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Abstract. In a normal power system, many generators are operating in synchrony. That is, they 
all have the same speed or frequency, a system frequency. In the case of an accident a situation 
might occur when one or more generators are running at a different speed, at much faster than 
the system frequency. They are said to be stepping out. We have been engaged in a series of 
studies of this situation, and have found global attractor-basin portraits. The electric power 
system involving one generator operating into an infinite bus is a well-established model with a 
long history of research. We, however, have derived a new mathematical model, in which there 
is no infinite bus, nor fixed system frequency. In the simple case of two subsystems (each a 
swing pair) weakly coupled by an interconnecting transmission line, we have developed a 
system of seven differential equations, which include the variation of frequency in a 
fundamental way. We then go on to study the behavior of this model, using the straddle orbit 
method of computer simulation to find the basic set. We succeed in finding many basic sets in 
this new model. In addition, we consider unstable limit sets which have two- or three-
dimensional outset. 
 

Keywords: Power system stability; no infinite bus; basins of attraction; straddle orbit. 
 
1. Introduction 
 

We have been engaged in a series of studies of stepping out in electric power systems, and 
have not assumed an infinite bus having the nominal system frequency [Ueda et al., 2004]. That 
is, we do not fix the frequency of operation of the system, but instead take it as a dependent 
variable. This is determined by balancing the power generated with the power consumed in the 
electric power system. Our new mathematical model has not been found in other research works 
on electric power systems. In this paper we report on the basic sets of a model for a simple 
electric power system, consisting of two swing systems connected by a somewhat lower 
capacity interconnecting transmission line. By a swing system we mean a generator and motor 
pair, connected by a transmission line. Oscillation of the relative phases of the generator and the 
motor is similar to the simple pendulum of basic physics, so the two-swing system is similar to 
the double pendulum, or rather, two pendulums coupled by a spring. 

In our most general model for the double swing system, we allow for arbitrary connection 
points for the transmission lines. We have introduced parameters to describe these connection 
points, and have established a model for this general case, as a system of seven differential 
equations [Ueda et al., 2004]. 

Then we specialize to two cases which we study in some detail (referred to as Case 1 and 
Case 2). As we will see below, Case 1 is a fairly idealized system and results in a subsystem of 
three dimensions that is independent of the rest of the system, which we call the frequency 
subsystem. In simulations we have determined that this subsystem has two attractors, 
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corresponding to synchronous and asynchronous operation between two power systems, 
respectively. We have found attractors in which one or the other or both of the swing systems 
are in static equilibrium or swing with smaller or larger amplitudes or step out. Then, using the 
straddle orbit method [Battelino et al., 1988], we carry out a series of simulation runs to 
organize our study. We find many basic sets (unstable equilibria or unstable limit cycles), and 
clarify connections among steady states. Next, based on the results of the Case 1 system as 
above, we carry out many simulation experiments for our more realistic Case 2 system. 

Significant state from the viewpoint of normal operation in electric power system is only 
one stable equilibrium, and swinging (a stable limit cycle) or stepping out, which is caused by 
accidents, is abnormal and must not occur. In particular, basic sets (unstable equilibria or 
unstable limit cycles) have not been considered because they are not observed in real systems. 
For the purpose of stable operation, generators in the system are controlled so that swinging 
does not begin, or load or transmission line where an accident occurs is broken before leading 
to stepping out. In order to detect indication of swinging or stepping out, it is essentially 
important to take into consideration the fact that boundary between two states, including normal 
operation and swinging or stepping out, consists of a basic set, its insets, and its outset. 

The paper is organized as follows. In Sec. 2 we summarize the derivation of the equations of 
motion of our new models. In Sec. 3 we discuss our Case 1 model, and describe its attractors 
and unstable limit sets. We also describe our preliminary simulations for basic sets. In Sec. 4, 
we use our knowledge of Case 1 to describe some of the basic sets for Case 2 systems. Finally, 
in Sec. 5, we summarize and present our conclusions. 
 
2. Construction of the Electric Power System Model  
 

In this section we summarize our new system, and compare with earlier works [Ueda et al., 
2004]. 
 
