliband the stepping out in synchrony is
the unstable equilibrium with respect to the sysfenor y, = 2.773325). This case comprises

four steady states: the UE, EU, UOs, and OUs.

(2) The basic set between synchrony and asyncheorglated to the unstable equilibrium
between systemsy¢ = 52/6); the equilibrium and the small amplitude lindycle are
interchanged. This case comprises four steadysstite EEu, EOu, OEu, and OOu.

(3) In a system, the basic set between the smafllimmie and the stepping out in
asynchrony may be composed of two unstable largdituie limit cycles with respect to the
system. We explain them in this section later. Taise comprises six steady states: No. 22 to
27 in Table 2.

Although 91 combinations of two attractors are pmesbecause there are 14 attractors
(Table 1 and two cases of the LL), only 14 comharest bring basic sets (Table 2 and Figure
7). For the other combinations, the middle poirtineen a pair of points on the straddle orbit
converges to another attractor. For example, tligllmipoint between the EE and SO converges
to the EO, and this is understood from Figure #.dfmther example, the middle point between
the EE and OOs converges to the EO or OE, and stleefuconsider this in Sec. 3.6. The limit
cycles of Figures 7(a), (b), and (c) are separfited one another. Limit cycles including large
amplitude do not appear in Figure 7(a), and twesad the LL, which are shown in Figure
7(d), do not appear in Figures 7(a), (b), and {tlese are due to that all the middle points
between any large amplitude attractor and the @ttieactor converge to another attractor.

The six basic sets with asynchrony, which are gsed@), are shown by three pairs of two
panels in Figure 7; two unstable limit cycles drevsn on the top and the bottom, and a typical
example of the straddle orbit is presented on thizlle. These unstable limit cycles have only
one characteristic multiplier whose absolute vaisegreater than 1; its outset is one-
dimensional. Note that the UL and LU have two casspectively as indicated in Figure 5. The
straddle orbit appears to be chaotic, and fin&lé/middle point between a pair of points on the
straddle orbit converges to another attractor (#feotic” straddle orbits are drawn in the
figure with the point that is half as large as titkers). We denote such phenomena by dotted
lines in the figures, and consider them in the mextion. That is, only in the case of No. 14 to
21 in Table 2, to which two solid lines are attatheFigure 7(a), the point on the straddle orbit
did converge to the basic set.

In the case of four straddle orbits, which areasec(3), shown in Figure 7(a), the point on
the straddle orbit repeats to stay on the SU, U3a,lbr OUa for ten or more cycles, to depart
from it, to approach the SU', U'S, U'Oa, or OU%ag @0 return to the former after the point
moves along the latter for one cycle (rarely twaleg). This is explained by the fact that, for
example, the largest characteristic multipliertaf 8U' is about 176, on the other hand, the SU
3.4. Figure 6(b) shows a time seriesQfy,, andy;, for the SU'. The unstable limit cycle U’ is
three times longer than the periodygf and the unstable limit cycle U is twice than fegiod
of y1». The “chaotic” straddle orbit may involve otherstable limit cycles, and the period of
limit cycles needs to be an integer multiple of plegiod ofy;,. As long as we examine, it does
not seem that other unstable limit cycles exist.

In the case of the straddle orbit shown in Figuil® or 7(c), the point on the straddle orbit
wanders between Yland Ul; or between Ll and LU, and stays on them for ten or more
cycles. Although the point seems to approach thedd'LU" while it transfers to the other, it
does not stay on the U'L or LU' for even one cyalkeither U'L nor LU' is impossible because
the limit cycle L is twice longer than the perioflyg, on the other hand, the U' is three times
longer.

