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Abstract. The nonlinear dynamics of a single-degree-of-freedmscillator with an external
excitation and complex non-viscous damping is exaohi The complex nature of the damper
introduces a hidden variable to the set of equatioh motion. We examine nonlinear
oscillations, bifurcations and the escape frompbntial well in that system. The shape of the
resonance curve is obtained by the multiple tinsdescmethod and it is confirmed numerically.
By treating the excitation and damping effects adysbations we found the heteroclinic orbits
connecting the saddle points of the Hamiltonian astimate the range of system parameters
leading to a chaotic behaviour by means of the Meinmethod. This result is also confirmed
by numerical simulations. The mechanism of escapm fthe potential well is analyzed by
means of behaviour charts and basins of attraction.

Keywords: nonlinear oscillations, chaos, Duffing system, atassical damping.
1. Introduction

The effects of a complex damping force dependitigeraon the history of the velocity than
the instantaneous value have been studied nunigrigatl analytically in last years [1-5].
Some authors proposed the damping force to be piopal to a fractional derivative of the
displacement, and not as in the classical casketmtder 1 derivative (i.e. the velocity) [6-9].
The memory of the system was noted to be an impoftector in different areas [10]. For
instance non-viscous damping with hysteresis hasn bievestigated in the context of
magnetorheological fluid [11], in damping of velaidire [12], and in damping of plates made
of composite materials [13]. The memory modeledrbgtional derivatives were also applied
to the problem of shock interaction of an impaatdéth a rigid target [14], and to study visco-
elastic properties of beams, plates and cylindsballs [10].

The dependence on the velocity history have sormeisting implications: (i) it can be
modeled by an appropriate integral term taking atoount a natural fading memory behaviour
of real systems [5], (ii) it induces a hysteretiteet [11], and (iii) it increases the effective
dimension of the phase space [15], since the systemory effect can be represented by
internal degrees of freedom. The damping can beesspd as the integral over some states
evolution, and in the case of a single internalrdotate the kernel of the integral is usually of
exponential type.

In the present paper we study the softening Duffiggtem with a single potential well
subjected to an external harmonic excitation, aitth w damping term defined by the integral
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convolution of an exponential kernel with the pasiocity [5]. More precisely, the dynamical
system is governed by the differential equation:

Tt _(e—7)/B

=2 e - F
T+ 2( f _—_j).:'{ T)d7T 4+ = + azz® = ag cos(wt)

T=i0 (1)
where { is the damping coefficienta, and « are the excitation amplitude and (circular)
frequency, respectivelya; is a negative number measuring the nonlinearnssf,t; is the
initial time and where dot means derivative withpect to timeg is the relaxation parameter
and it is related to the time scale of the systeemory. Similar relaxation parameters often
appear in combined electro-mechanical systems [16].

Equation (1) can be rewritten in the alternativerfo

T+2(y+x+ d_,{_,_.i* = ag cos(wt) @)

. T—y
V=3

®3)

which better underlines the increment of the dinem®f the system. Herg is the internal
variable taking into account the effects of theoe#ly history on the actual dissipation. Note
that in the limit casg — 0, the damping force reduces to classical viscansping [5].

The present model was originally proposed by Biat, [18] and used in the context of
dynamics of linear elastic and viscoelastic systéResently Eq. (1) has been studied by Sieber
et al. [5], who focuses on the effects of the integral gang on the resonance, showing in
particular the resonance peak enhancement dug twth for hardening and softening
oscillators.

The present paper continues that approach by shotliim dynamical features, including
nonlinear oscillations, bifurcations and transittorchaos, in the case of the strong nonlinearity
in the softening Duffing equation with a single guatial well.

The paper is organized as follows. After the presaroduction, we will study (Sec. 2) the
system nonlinear resonance by analytical and nealemethods. Sec. 3 is devoted to the
Melnikov analysis and to the appearance of trahsieaotic solution. On the other hand, Sec. 4
concerns with the escape phenomenon. Finally, in Bethe paper ends with the summary and
final conclusions.