2.1 The Interconnection of Two Systems 
 

In Figure 1, we represent two generator/motor systems, labeled with subscripts 1 and 2, and 
tied by interconnecting transmission line, having inductance L. We assume ideal conditions, in 
that the generators and the motors are identical, the efficiency is 100%, and there is no loss in 
the step-up and step-down transformers nor in the transmission lines. The symbols indicated in 
Figure 1 are as follows. The points of connection of the interconnection line are determined by 
the parameters ℓ1 and ℓ2 (0 ≤ ℓ1 ≤ 1; 0 ≤ ℓ2 ≤1) discussed below. 

The rotating speeds (angular frequencies) of the two pairs are ω1 and ω2. The states of the 
four rotors are given by θg1, θm1, θg2, and θm2. The relative phases of the four rotors are given by 
γg1, γm1, γg2, and γm2. According to the familiar relations, 
 

       (1) 
 
Note that here ω1 and ω2 are variables, rather than constants usually assumed, which are the 
angular velocities of the (commercial) infinite bus. In this research, we consider changes in both 
the angular frequencies and the relative phases, and we introduce assumptions that time 
variations of the relative phases may be neglected in comparison to the angular frequencies. We 
denote phase differences by, 
 

      (2) 
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Mechanical power variables are Pg1, Pm1, Pg2, and Pm2, while the electric power variables are 
Pge1, Pme1, Pge2, and Pme2. In addition, we have flows of interchange power through the 
interconnection line from system 1 to system 2, PT1 and PT2, as 
 

      (3) 
 
We assume that the angular frequency in each system does not change when the power 
imbalance is zero, we have, 
 

       (4) 
 
where I is the inertial moment equally of the generators, and of the motors.  
 
 

 
Fig. 1. Two swing systems are connected by an interchange transmission line of inductance, L. The 
parameters ℓ1 and ℓ2 determine the points at which the ends of the interchange line connect to the two 
swing pairs 
 
 
 

Note that in this study, we consider systems consisting of generator/motor pairs, in which 
the generator and the motor have exactly the same capacity (our model might apply, for 
example, to a pumped-storage power station in which a large synchronous motor is used), and 
we assume that the coefficients of inertia of all four machines are identical. 
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2.2 Representation of Speed Governor and Load Characteristics 
 

Because of the speed regulation characteristic of the governor, as the rotating speed 
decreases, the mechanical power input to the generator increases. Similarly, when the rotating 
speed increases, the mechanical power input to the generator decreases.  

On the other hand, with an appropriate frequency characteristic of the load, as the frequency 
decreases, the power of the load decreases also, because the rotating speed of the motor 
decreases. And when the frequency increases, the power of the load increases. Such a frequency 
characteristic is called self-regulating. This is shown in Figure 2, where in addition, we have 
shown a characteristic which is approximately linear. 

 
 

 
 

Fig. 2. Frequency characteristics of an electric power system. The speed regulation characteristic of the 
governor is labeled G. The self-regulation characteristic of the load is labeled M. Characteristic lines 
shown in the figure are applicable for neighborhood of actual equilibrium state 
 
 
 

Mechanical power into the generator and that output by the motor depend thus on the 
frequencies of operation and the speed versus power characteristics of the generator and the 
motor, for which we assume the equations, 
 

      (5) 
 
in which i = 1, 2 and the parameters appearing are: %Kgi, speed/power characteristic of the 
generator, %Kmi, speed/power characteristic of the motor, Pgi0, the set value of the mechanical 
power into the generator, Pmi0, the set value of the mechanical power output from the motor, PB, 
the base power capacity of the system, and ωB, the base angular frequency of the system. Here, 
we assume a 60 Hz system, see the last equation of (5). 
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2.3 Thévenin Equivalent Circuit 
 

Figure 3 shows the Thévenin equivalent circuit of the two-swing system shown in Figure 1. 
Letting γf1, γf2, denote the phase differences of the fictitious voltages, ef1 and ef2, against em1 and 
em2, respectively, the fictitious voltages, ef1 and ef2, are represented by the equations, 
 

    (6) 
 
where 

   (7) 
 
 
 
 

 
 

Fig. 3. Schematic diagram of the interconnection line in the two-swing system presented in Figure 1, 
showing equivalent circuits for the fictitious endpoints 
 
 
 
 
We allow the angular speeds of the machines to depart slightly from the constant ωB, so the 
amplitudes of the electromotive forces, which are proportional to the angular speeds, will be 
slightly different. That is, the following substitutions were used, 
 

        (8) 
 
Note that the fictitious voltages ef1 and ef2 are different from the voltages et1 and et2 at the 
endpoints of the interchange transmission line shown in Figure 1. The voltage, ef1, is the 
fictitious voltage behind the fictitious inductance, ℓ1(1- ℓ1)L1. Let 
 

       (9) 
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Note also here that the absolute values of the fictitious voltages ef1 and ef2 may vary, as they 
depend on the power input to and output from the system, and on the positions of the endpoints 
of the interconnecting transmission line, that is, on the parameters ℓ1 and ℓ2. 