In the case of the straddle orbit between the Sd 8@, for example, the middle point
between a pair of points on the straddle orbit eoges to the SS early. When the middle point
has converged to the SS, by replacing the middiet path another ratio of dividing between a
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pair of points on the straddle orbit, we can getdstraddle orbit for a long time relatively. The

straddle orbit seems to approach the SU beforenverges to the SS, it however stays on no
closed curves for even one cycle. This is simitathie other straddle orbits between the large
amplitude L and the stepping out O, and this isalserved at the other combinations, such as
the small amplitude S and the large amplitude tadstle orbits converge to another attractor

early even if replacing it.
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Fig. 7. Connection among steady states for Case 1
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3.5 Fractal Basin Boundary

In the case (3), although outset of each unstabii tycle is one-dimensional, a pair of
points on a straddle orbit departs from the limitle, and the middle point converges to
another attractor. For example, a pair of pointsaostraddle orbit between the SS and SO
wanders between the SU and SU', and finally thallaigoint converges to the SL.

The outset of a poink, on the SU is one-dimensional (the characteristidtiptier is
3.3716), and its first approximation is given by thigenvectowr. Let X, be the point which
corresponds to the time origin of the SU in Figbyé¢hey, component o¥ be positive, and/| =
1. We determine whether the point

xry =Ty + kv (19)

converges to the SS or SO dependingkoand the result is provided in Figure 8(a). In the
figure, the abscissa represektand the ordinate represents the No. of attrastoosvn in Table
1. Fork < 0, all the points always converge to the SS,thiglis the reason why the line which
begins at the left of the SU is solid; this ruleapplicable to the others. Fkr> 0, although the
points almost converge to the SO, some of themegavto the SS, and one or two converge to
the SL. It has been confirmed by enlarging thergihat the basin boundary is fractal. We also
show the similar for the SU" in Figure 8(b). Ndtattthe point at — 0.0005 converges to the SL
in the top of the figure and that the point at -00@03 converges to the SL in the bottom
although we do not point arrows at them in thergun these cases, the middle point between
a pair of points on the straddle orbit finally cenges to the SL. However it will be possible to
prevent the point from converging by another rafiaividing between a pair of points on the
straddle orbit. The SU and SU' seem to be a hdieioconnection, and this will be the reason
why the straddle orbit wanders.

Note that, in the case of No. 14 to 21 in Tabléh2, point always converges to an attractor
for k> 0, and fok < 0, it always converges to another attractot, idyahe basin boundary ks
= 0 only. Basins may also differ from the figureditde due to the method of numerical
integration, the time step, or the choicexpf

3.6 Two- or Three-Dimensional Outsets

The unstable equilibria, UEu, EUu, and UUs, anduhstable steady states, UOu, OUu, and
UUa, have a two-dimensional outset. The unstalgladst state, UUu, has a three-dimensional
outset.

One of the two one-dimensional outsets of the Ugsl ¢domponents for, andy; only. y1»
can remain at/g6, which is unstable, because it is separated frommdy,, and the right-hand
sides of the lower three equations of (15) are thkdy; and we can trace the outset. One
direction of the outset connects to one of inséth® OEu, and the other direction connects to
one of insets of the EEu. This is presented in fleigi{a) with the cases of the EUu, UOu, and
OUu. It is difficult to trace the other outset bEtUEu, EUu, UOu, and OUu.

There is the case that a pair of points on a skaddit between the EE and OOs
approaches the UUs before the middle point coneaigéhe EO or OE. One of the eigenvalues
of the equilibrium UUs is equal root, 1.5247, ahd timension of its eigenspace is two, that is,
the outset is a two-dimensional invariant surfaldeis outset touches insets of the EE, OOs,
EO, and OE. For the UUs, we examigadescribed by Eq. (19). It converges to the EE OsO
for some eigenvectors, and for others, it convetgeke EO or OE. Basin boundaries are &lso
=0 only.
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Fig. 8. Attractor-basin of SS or SO with 200 grids of tbegths of eigenvector on the basic set SU or SU';
the abscissa represents the length and the oraiatesents the No. of attractors

Since the UUa (in asynchrony) corresponds to thes (i synchrony), it seems that the
outset of the UUa touches insets of the SS, OOaaB8®0OS. However, we were unable to find
the case in which a pair of points on a straddletapproaches the UUa, ang did not
converge to the SS although it converges to the @@al SO, OS, LO, and OL). No
characteristic multiplier of the UUa is also equabt (3.3003 for system 1 and 3.3716 for
system 2).