2. Nonlinear resonance

In this section we study the nonlinear resonandgb@ftonsidered system, paying attention
of the resonant and to the non-resonant attracadsto their bifurcations.

2.1 Approximate analytical solution

We start by using the multiple scale method (MSI®),[20], which provides an analytical
approximate solution and thus permits to detectdffects of the main parameters, and in
particular off, on the system response. To apply the MSM we dinite the small parameter
and rewrite Eq. (2) in the form

T T SO, I ST < SO
T +2eCy + ¢+ caga eay cos(wt) )

wherel =, az =¢a’s, andagy = ¢a’o, While Eq. (3) is left unchanged.
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As usual with the MSM [19], we define the fast aholw timesTy =t, T; =¢t, T, = &, ...,
and we assume that (we report only the expres$ions the expressions fgrare identical)

z(t) = =(t, et, £%t, ...) = 2(Tp, 11, Tn, ...). )
The time derivatives are then

=Dy +sDvae+ ...,

i=Djz+ 2D Doz + ... ©6)
where
a . ; ;
Dix = —x(Th, T1, T3, ...).
- ()

The solution is sought in theseries form
J‘l:'nj. T;. T_] ...} _— J'q:['ﬂ}. .T] s I_-J. | - £y fT[] T] y T_L j ey et (8)

After substitutingx given by Eq. (8) and its derivatives given by Ef) ¢ and identical
expressions foy - in Eq. (3) and Eq. (4), and after collecting dwefficients of increasing
powern of &", we obtain a sequence of ordinary differentialagiquns forx, andy;.

By setting equal to zero the coefficientsBin Eq. (4) we get the first equation

DI-'T'T‘-' +— g = 0. (9)
which has the solution

Tp = A fTi T_] ,..}(.“”i} B & £ (10)

where A(T;, T, ..) is the slow-times dependent amplitude and therealidtion cc denotes
complex conjugates. In the following only the sldiwe T; will play a role, so we assume
A(Ty).

The approximate solution (10) is used in the cowrpan of the lowest approximation vf
In fact, by setting equal to zero the coefficiehtin Eq. (3) we get the equation

Jo — To — Yo
' A (11)
whose steady state solution is
Il;-li'.‘”::'
iy = — + cr.
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To have the frequency in the range of resonancasseme the excitation frequenoy= 1 +e¢o,
whereg is the detuning parameter (note that the undampédtal frequency ig,es = 1). The
forcing harmonic factor then becomes

cos(wt) = cos(t + sto) = cos(Ty + oT}) = —e" TotoTh) 4 op
4 (13)

Thee'—coefficient of Eq. (4) yields

.D[:;.i!'] +x = -2DyDhag — 2[-”” = tf.;_.;t.‘ig + E,PE:, (3(‘.1‘ foteli) tf{:) (14)

Terms multiplying E° on the right hand side of (14) provide seculamterThey give a non-
stationary solution and therefore they are physicait acceptable. To eliminate these terms we
must set equal to zero the coefficient &t eThis gives

dA 14 ahele T

N L0 —if;
ul(.lT] +2¢ 0,

Sl ) 55 s s
17+ 1 2 (15)

where A is a complex conjugate th. By expressing the complex amplituéein the polar
form

—1 = F)(xie‘. (16)
whereb and® are real, we can split the equation into the asal imaginary parts:

db 2C'b ag .