Finally, let γ12 denote the phase difference of ef1 against ef2 as 
 

      (10) 
 
Then appealing to the assumptions for the relative phases, we have from (1), 

         (11) 
 
2.4 Differential Equations Describing the System 
 

Applying circuit theory analysis, we may calculate the electric power flows Pge1, Pme1, Pge2, 
and Pme2 in the circuit. Then with swing equations, we have the differential equations describing 
the system indicated in Figure 1, 

 

    (12) 
 
with 
 

         (13) 
 
and 
 

    (14) 
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Note. In the situation in which the two generator/motor pair systems lose synchrony, the 
interchange powers, PT1 and PT2, begin to swing. But in this derivation we have included only 
the lowest frequency term of their power swing components. 
 
3. Simulation of the System for Case 1 
 

In this section we provide some considerations regarding the system of equations obtained 
in the preceding section. We consider the special case called Case 1 in the first section. 
 
3.1 Differential Equations 
 

We now consider Case 1, shown in Figure 4, in which ℓ1 = 1, ℓ2 = 0. Our equations (11) now 
reduce to, 
 

  (15)  
 
 
 

 
 

Fig. 4. Schematic diagram for the two-swing system in our special Case 1 
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Note. Taking ℓ1 = 1 corresponds to placing the bus inside the motor of the first generator/motor 
pair, where the electromotive force is em1. But this is impossible in practice. Similar 
considerations apply to ℓ2 = 0. In this study, control devices such as AVR, PSS, and governor 
dynamics, are excluded. 
 
3.2 Establishment of Parameters 
 

The values of system parameter that we use in the simulation experiments of this section 
are, 
 

     (16) 
 
where some parameters are made equal: c1 = c2, kg1 = kg2 (= kg), km1 = km2 (= km), and L1 = L2. 
We now set values for the mechanical power input to, and the mechanical power output from, 
each of the two swing systems: 
 

       (17) 
 
Then, values for the power imbalance are, 
 

   (18) 
 
We assume that the transmission power capacity of the interconnection line is fairly small than 
the steady state stability limit of either of the two swing systems. We establish the speed 
regulation of the governor, and the self-regulation of the load. We chose values for parameters – 
for example, kg and km, and the slopes in Figure 2 – to facilitate the observation of frequency 
deviations, rather than for fidelity to realistic systems. The equivalent circuits chosen for the 
generators and motors are relatively simple. Other parameters have been selected more 
realistically. 

 
3.3 Steady States of the System 

 
We now understand the dynamics of the system in Case 1 as follows. 
The first two equations of (15) represent the first swing system, and the third and fourth 

equations represent the second swing system. The lower three equations of the frequency 
subsystem are separated, in the sense that in these three lower equations, the variables of the 
upper four equations do not appear. On the other hand, the variables of the lower frequency 
subsystem do appear in the upper four equations. The systems 1 and 2 are also separated from 
each other, in the sense that in the equations of one system, the variables of the other system do 
not appear. 

Thus, when the lower subsystem settles into a point attractor (static equilibrium), its 
variables settle to constant values, and appear in the two upper subsystems as constant forcing 
(bias) terms. On the other hand, when the lower subsystem settles into a periodic attractor (that 
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is, a limit cycle, or oscillation), its variables appear in the two upper subsystems as periodic 
forcing terms. The other can also settle into a static equilibrium when one system steps out. 

In the following, we describe the steady states found in the system, Case 1. We use the term 
steady states to include both stable and unstable limit sets. Attractors are classified in Table 1, 
basic sets (unstable steady states which have a one-dimensional outset) are classified in Table 2, 
and unstable steady states which have a two- or three-dimensional outset are classified in Table 
3. The attractors described here are obtained by simulation from the mathematical model 
specified by Eqs. (15), and may not be always observed in actual electric power systems. 