The outset of the UUu is composed of a two-dimeraidnvariant surface and a one-
dimensional invariant curve. The surface touchestmof the EEu, OOu, EOu, and OEu. Since
it is difficult to trace the curve, we examine tta@responding;. One direction converges to
the EE, and the other converges to the SO, OS a. OO

4. Simulation of the System for Case 2

With the above results for Case 1 in mind, we naaceed to investigation of Case 2, as
shown in Figure 1, by simulation.

4.1 Differential Equations

We consider the case in which, referring to Figlirethe buses of the interconnecting
transmission line are located at the midpointsheftivo swing pairs. That is, we sét,= ¢, =
0.5. This defines our Case 2. Then the differertiplations (11) become the following,
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where,

E? L bia
b = (- B i
" wpLiPp 4l19 ‘o4 (21)

Looking at Egs. (20) for Case 2 in comparison wlith corresponding equations for Case 1, we
see two complicating factors.

First, the three-dimensional frequency subsystempisonger separated. That is, variables
of the two swing subsystems now appear in themoi8Hyg, the first swing system (represented
by the first and second equations) and the secanmyssystem (represented by the third and
fourth equations) are no longer uncoupled. Thatdsables of each appear in the other. In sum,
we have in Case 2 a fully coupled system. Physicttlis may be understood as a necessary
consequence of the fact that the bus voltagesalenger constant, as in Case 1.

Note. Egs. (20) hold forz<y; <z and w<y, <.

4.2 Setting up Parameters

For Case 2, we set the system parameters as follows

a=6.0, Di=Dy=0.005
bia = 0.1, by = bay = 1.225
=k =onem M=K =y (22)

where as in Case 1, some parameters are made egfa}, Ky = Ky, Ky = K, andLy = L.
Note that these are almost the same as the systeameters chosen for the simulation of
Case 1. This allows us to make use of our resnit€&ase 1 in predicting the behavior of Case2.
And we now set the power parameters as,

Dgio = 0.45,  ppip = 0.40
Doon = 0.40,  ppag = 0.45. (23)
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4.3 Steady States of the System

As described in Sec. 3.3, we use the term steadgssto include both stable and unstable
limit sets, and they are classified in Table 1 t@3Case 1. Some of them do not exist in Case
2, and we examine this by decreasfn¢= 1 for Case 1) anéb = 1 —¢; as follows.

The pair of the EU and EUu and the pair of the Wl B/Eu disappear d = 0.7382 by
saddle-node bifurcation, where the saddle-nodeigmphat unstability-stability with respect to
y12. This type of saddle-node bifurcation also ledus UUs and UUu to disappear @t =
0.8469. Therefore, only the EE and EEu are eqialibr

This type of saddle-node bifurcation also leads @@s and OOu to disappear &t=
0.5032, the pair of the UOs and UOu and the paih@fOUs and OUu & = 0.7984.

The eight steady states which represent that Hwhsystems are swinging with large
amplitude do not exist. The kland LU, (see Figure 5) disappearfat= 0.5574 by cyclic fold
bifurcation, where the cyclic fold implies that theit cycle with the large amplitude and the
limit cycle with the unstable large amplitude inetlsystem 2. This type of cyclic fold
bifurcation also leads the Lland UL to disappear at; = 0.8140, the UUaand LU, at¢; =
0.7546, and the UYand Ulg at¢, = 0.6786.

Thatis, No.1to 3,5t0 7, 9 to 13, 16, 18, 2B, 23, 26, 27 exist in Table 1 to 3.