2t Y
by | 28C'b  al
2L+ Bb%af — 20b + = =5 — D cosy =0.
o R 17
Note that in the above expression T, — ©. For steady state solutions
:.Eh t‘iﬂl
=0 and L—ih
l’.'lTi I.1T1 (18)
which provide
}t.-ib ”—F} :
{ 1 -jg = 2 511 9
Shiﬂ:{; — 2ob+— > 5 = % COS 7.
ol (19)
25

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2011.VOLUME 13,1sSUEL. ISSN1392-8716



611.NONLINEAR OSCILLATIONS, TRANSITION TO CHAOS AND ESCAPE IN THIDUFFING SYSTEM WITH NONCLASSICAL DAMPING.
LAURA RuUzzICONI, GRZEGORZLITAK,, STEFANO LENCI

By eliminatingy from Eq. (19) we get the nonlinear expression figkthe amplitudéb and
detuning parameter.

) 0
()2 [ 25\ [ 25¢'h \?
'“11"] — (1 : ;,)) + (33‘1‘1(&{; — 20b+ T ji" iﬁ) .
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Fig. 1. Approximate resonance curves obtained by the ndetfionultiple scales for three valuesfs =
0.0;0.3;0.5) and=0:1,a)y, = (3,23 =-0:5and{'= 0:1

The solution of the above algebraic equation ist@ibin Fig. 1. Note that nonzefdowers
damping. This fact can be inferred by noting tlwtan harmonic oscillatior(t) = a cosgt) we
have, so that

g)r”'l = l_"l';h'lll".,a-'?l + )
yl 1
lz]  VI+ B (21)

which shows thaly| < | x |, namely, the integral damping is smaller thatdlaessical damping
for > 0 (see Eq. (2)).

Note also that the resonance curves bend towardriegquencies (Fig. 1) because of the
negative value of the nonlinear tea$ (softening behaviour).

The locus of the maximum points of the curipés) is obtained by differentiating Eq. (20)
with respect t@ and by settindp’(s) = 0. This gives the so-called backbone curve

i’

3 9 r '-f(.

o= Ebl_nm'.“';l 138

(22)
which further underlines the damping effect dug tind the fact that the sign ag determines
the softening vs hardening behaviour of the system.
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2.2 Numerical simulations

More detailed bifurcation studies of Eq. (1) haeet performed by numerical simulations,
following the same lines of [21]. Using attractéa&sin phase portraits, bifurcation diagrams,
path following and time histories allow us bothingestigate in detail the main features and to
verify the concurrence of results coming from diiet tools. These results are mainly obtained
by the aid of the software packages AUTO [22] aryshddnics [23], and are checked with a lot
of episodic investigations with self-developed cade

In this section we focus on numerical bifurcatidgagdams, which are aimed at checking
the analytical predictions of Sec. 2.1 and at editemthe results by detecting, e.g., pitchfork
bifurcations and crises. The other dynamical festimvestigated numerically will be addressed
in the next sections.

For the fairly small fixed valuay = 0.025 of the excitation amplitude the path followinig
the maximum displacement has the typical shape obrmlinear oscillator with softening
behaviour, as shown in Fig. 2a (see also Fig. 1IB])n It has both a resonant and non-resonant
branch and it shows the characteristic bending®fésonance peak towards lower frequencies.
This is in perfect agreement with the analyticalutes of Fig. 1.

For increasing values ody (Fig. 2b) the non-resonant branch Al does not ghan
qualitatively its behaviour, and disappearseak 0.8 by a saddle-node bifurcation. On the
resonant branch A2, on the other hand, a new emgmtars. In fact, the resonant oscillation
loses stability by a pitchfork (or symmetry breaRinbifurcation occurring before (for
decreasing values of) the upper saddle-node. Then, each of the two aténactors (denoted
A3 and A4) develops a cascade of period-doublifgréations leading to a chaotic motion
which, after some interior crises, finally disapp&g a boundary crisis. However, both the
cascade and the chaotic region occur in a veryonarange of the system parameters, and so
they are not visible in Fig. 2b.

It is worth to note that the resonant and the resonant branches still coexist for a quite
wide range ofw. However, increasingy, this range becomes smaller and smaller, andifinal
disappears. In fact, Fig. 2c shows thatdgr~ 0.1 a short gap ab appears with no bounded
solutions. This is the escape area where the saldiverges for any initial conditions.