 
 
3.3.1 Steady States with Synchrony of the Two Swing Systems 
 

In the case in which the two swing systems are in synchrony, that is, ω1 = ω2 = 120π, each 
of the swing systems behaves independently as follows. γ12 is also constant, that is, γ12 = π/6 is 
stable, and γ12 = 5π/6 is unstable.  
 

Table 1. Attractors in the System for Case 1 
 

 
 
 

Table 2. Basic sets in the System for Case 1 
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Table 3. Unstable steady states which have two- or three-dimensional outset in the System for Case 1 
 

 
 

System 1 is in a stable equilibrium (γ1−~ 0.368268; χ1 = 0), or steps out (γ1 increases 

indefinitely, but a limit cycle on cylindrical state space). System 2 is also either in a stable 
equilibrium (γ2−~ 0.368268; χ2 = 0), or steps out (γ2 increases indefinitely, but a limit cycle on 

cylindrical state space). Thus, for the whole system, this case comprises four attractors: No. 1 to 
4 in Table 1. Each system also has an unstable equilibrium (γ1, γ2−~ 2.773325). With γ12 = 5π/6, 

there are seven unstable equilibria (both systems are in the equilibria): No. 14 to 16 in Table 2 
and No. 28 to 31 in Table 3, and seven unstable steady states (one or two systems step out): No. 
17 to 21 in Table 2 and No. 32 and 33 in Table 3. 
 
3.3.2 Steady States with Asynchrony of the Two Swing Systems 
 

In this case, the phases of the two systems are not locked, and γ12 increases without bound. 
The term b12sin γ12 acts as a periodic forcing term in each of the two swing subsystems. Each 
then occupies one of the three states: swinging with small amplitude, swinging with large 
amplitude, or stepping out (γ1 or γ2 increases indefinitely). Thus, for the whole system, this case 
comprises nine attractors: No. 5 to 13 in Table 1, and seven unstable steady states: No. 22 to 27 
in Table 2 and No. 34 in Table 3. 

A time series of γ1, γ2, and γ12 for the LL, LU, and UL are shown in Figure 5, and those for  
 

      
Fig. 5. Time series for the attractor LL and the basic set LU and UL. γ1's of the LL0, LL1, LU0, and LU1 
are identical, γ2's of the LL0, UL0, and UL1 are identical, and γ12's of the all are identical. The waveform of 
swinging with unstable large amplitude (U) is slightly different from that of swinging with stable large 
amplitude (L), and the waveform of the system 2 is slightly different from that of the system 1 
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the SL, SU, LS, and US are shown in Figure 6(a). We explain Figure 6(b) in the next section. 
The period of γ1 and γ2 for small amplitude (−~ 0.5 [s]) is the same as that of γ12, and that for 

large amplitude (−~ 1[s]) is double. Therefore, recalling that two systems are separated from 

each other, if both systems swing with large amplitude, it is possible to shift the phase of one 
system (γ2 against γ1) by half period; the LL, UL, LU, and UUa are further classified into two 
steady states respectively. The phase difference between two systems is 0 or half period (−~ 0.5 

[s]) for the LL, and for the UL and LU, about –0.2 [s] or about 0.3 [s]. The SU and US are also 
different from the SL and LS respectively not only in stability but also in phase. 
 

      
(a) 

 
(b) 

Fig. 6. Time series for the attractor SL and LS and the basic set SU, US, and SU'. γ1's of the SL and SU are 
identical, γ2's of the LS and US are identical, and γ12's of the all are identical. The slight differences among 
waveforms are similar to Figure 5 
 
3.4 Connections among Steady States 
 

We now investigate basic sets by using the straddle orbit method. The results are illustrated 
in Figure 7. The definitions of panels in the figure are shown in Figure 7(e), and the steady 
states, No. 28, 29, 32, and 33, are not basic sets, and we explain them in Sec. 3.6. The results 
are summarized in the following laws: 
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(1) In a system, the basic set between the equilibrium and the stepping out in synchrony is 
the unstable equilibrium with respect to the system (γ1 or γ2 −~ 2.773325). This case comprises 

four steady states: the UE, EU, UOs, and OUs. 
(2) The basic set between synchrony and asynchrony is related to the unstable equilibrium 

between systems (γ12 = 5π/6); the equilibrium and the small amplitude limit cycle are 
interchanged. This case comprises four steady states: the EEu, EOu, OEu, and OOu. 