4.4 Connections among Steady States

We now investigate basic sets by using the stragidi method. The results are illustrated
in Figure 9. The definitions of panels in the figare shown in Figure 7(e) except stepping out
and swinging with small amplitude, which are shawrrigure 9. The SL and LS are isolated
from the other limit cycles. The small amplituden8h the large amplitude L, U, or U' is
twofold; the part that looks thick consists of tlittle separated lines. These are due to that all
the middle points between a pair of points on tinadslle orbits between them and the other
attractor converge to another attractor. We alde tiwat the middle point between the EE and
EO converges to the SO, and that the middle pa@twéen the EE and OE converges to the OS.
In such cases, by regarding attractors as the BEhwepresents normal operation of the power
system, and the others, the straddle orbits coevierghe EEu; the attractor basin boundary of
the EE is considered as the EEu.

The basic sets between the SS and SO, and bethvee8St and OS are similar to Case 1.
The point on the straddle orbit alternates staginghe SU (or US) and the SU' (or U'S) only
one or two cycles, which are different from Cas&lie largest characteristic multiplier of the
U'S is about 141, the SU' 124, on the other hdredUS 2.7, the SU 2.6.

The UOa and OUa are the basic sets between then@Q@@ and between the OS and OL,
respectively; the basic set between the small and@iand the large amplitude is the unstable
limit cycle U. On the other hand, the basic setsvben the OOa and SO and between the OOa
and OS are not the U'Oa and OU'a, but involve thespectively. These are confirmed by the
enlarged views of the most right part, £120; 18:/20] x [-0.15; 0.15], shown below the panel
of the large amplitude of the straddle orbit. Nttiat the large amplitudes of the straddle orbits
are about 70 cycles, and that the middle point eetwa pair of points on the straddle orbit
finally converges to another attractor. Figure J&aows a part of the straddle orbit and the
enlarged views of the most right part, #0; 54:/60] x [-0.05; 0.05], and Figure 10(b) shows
its time series. Although the orbit seems to stay @losed curve for three cycles and the curve
is four times longer than the period,ef, we have not been able to identify the closed €@y
an unstable limit cycle. The basic sets betweerQda and SO and between the OOa and OS
will involve such limit cycles.
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Fig. 10.A part of the straddle orhit between the OOa a@d S

In the case of the straddle orbit between the S5 3in or between the SS and LS, the
middle point between a pair of points on the stladubit converges to the SO or OS early.
When the middle point has converged to the SO or IySreplacing the middle point with
another ratio of dividing, we can get the stradatleit for a long time relatively. The straddle
orbit seems to approach the SU or US before it emas to the SO or OS, it however stays on
no closed curves for even one cycle.

5. Conclusion

In this paper we have discussed the connectionsigsizady states of a new mathematical
model for an electric power system using straddbét osnethods of computer simulation to find
the basic sets. The model, in which there is nimmitef bus, nor fixed system frequency, had
been introduced in our previous paper. In the sngplse of two subsystems (each a swing pair)
weakly coupled by an interconnecting transmissiog, lwe had developed a system of seven
differential equations which include the variatwifrequency in a fundamental way.

Our Case 1 of the model has thirteen attractorsfamdeen basic sets, which are unstable
steady states with one-dimensional outset. Onetibre of outset of each basic set is included
in basin of some attractor, and the other direct®included in basin of another attractor;
connections among steady states are clarified. tlece are seven unstable steady states with
two- or three-dimensional outsets, and connect@mnsng basic sets and them are clarified. Our
Case 2 has eleven attractors and seven basiccsetsections among them are clarified. All
unstable steady states with two- or three-dimemsiontsets which exist in Case 1 disappear in
Case 2.

Our Case 1 is highly idealized, and our Case 2 ocaassespond more realistically to actual
power systems, but many steady states includingahbleslimit sets observed in Case 1 do not
exist in Case 2. Especially, although an unstaglélierium in a system (a pair of a generator
and a motor) is well known as a basic set betwasmal operation and stepping out, it has
disappeared in Case 2. It is another benefit oEQathat the role of unstable limit sets which
have two- or three-dimensional outsets is clarifidbalized Case 1 will be important to
understand relations among steady states. Thesliofitapplicability of our new model,
characterized by the absence of an infinite bus, it rich field of nonlinear phenomena,
awaits further exploration.
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