We can better observe this phenomenon in Fig. 3chMs obtained by building several
bifurcation diagrams similar to those of Fig. 2 dndreporting the main bifurcational events
(Fig. 3a) and the escape region (Fig. 3b).

The escape region has the classical V-shape, héhvértex in the codimension 2 point,
where the pitchfork and the upper saddle-node @bénj@4]. Above this point the non-resonant
attractor disappears before (for increasinp the appearance of the resonant branch, thus
producing the escape, which will be further invgsted in Sec. 4

3. Melnikov analysis and transient chaos appearance

The escape phenomenon is related to the erositire dfasins of attraction belonging to the
unique potential well by means of the out-of-wetractor. Thus, it is worth to preliminary
study the heteroclinic bifurcation of the hilltoadslles, which is the mechanism responsible for
the triggering of the erosion, successively leadingescape. The heteroclinic bifurcation
threshold can be analytically detected by the M@wimethod [25-27].

In the present section we apply the Melnikov mettwthe system (1). The novelty of this
application in the context of the Melnikov approaslthe extension of the original phase space
dimension from 2 to 3 due to the hidden variabdssociated with the memory effect (Egs. (2)
and (3)).

27
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Fig. 2. Resonance curves obtained numerically for diffeexeitation amplitudes. (ay= 0:025, (b)ag =
0:05 and (c)ay = 0:1. Other system parameters age= —4:0, (= 0:05, ands = 0:05. The lower-left non-
resonant branch is denoted Al, while the uppertrgbsonant branch is named A2
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To perform the Melnikov analysis we introduce a Brparametere into the differential
equation (2) and rewrite the governing system asét of the first order differential equations:

T =9,
o= —x — asz + £ —2("y + agy cos(wt)),
v—y

Y=

(23)
Note that we rescale the parametéasday as in Sec. 2.1, whila; remains unchanged.
The unperturbed Hamiltonian equations associatéajtq23) are

I=1,

D= —I — rx_:g.:':!. (24)

while the Hamiltonian and the corresponding potdratre

29

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2011.VOLUME 13,1sSUEL. ISSN1392-8716



611.NONLINEAR OSCILLATIONS, TRANSITION TO CHAOS AND ESCAPE IN THIDUFFING SYSTEM WITH NONCLASSICAL DAMPING.
LAURA RuUzzICONI, GRZEGORZLITAK,, STEFANO LENCI

& (25)
3

Viz)= i g —

4 (26)
respectively. Note tha#; < O guarantees the presence of two symmetric hilfagdles at

2

r==4/—1/ay (& ; i ;
Vv /92 (Fig. 4). They are connected by the two symméteieroclinic orbits

= ()
r* ==+,/— tanh :
B (27)

ety F—Loah (
\ a3

L\D|

(28)
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Energy < .‘-:“:‘,.
AN “-

Fig. 4. The energyH(x; v) for az = —4 in the unperturbede€ 0) system. The full black oriented lines
denote the heteroclinic orbits connecting two sagdiints ‘1’ and ‘2’

The expression of the componefitof the heteroclinic orbit can be obtained by sy
(3), which becomes

. (L mf 4y o
y j\" ({]'31 .\’/’E )?

and has solution (use is made of the condil M —oc 4~ (# )

(29)

" l I| _l “.! -’d ; t\'-"_-".'j
y 5 ]
"}\\ ﬂ} < cosh?(T M/_

The Melnikov integraM(to) can be written as [26]

(30)
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M(to) = f v*(t)[—2¢"y" (1) + af cos(w(t — to))]dt.
— 0 (31)

The above integral splits in the two parts (usmasle of the time symmetry of)