(3) In a system, the basic set between the small amplitude and the stepping out in 
asynchrony may be composed of two unstable large amplitude limit cycles with respect to the 
system. We explain them in this section later. This case comprises six steady states: No. 22 to 
27 in Table 2.  

Although 91 combinations of two attractors are possible because there are 14 attractors 
(Table 1 and two cases of the LL), only 14 combinations bring basic sets (Table 2 and Figure 
7). For the other combinations, the middle point between a pair of points on the straddle orbit 
converges to another attractor. For example, the middle point between the EE and SO converges 
to the EO, and this is understood from Figure 7. For another example, the middle point between 
the EE and OOs converges to the EO or OE, and we further consider this in Sec. 3.6. The limit 
cycles of Figures 7(a), (b), and (c) are separated from one another. Limit cycles including large 
amplitude do not appear in Figure 7(a), and two cases of the LL, which are shown in Figure 
7(d), do not appear in Figures 7(a), (b), and (c). These are due to that all the middle points 
between any large amplitude attractor and the other attractor converge to another attractor. 

The six basic sets with asynchrony, which are in case (3), are shown by three pairs of two 
panels in Figure 7; two unstable limit cycles are shown on the top and the bottom, and a typical 
example of the straddle orbit is presented on the middle. These unstable limit cycles have only 
one characteristic multiplier whose absolute value is greater than 1; its outset is one-
dimensional. Note that the UL and LU have two cases respectively as indicated in Figure 5. The 
straddle orbit appears to be chaotic, and finally the middle point between a pair of points on the 
straddle orbit converges to another attractor (the “chaotic” straddle orbits are drawn in the 
figure with the point that is half as large as the others). We denote such phenomena by dotted 
lines in the figures, and consider them in the next section. That is, only in the case of No. 14 to 
21 in Table 2, to which two solid lines are attached in Figure 7(a), the point on the straddle orbit 
did converge to the basic set. 

In the case of four straddle orbits, which are in case (3), shown in Figure 7(a), the point on 
the straddle orbit repeats to stay on the SU, US, UOa, or OUa for ten or more cycles, to depart 
from it, to approach the SU', U'S, U'Oa, or OU'a, and to return to the former after the point 
moves along the latter for one cycle (rarely two cycles). This is explained by the fact that, for 
example, the largest characteristic multiplier of the SU' is about 176, on the other hand, the SU 
3.4. Figure 6(b) shows a time series of γ1, γ2, and γ12 for the SU'. The unstable limit cycle U' is 
three times longer than the period of γ12, and the unstable limit cycle U is twice than the period 
of γ12. The “chaotic” straddle orbit may involve other unstable limit cycles, and the period of 
limit cycles needs to be an integer multiple of the period of γ12. As long as we examine, it does 
not seem that other unstable limit cycles exist. 

In the case of the straddle orbit shown in Figure 7(b) or 7(c), the point on the straddle orbit 
wanders between UL0 and UL1 or between LU0 and LU1, and stays on them for ten or more 
cycles. Although the point seems to approach the U'L or LU' while it transfers to the other, it 
does not stay on the U'L or LU' for even one cycle; neither U'L nor LU' is impossible because 
the limit cycle L is twice longer than the period of γ12, on the other hand, the U' is three times 
longer. 

In the case of the straddle orbit between the SL and SO, for example, the middle point 
between a pair of points on the straddle orbit converges to the SS early. When the middle point 
has converged to the SS, by replacing the middle point with another ratio of dividing between a 
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pair of points on the straddle orbit, we can get the straddle orbit for a long time relatively. The 
straddle orbit seems to approach the SU before it converges to the SS, it however stays on no 
closed curves for even one cycle. This is similar to the other straddle orbits between the large 
amplitude L and the stepping out O, and this is not observed at the other combinations, such as 
the small amplitude S and the large amplitude L; straddle orbits converge to another attractor 
early even if replacing it. 
 

 

 
 

(a) 
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(b) 
 

 
 

(c) 
 

 
(d) 

 

 
(e) 

Fig. 7. Connection among steady states for Case 1 
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3.5 Fractal Basin Boundary 
 

In the case (3), although outset of each unstable limit cycle is one-dimensional, a pair of 
points on a straddle orbit departs from the limit cycle, and the middle point converges to 
another attractor. For example, a pair of points on a straddle orbit between the SS and SO 
wanders between the SU and SU', and finally the middle point converges to the SL. 

