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Abstract. The nonlinear dynamics of a single-degree-of-freedom oscillator with an external 
excitation and complex non-viscous damping is examined. The complex nature of the damper 
introduces a hidden variable to the set of equations of motion. We examine nonlinear 
oscillations, bifurcations and the escape from the potential well in that system. The shape of the 
resonance curve is obtained by the multiple time scales method and it is confirmed numerically. 
By treating the excitation and damping effects as perturbations we found the heteroclinic orbits 
connecting the saddle points of the Hamiltonian and estimate the range of system parameters 
leading to a chaotic behaviour by means of the Melnikov method. This result is also confirmed 
by numerical simulations. The mechanism of escape from the potential well is analyzed by 
means of behaviour charts and basins of attraction. 
 
Keywords: nonlinear oscillations, chaos, Duffing system, non-classical damping. 
 
1. Introduction 
 

The effects of a complex damping force depending rather on the history of the velocity than 
the instantaneous value have been studied numerically and analytically in last years [1–5]. 
Some authors proposed the damping force to be proportional to a fractional derivative of the 
displacement, and not as in the classical case to the order 1 derivative (i.e. the velocity) [6–9]. 
The memory of the system was noted to be an important factor in different areas [10]. For 
instance non-viscous damping with hysteresis has been investigated in the context of 
magnetorheological fluid [11], in damping of vehicle tire [12], and in damping of plates made 
of composite materials [13]. The memory modeled by fractional derivatives were also applied 
to the problem of shock interaction of an impactor with a rigid target [14], and to study visco-
elastic properties of beams, plates and cylindrical shells [10]. 

The dependence on the velocity history have some interesting implications: (i) it can be 
modeled by an appropriate integral term taking into account a natural fading memory behaviour 
of real systems [5], (ii) it induces a hysteretic effect [11], and (iii) it increases the effective 
dimension of the phase space [15], since the system memory effect can be represented by 
internal degrees of freedom. The damping can be expressed as the integral over some states 
evolution, and in the case of a single internal coordinate the kernel of the integral is usually of 
exponential type. 

In the present paper we study the softening Duffing system with a single potential well 
subjected to an external harmonic excitation, and with a damping term defined by the integral 

 



 
611. NONLINEAR OSCILLATIONS, TRANSITION TO CHAOS AND ESCAPE IN THE DUFFING SYSTEM WITH NON-CLASSICAL DAMPING. 

LAURA RUZZICONI, GRZEGORZ LITAK , STEFANO LENCI 

 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING.   MARCH 2011. VOLUME 13, ISSUE 1. ISSN 1392-8716 

23 

convolution of an exponential kernel with the past velocity [5]. More precisely, the dynamical 
system is governed by the differential equation: 

 

    (1) 
 

where ζ is the damping coefficient, a0 and ω are the excitation amplitude and (circular) 
frequency, respectively, a3 is a negative number measuring the nonlinear stiffness, t0 is the 
initial time and where dot means derivative with respect to time. β is the relaxation parameter 
and it is related to the time scale of the system memory. Similar relaxation parameters often 
appear in combined electro-mechanical systems [16]. 

Equation (1) can be rewritten in the alternative form 
 

      (2) 
 

         (3) 
 

which better underlines the increment of the dimension of the system. Here y is the internal 
variable taking into account the effects of the velocity history on the actual dissipation. Note 
that in the limit case β → 0, the damping force reduces to classical viscous damping [5]. 

The present model was originally proposed by Biot [17, 18] and used in the context of 
dynamics of linear elastic and viscoelastic systems. Recently Eq. (1) has been studied by Sieber 
et al. [5], who focuses on the effects of the integral damping on the resonance, showing in 
particular the resonance peak enhancement due to β both for hardening and softening 
oscillators. 

The present paper continues that approach by showing the dynamical features, including 
nonlinear oscillations, bifurcations and transition to chaos, in the case of the strong nonlinearity 
in the softening Duffing equation with a single potential well. 

The paper is organized as follows. After the present introduction, we will study (Sec. 2) the 
system nonlinear resonance by analytical and numerical methods. Sec. 3 is devoted to the 
Melnikov analysis and to the appearance of transient chaotic solution. On the other hand, Sec. 4 
concerns with the escape phenomenon. Finally, in Sec. 5, the paper ends with the summary and 
final conclusions. 
 