_-,”{f“] = _*2‘-“’__1]1 + t.':j r_'lJFI:i;,‘?‘.n_';"_'nll.lr-_\».L

(32)
where
M; = [ v )yt )dt,
L= (33)
Ms = [ v (t) cos(wt)dt.
i (34)
The second integrdll, can be estimated by the theory of residue,
u V2w 1
i 0= p N n 5
© v/—azsinh(7w/v2) (35)

while the first integraM; must be integrated numerically using Eq. (28) Bqd(30).
According to the Melnikov theory we have heteraclimtersections if and only if there
exists dag such that

lfjjl)r |: t ] ]

M(tg) =0,

vto (36)

From (32) this occurs, simultaneously in the upgred lower heteroclinic orbit, when

_@)
2/ er (37)

The critical threshold is reported in Fig. 5 asiaction ofew (Fig. 5a) and as a function gf
(Fig. 5b). It is worth to remark that above theical curve we have fractal basin boundaries.
Moreover, through this fractalization the basiratifaction of the escalution starts to enter
the potential well and to erode the in-well basins.

The area below the curves indicate the regular tisolsi while above them the
corresponding solutions have sensitivity to inittahditions, chaotic transient and fractal basin
boundaries. The plus signs in (b) correspond taothiets where the basins of attraction of the
next Figs. 6a-d are builhg = —4.

To confirm the analytical predictions we considér gctions ay = 0 of the 3D attractor-
basins phase portraits. For the given excitatiequencyw = 0.78 and for increasing excitation
amplitudea, they are reported in Fig. 6.

8 _ a . |M;
2( 20" 7 | My
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.0'1%.1} 0.2 04 0.6 08 1.0 (b) D'%.U 0.2 04 06 0.8 1.0

Fig. 5. The critical thresholdag=2¢)., versus (a) frequency and (b) the coefficient

For low values of, (Fig. 6a) we have the resonant A2, previously apg® by a saddle-
node bifurcation (see Figs. 2a and 3), and thereeanant Al attractors which coexist within
the potential well. They have a smooth reciproeadito boundary (color to color); furthermore,
since we are below the heteroclinic bifurcatioreginold, also the white to color boundary with
the out-of-well attractor (white basin) is smooth.

Although coexisting and being both period-1 ostiias, resonant and non-resonant
attractors have very different maximum displacemandl velocity; for example, the time
history of the displacement (Fig. 7a) shows thatrtsonant attractor has an amplitude which is
about 4 times that of the non-resonant one.

In Fig. 6a the resonant attractor was just borm #ms is why it has a small basin of
attraction. For increasing forcing amplitudg the basin of A2 grows against that of Al (Fig.
6b). Furthermore, as soon as we cross the heteiodlifurcation threshold (an event which
occurs in between Figs. 6a and 6b, see Fig. Hntdr basins boundaries are observed (Fig. 6b).
The fractality first appears on the border betw&2rand the out-of-well attractor (Fig. 6b), but
for increasinga, it spreads (Figs. 6¢ and 6d), then affecting thoses of the basin which
originally were deep inside the basin of A2. Thae, can conclude that the main consequence
of the increment ofy is a reduction of the dynamical integrity [28, 28] A2 and of the
robustness of Al (in fact, the basin of Al is matcfal but only reduces its dimension). It is
worth to note that the present numerical resultsfioom the Melnikov prediction. All the
analyzed cases plotted in Figs. 6a-d have beentetkmo Fig. 5b by pluses. The case (a) is
below the Melnikov critical curve (fap = 0.78) while the cases (b)-(d) are above. One can see
that the fractalization of the boundary basinsblésiin Figs. 6b-d coincides with the global
transition indicated by the Melnikov criterion (E2¥).

In the fractal areas small changes in the initisditions can lead to different attractors. As
a consequence of this sensitivity to initial coimdis, we do not know exactly in advance the
final response of our system. The motion becomesradictable, even if the system is
completely deterministic.