The outset of a point x0 on the SU is one-dimensional (the characteristic multiplier is 
3.3716), and its first approximation is given by the eigenvector v. Let x0 be the point which 
corresponds to the time origin of the SU in Figure 6, the γ2 component of v be positive, and |v| = 
1. We determine whether the point 
 

        (19) 
 
converges to the SS or SO depending on k, and the result is provided in Figure 8(a). In the 
figure, the abscissa represents k, and the ordinate represents the No. of attractors shown in Table 
1. For k < 0, all the points always converge to the SS, and this is the reason why the line which 
begins at the left of the SU is solid; this rule is applicable to the others. For k > 0, although the 
points almost converge to the SO, some of them converge to the SS, and one or two converge to 
the SL. It has been confirmed by enlarging the figure that the basin boundary is fractal. We also 
show the similar for the SU' in Figure 8(b). Note that the point at – 0.0005 converges to the SL 
in the top of the figure and that the point at –0.000003 converges to the SL in the bottom 
although we do not point arrows at them in the figure. In these cases, the middle point between 
a pair of points on the straddle orbit finally converges to the SL. However it will be possible to 
prevent the point from converging by another ratio of dividing between a pair of points on the 
straddle orbit. The SU and SU' seem to be a heteroclinic connection, and this will be the reason 
why the straddle orbit wanders. 

Note that, in the case of No. 14 to 21 in Table 2, the point always converges to an attractor 
for k > 0, and for k < 0, it always converges to another attractor, that is, the basin boundary is k 
= 0 only. Basins may also differ from the figures a little due to the method of numerical 
integration, the time step, or the choice of x0. 
 
3.6 Two- or Three-Dimensional Outsets 

 
The unstable equilibria, UEu, EUu, and UUs, and the unstable steady states, UOu, OUu, and 

UUa, have a two-dimensional outset. The unstable steady state, UUu, has a three-dimensional 
outset. 

One of the two one-dimensional outsets of the UEu has components for γ1 and χ1 only. γ12 
can remain at 5π/6, which is unstable, because it is separated from γ1 and χ1, and the right-hand 
sides of the lower three equations of (15) are exactly 0, and we can trace the outset. One 
direction of the outset connects to one of insets of the OEu, and the other direction connects to 
one of insets of the EEu. This is presented in Figure 7(a) with the cases of the EUu, UOu, and 
OUu. It is difficult to trace the other outset of the UEu, EUu, UOu, and OUu. 

There is the case that a pair of points on a straddle orbit between the EE and OOs 
approaches the UUs before the middle point converges to the EO or OE. One of the eigenvalues 
of the equilibrium UUs is equal root, 1.5247, and the dimension of its eigenspace is two, that is, 
the outset is a two-dimensional invariant surface. This outset touches insets of the EE, OOs, 
EO, and OE. For the UUs, we examine x1 described by Eq. (19). It converges to the EE or OOs 
for some eigenvectors, and for others, it converges to the EO or OE. Basin boundaries are also k 
= 0 only. 
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(a) 
 
 

 
(b) 

Fig. 8. Attractor-basin of SS or SO with 200 grids of the lengths of eigenvector on the basic set SU or SU'; 
the abscissa represents the length and the ordinate represents the No. of attractors 
 
 
 

Since the UUa (in asynchrony) corresponds to the UUs (in synchrony), it seems that the 
outset of the UUa touches insets of the SS, OOa, SO, and OS. However, we were unable to find 
the case in which a pair of points on a straddle orbit approaches the UUa, and x1 did not 
converge to the SS although it converges to the OOa (and SO, OS, LO, and OL). No 
characteristic multiplier of the UUa is also equal root (3.3003 for system 1 and 3.3716 for 
system 2). 

The outset of the UUu is composed of a two-dimensional invariant surface and a one-
dimensional invariant curve. The surface touches insets of the EEu, OOu, EOu, and OEu. Since 
it is difficult to trace the curve, we examine the corresponding x1. One direction converges to 
the EE, and the other converges to the SO, OS or OOa. 
 
4. Simulation of the System for Case 2 
 

With the above results for Case 1 in mind, we now proceed to investigation of Case 2, as 
shown in Figure 1, by simulation. 
 