2. Nonlinear resonance 
 

In this section we study the nonlinear resonance of the considered system, paying attention 
of the resonant and to the non-resonant attractors, and to their bifurcations. 

 

2.1 Approximate analytical solution 
 

We start by using the multiple scale method (MSM) [19, 20], which provides an analytical 
approximate solution and thus permits to detect the effects of the main parameters, and in 
particular of β, on the system response. To apply the MSM we introduce the small parameter ε 
and rewrite Eq. (2) in the form 

 

      (4) 
 
where ζ = εζ’ , a3 = εa’3, and a0 = εa’0, while Eq. (3) is left unchanged. 
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As usual with the MSM [19], we define the fast and slow times T0 = t, T1 = εt, T2 = ε2t, ..., 
and we assume that (we report only the expressions for x; the expressions for y are identical) 

 

     (5) 
 
The time derivatives are then 
 

       (6) 
 
where 
 

       (7) 
 
The solution is sought in the ε-series form 
 

  (8) 
 
After substituting x given by Eq. (8) and its derivatives given by Eq. (6) - and identical 
expressions for y - in Eq. (3) and Eq. (4), and after collecting the coefficients of increasing 
power n of εn, we obtain a sequence of ordinary differential equations for xi and yi. 

By setting equal to zero the coefficient of ε
0 in Eq. (4) we get the first equation 

 

         (9) 
 
which has the solution 
 

       (10) 
 
where A(T1, T2, ...) is the slow-times dependent amplitude and the abbreviation cc denotes 
complex conjugates. In the following only the slow time T1 will play a role, so we assume 
A(T1). 

The approximate solution (10) is used in the computation of the lowest approximation of y. 
In fact, by setting equal to zero the coefficient of ε0 in Eq. (3) we get the equation 

 

         (11) 
 
whose steady state solution is 
 

        (12) 
 



 
611. NONLINEAR OSCILLATIONS, TRANSITION TO CHAOS AND ESCAPE IN THE DUFFING SYSTEM WITH NON-CLASSICAL DAMPING. 

LAURA RUZZICONI, GRZEGORZ LITAK , STEFANO LENCI 

 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING.   MARCH 2011. VOLUME 13, ISSUE 1. ISSN 1392-8716 

25 

To have the frequency in the range of resonance we assume the excitation frequency ω = 1 + εσ, 
where σ is the detuning parameter (note that the undamped natural frequency is ωres = 1). The 
forcing harmonic factor then becomes 
 

   (13) 
 
The ε1−coefficient of Eq. (4) yields 
 

  (14) 
 
Terms multiplying eiT0 on the right hand side of (14) provide secular terms. They give a non-
stationary solution and therefore they are physically not acceptable. To eliminate these terms we 
must set equal to zero the coefficient of eiT0 . This gives 
 

     (15) 
 

where A  is a complex conjugate to A. By expressing the complex amplitude A in the polar 
form 
 

         (16) 
 
where b and Θ are real, we can split the equation into the real and imaginary parts: 
 

    (17) 
 
Note that in the above expression γ = σT1 − Θ. For steady state solutions 
 

      (18) 
 
which provide 
 

      (19) 
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By eliminating γ from Eq. (19) we get the nonlinear expression linking the amplitude b and 
detuning parameter σ: 
 
 

    (20) 
 
 

 
Fig. 1. Approximate resonance curves obtained by the method of multiple scales for three values of β (β = 
0.0; 0.3; 0.5) and ε = 0:1, a′0 = 0:3, a′3 = −0:5 and ζ′ = 0:1 
 
 
 

The solution of the above algebraic equation is plotted in Fig. 1. Note that nonzero β lowers 
damping. This fact can be inferred by noting that for an harmonic oscillation x(t) = α cos(ωt) we 
have, so that 

 

 
 

        (21) 
 
which shows that |y| < | xɺ  |, namely, the integral damping is smaller that the classical damping 
for β > 0 (see Eq. (2)). 