Depending on the fractality ‘magnitude’ of the lmasihe system response can exhibit
relatively short, fairly long transient, or fullyegleloped chaotic behaviours. A chaotic transient
is a long series of erratic oscillations occurrbvefore the system settles onto one or the other
attractor. An example is reported in Fig. 7b, whese see that the chaotic transient lasts for
about 40 excitation periods before approachingati@actor A2. Note that usually for regular
motion 10 periods are enough to reach the attradtbus, if the chaotic transient is long
enough, it has the same practical consequencestwaic attractor. We can conclude that this

32
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fractal area implies unpredictability both in theal response and in the transient behaviour of
the analyzed system, and thus it is likely unwarfitech a practical point of view.
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A further increment of the excitation amplitude ses the disappearance of the non-
resonant attractor A1 by an inverse saddle-nodedafion (Figs. 2a and 3). Figure 6d shows
how the resonant attractor A2 remains the uniqtraabr within the potential well. At this
level, the fractality spread all around the potntiell. Only around A2 there is compact part of
the basin representing the (residual) robustnesthefattractor with respect to accidental
changes in initial conditions, i.e. the (residubfhamical integrity.

In the previous case the main role is played bytweesaddle-node bifurcations where Al
and A2 are born/disappear, and by the heterodiifiiccation triggering the fractal erosion of
the dynamical integrity. However, we have seenigsF2b and 2c that also the period-doubling
bifurcation plays an important role for differendlwes of the parameters. To highlight its
effects, we have reported in Fig. 8 three diffet@astins of attraction fap = 1.0. Note that only
the resonant attractor A2 is present.

At ag = 0.2 (Fig. 8a) the fractalization of the basin boumekis already advanced, since we
are well above the heteroclinic bifurcation thrddhdhe basin of A2 has both a small compact
part, which implies a reduced dynamical integripd a small magnitude (including fractal
parts), meaning that it is difficult to catch th&ractor by random initial conditions. It follows
that the escape is the most probable final outcome.

In Fig. 8a we are still below the pitchfork bifuticen. At ag = 0.25 (Fig. 8a), on the other
hand, the pitchfork bifurcation occurred, and A2 sigbstituted by the two new period-1
attractors A3 and A4, which share the former badirA2 (which further reduced sinca
increased). The basins are regular; the boundacgristituted by the stable manifold of the
period-1 oscillation which looses stability (andcbmes a saddle) at the pitchfork bifurcation.

At 8y = 0.2663 (Fig. 8c) A3 and A4 become chaotic attractBrgh are confined in a very
narrow region of the phase space, so that the icitgds not very pronounced. However, the
principal feature is that the basins of attracteoe completely fractal and shrunk, while the
white area is wider and wider with respect to thiepcases.

It is worth to underline that, even if tlig-w diagram shows the presence of attractors up
to the escape curve, the attractor-basins phaseajpoeveals that these attractors have so small
basins and integrity that, from a practical poifwiew, they can be neglected.

We can conclude that, even if the two attractosgpidear by boundary crisis, the transition
to the escape is not so sudden, but it is progresand clearly forewarned both by the
increment in the initial conditions leading to t&cape area, and by the simultaneous complete
destruction of the dynamical integrity of the attmas. In this particular case, this transition is
also associated with an extensive fractality of biasin boundaries, and with a sequence of
bifurcations of the attractor up to its final dipaaring.

4. Escape from the potential well

In the previous Fig. 3b we anticipated the numdicabtained escape curve. In Fig. 9 we
compare it with the Melnikov threshold for heteioid bifurcation. The latter is the starting
point of the dynamical integrity erosion proceediiog increasing values ddy (see Fig. 6),
while the former is the ending point of the erosion

Although being the initial and the final point ofosion, these two thresholds are due to
completely different phenomena (heteroclinic biaiien of the hilltop saddle, the first,
disappearance of the last in-well attractor, tleosd) and thus they are some uncorrelated. This
is confirmed by the fact that they have differehaes. In fact, for example, while the
Melnikov curve is not influenced by the resonanttee escape curve is influenced, since
resonance entails large oscillations which fadditthe escape from the potential well. This is
confirmed by Fig. 9, which shows that escape ctiag&a minimum at about = 0.70, which is
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close to the resonant frequeney= 1.0. The Melnikov curve, on the other hand, has not a
minimum.
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Roughly speaking, we can say that the Melnikov eusvinfluenced by what happens at the
top of the potential well, while escape curve soatusceptible to what happen at the bottom of
the well.