4.1 Differential Equations 
 

We consider the case in which, referring to Figure 1, the buses of the interconnecting 
transmission line are located at the midpoints of the two swing pairs. That is, we set, ℓ1 = ℓ2 = 
0.5. This defines our Case 2. Then the differential equations (11) become the following, 
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(20) 
 
where, 
 

        (21) 
 
Looking at Eqs. (20) for Case 2 in comparison with the corresponding equations for Case 1, we 
see two complicating factors. 

First, the three-dimensional frequency subsystem is no longer separated. That is, variables 
of the two swing subsystems now appear in them. Secondly, the first swing system (represented 
by the first and second equations) and the second swing system (represented by the third and 
fourth equations) are no longer uncoupled. That is, variables of each appear in the other. In sum, 
we have in Case 2 a fully coupled system. Physically, this may be understood as a necessary 
consequence of the fact that the bus voltages are no longer constant, as in Case 1. 
Note. Eqs. (20) hold for –π ≤ γ1 ≤ π and –π ≤ γ2 ≤ π. 
 
4.2 Setting up Parameters 
 

For Case 2, we set the system parameters as follows, 
 

        (22) 
 
where as in Case 1, some parameters are made equal: c1 = c2, kg1 = kg2, km1 = km2, and L1 = L2. 

Note that these are almost the same as the system parameters chosen for the simulation of 
Case 1. This allows us to make use of our results for Case 1 in predicting the behavior of Case2. 

And we now set the power parameters as, 
 

       (23) 
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4.3 Steady States of the System 
 

As described in Sec. 3.3, we use the term steady states to include both stable and unstable 
limit sets, and they are classified in Table 1 to 3 for Case 1. Some of them do not exist in Case 
2, and we examine this by decreasing ℓ1 (= 1 for Case 1) and ℓ2 = 1 – ℓ1 as follows. 

The pair of the EU and EUu and the pair of the UE and UEu disappear at ℓ1 = 0.7382 by 
saddle-node bifurcation, where the saddle-node implies that unstability-stability with respect to 
γ12. This type of saddle-node bifurcation also leads the UUs and UUu to disappear at ℓ1 = 
0.8469. Therefore, only the EE and EEu are equilibria. 

This type of saddle-node bifurcation also leads the OOs and OOu to disappear at ℓ1 = 
0.5032, the pair of the UOs and UOu and the pair of the OUs and OUu at ℓ1 = 0.7984. 

The eight steady states which represent that both the systems are swinging with large 
amplitude do not exist. The LL0 and LU0 (see Figure 5) disappear at ℓ1 = 0.5574 by cyclic fold 
bifurcation, where the cyclic fold implies that the limit cycle with the large amplitude and the 
limit cycle with the unstable large amplitude in the system 2. This type of cyclic fold 
bifurcation also leads the LL1 and UL1 to disappear at ℓ1 = 0.8140, the UUa1 and LU1 at ℓ1 = 
0.7546, and the UUa0 and UL0 at ℓ1 = 0.6786. 

That is, No. 1 to 3, 5 to 7, 9 to 13, 16, 18, 20, 22, 23, 26, 27 exist in Table 1 to 3. 
 
4.4 Connections among Steady States 
 

We now investigate basic sets by using the straddle orbit method. The results are illustrated 
in Figure 9. The definitions of panels in the figure are shown in Figure 7(e) except stepping out 
and swinging with small amplitude, which are shown in Figure 9. The SL and LS are isolated 
from the other limit cycles. The small amplitude S with the large amplitude L, U, or U' is 
twofold; the part that looks thick consists of two little separated lines. These are due to that all 
the middle points between a pair of points on the straddle orbits between them and the other 
attractor converge to another attractor. We also note that the middle point between the EE and 
EO converges to the SO, and that the middle point between the EE and OE converges to the OS. 
In such cases, by regarding attractors as the EE, which represents normal operation of the power 
system, and the others, the straddle orbits converge to the EEu; the attractor basin boundary of 
the EE is considered as the EEu. 

The basic sets between the SS and SO, and between the SS and OS are similar to Case 1. 
The point on the straddle orbit alternates staying on the SU (or US) and the SU' (or U'S) only 
one or two cycles, which are different from Case 1. The largest characteristic multiplier of the 
U'S is about 141, the SU' 124, on the other hand, the US 2.7, the SU 2.6. 

The UOa and OUa are the basic sets between the SO and LO and between the OS and OL, 
respectively; the basic set between the small amplitude and the large amplitude is the unstable 
limit cycle U. On the other hand, the basic sets between the OOa and SO and between the OOa 
and OS are not the U'Oa and OU'a, but involve them respectively. These are confirmed by the 
enlarged views of the most right part, [17π/20; 18π/20] × [–0.15; 0.15], shown below the panel 
of the large amplitude of the straddle orbit. Note that the large amplitudes of the straddle orbits 
are about 70 cycles, and that the middle point between a pair of points on the straddle orbit 
finally converges to another attractor. Figure 10(a) shows a part of the straddle orbit and the 
enlarged views of the most right part, [53π/60; 54π/60] × [–0.05; 0.05], and Figure 10(b) shows 
its time series. Although the orbit seems to stay on a closed curve for three cycles and the curve 
is four times longer than the period of γ12, we have not been able to identify the closed curve as 
an unstable limit cycle. The basic sets between the OOa and SO and between the OOa and OS 
will involve such limit cycles. 
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Fig. 9. Connection among steady states for Case 2 
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(a)                                                                (b) 

Fig. 10. A part of the straddle orbit between the OOa and SO 
 
 

In the case of the straddle orbit between the SS and SL or between the SS and LS, the 
middle point between a pair of points on the straddle orbit converges to the SO or OS early. 
When the middle point has converged to the SO or OS, by replacing the middle point with 
another ratio of dividing, we can get the straddle orbit for a long time relatively. The straddle 
orbit seems to approach the SU or US before it converges to the SO or OS, it however stays on 
no closed curves for even one cycle. 
 
5. Conclusion 
 

In this paper we have discussed the connections among steady states of a new mathematical 
model for an electric power system using straddle orbit methods of computer simulation to find 
the basic sets. The model, in which there is no infinite bus, nor fixed system frequency, had 
been introduced in our previous paper. In the simple case of two subsystems (each a swing pair) 
weakly coupled by an interconnecting transmission line, we had developed a system of seven 
differential equations which include the variation of frequency in a fundamental way. 

Our Case 1 of the model has thirteen attractors and fourteen basic sets, which are unstable 
steady states with one-dimensional outset. One direction of outset of each basic set is included 
in basin of some attractor, and the other direction is included in basin of another attractor; 
connections among steady states are clarified. Also there are seven unstable steady states with 
two- or three-dimensional outsets, and connections among basic sets and them are clarified. Our 
Case 2 has eleven attractors and seven basic sets; connections among them are clarified. All 
unstable steady states with two- or three-dimensional outsets which exist in Case 1 disappear in 
Case 2. 

Our Case 1 is highly idealized, and our Case 2 may correspond more realistically to actual 
power systems, but many steady states including unstable limit sets observed in Case 1 do not 
exist in Case 2. Especially, although an unstable equilibrium in a system (a pair of a generator 
and a motor) is well known as a basic set between normal operation and stepping out, it has 
disappeared in Case 2. It is another benefit of Case 1 that the role of unstable limit sets which 
have two- or three-dimensional outsets is clarified. Idealized Case 1 will be important to 
understand relations among steady states. The limits of applicability of our new model, 
characterized by the absence of an infinite bus, and its rich field of nonlinear phenomena, 
awaits further exploration. 
 



 
610. BASIC SETS AND ATTRACTORS OF A DOUBLE SWING POWER SYSTEM. 

Y. UEDA, H. OHTA 

 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING.   MARCH 2011. VOLUME 13, ISSUE 1. ISSN 1392-8716 

21 

6. Acknowledgment 
 

We would like to express our deepest gratitude to Professor Ralph Abraham of the 
University of California, Santa Cruz, with whom we had been engaged in a series of studies in 
electric power systems. 
 
References 
 
[1] Ueda Y., Hirano M., Abraham R. H., Ohta H. “Attractor and basin portraits of a double swing 

power system”, [2004] Int. J. of Bifurcation and Chaos 19, 3135-3152. 
[2] Battelino P. M., Grebogi C., Ott E., Yorke J. A. “Multiple coexisting attractors, basin boundaries 

and basic sets”, [1988] Phys. D 32, 296-305. 