We now analyze what the minimum in the escape cumeans in terms of dynamical
integrity. We compare four different cases (Figs.ahd 11) ag, = 0.1, i.e. slightly above the
minimum of the escape curve.

Forw = 0.225, i.e. on the left of the vertex of the escapee of Fig. 9, Al is the unique
attractor of the system. Its basin, plotted in Ei@a, is wide and with smooth boundaries.

As soon a® increases and gets closer to the resonant frequtirechasin strongly reduces
in size, as shown in Fig. 10b, which corresponds t00.65 and it is very close to the escape
curve. Even if we apply the same forcing amplituehift in the excitation frequency towards
the resonance is able to produce the escape ofstlafioinitial conditions. The fall of the
dynamical integrity of the attractor clearly forewa the transition to the complete escape from
the potential well. Another small incrementwfin fact, destroys the Al attractor, and in fact i
the range ®6 < w < 0.75 we have that no in-well attractors exist: weiarthe escape region
of Fig. 9.
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The in-well attractors reappear at= 0.76 (Fig. 11a), which is just above the escape
region. At the beginning, it has a residual dynahiotegrity (Fig. 11a), which however
increases as we move away from the escape regignl(fb). Again, as before, we see that the
transition to escape (now ldecreasingvalues ofw) is forewarned by the destruction of the
dynamical integrity. In this case, it is also asateal both with fractal basin boundaries and
with a pitchfork bifurcation of the resonant branehere the attractors A3 and A4 were born.

5. Summary and Conclusions

In this paper we investigated local and global toiftions of a softening Duffing oscillator
with a non-classical damping term taking into agtotlne past history of the velocity. This
memory term is of integral type with an exponenitiainel, and thus it is of fading type with a
given time lengthp of ‘relaxation’. This is the main parameter.

We initially investigated the nonlinear oscillatmround the resonant frequency, and
found that, as expected, the memory terms contilbaitthe overall damping of the system,
although it is smaller than in the classical castgct that confirms the findings of [5]. Detailed
calculations have been performed by means of tHepteuscale method.

We then studied the global behaviour of the systgnpaying attention to the problem of
the dynamical integrity.

The heteroclinic bifurcation of the hilltop saddlesve been analytically detected by a 3D
version of the Melnikov method. The analytic resutiave been compared with numerical
simulations, which confirm how above the Melnikdweshold the erosion of the basins of the
in-well attractors develops up to the final escape,up to the final disappearance of any in-
well attractor.

A detailed analysis of the escape phenomenon isedaout by the combined use of
bifurcation diagrams and of basins of attraction.

We have shown how the fractal basins of attractian lead to unpredictability of the
system response and to a chaotic transient, whashbe dangerous in applications. However,
even with fractal basins, there is a compact pestired the attractor, which represents the
robust (or the integer) part of the basin. Fronesigh point of view, this is the unique relevant
part of the basin. If it is large enough, the desg safe against unexpected changes in initial
conditions, otherwise the system loses ‘practistbility. We refer to [28, 29] for more details
on this important issue. Here we limit to remarle ttmportance of the global analysis,
performed by the combined use of path following attdactor-basins phase portraits, to have
reliable results in terms of dynamical integrity.

In this paper a relatively small value gfis used. Larger values ¢f require three
dimensional basins of attraction, which are moféadilt to be obtained and more expensive in
terms of CPU time. This issue is left for futurerim
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