Note also that the resonance curves bend toward low frequencies (Fig. 1) because of the 
negative value of the nonlinear term a′3 (softening behaviour). 

The locus of the maximum points of the curves b(σ) is obtained by differentiating Eq. (20) 
with respect to σ and by setting b′(σ) = 0. This gives the so-called backbone curve 
 

       (22) 
 
which further underlines the damping effect due to β and the fact that the sign of a′3 determines 
the softening vs hardening behaviour of the system. 
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2.2 Numerical simulations 
 

More detailed bifurcation studies of Eq. (1) have been performed by numerical simulations, 
following the same lines of [21]. Using attractors-basin phase portraits, bifurcation diagrams, 
path following and time histories allow us both to investigate in detail the main features and to 
verify the concurrence of results coming from different tools. These results are mainly obtained 
by the aid of the software packages AUTO [22] and Dynamics [23], and are checked with a lot 
of episodic investigations with self-developed codes. 

In this section we focus on numerical bifurcation diagrams, which are aimed at checking 
the analytical predictions of Sec. 2.1 and at extending the results by detecting, e.g., pitchfork 
bifurcations and crises. The other dynamical features investigated numerically will be addressed 
in the next sections. 

For the fairly small fixed value a0 = 0.025 of the excitation amplitude the path following of 
the maximum displacement has the typical shape of a nonlinear oscillator with softening 
behaviour, as shown in Fig. 2a (see also Fig. 1b in [5]). It has both a resonant and non-resonant 
branch and it shows the characteristic bending of the resonance peak towards lower frequencies. 
This is in perfect agreement with the analytical results of Fig. 1. 

For increasing values of a0 (Fig. 2b) the non-resonant branch A1 does not change 
qualitatively its behaviour, and disappears at 8.0≅ω  by a saddle-node bifurcation. On the 
resonant branch A2, on the other hand, a new event appears. In fact, the resonant oscillation 
loses stability by a pitchfork (or symmetry breaking) bifurcation occurring before (for 
decreasing values of ω) the upper saddle-node. Then, each of the two new attractors (denoted 
A3 and A4) develops a cascade of period-doubling bifurcations leading to a chaotic motion 
which, after some interior crises, finally disappear by a boundary crisis. However, both the 
cascade and the chaotic region occur in a very narrow range of the system parameters, and so 
they are not visible in Fig. 2b. 

It is worth to note that the resonant and the non-resonant branches still coexist for a quite 
wide range of ω. However, increasing a0, this range becomes smaller and smaller, and finally 
disappears. In fact, Fig. 2c shows that for a0 = 0.1 a short gap of ω appears with no bounded 
solutions. This is the escape area where the solution diverges for any initial conditions. 

We can better observe this phenomenon in Fig. 3, which is obtained by building several 
bifurcation diagrams similar to those of Fig. 2 and by reporting the main bifurcational events 
(Fig. 3a) and the escape region (Fig. 3b). 

The escape region has the classical V-shape, with the vertex in the codimension 2 point, 
where the pitchfork and the upper saddle-node coincide [24]. Above this point the non-resonant 
attractor disappears before (for increasing ω) the appearance of the resonant branch, thus 
producing the escape, which will be further investigated in Sec. 4 

 
3. Melnikov analysis and transient chaos appearance 
 

The escape phenomenon is related to the erosion of the basins of attraction belonging to the 
unique potential well by means of the out-of-well attractor. Thus, it is worth to preliminary 
study the heteroclinic bifurcation of the hilltop saddles, which is the mechanism responsible for 
the triggering of the erosion, successively leading to escape. The heteroclinic bifurcation 
threshold can be analytically detected by the Melnikov method [25–27]. 

In the present section we apply the Melnikov method to the system (1). The novelty of this 
application in the context of the Melnikov approach is the extension of the original phase space 
dimension from 2 to 3 due to the hidden variable y associated with the memory effect (Eqs. (2) 
and (3)). 
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(a) 

 
 

(b) 

 
(c) 

Fig. 2. Resonance curves obtained numerically for different excitation amplitudes. (a) a0 = 0:025, (b) a0 = 
0:05 and (c) a0 = 0:1. Other system parameters are a3 = −4:0, ζ= 0:05, and β = 0:05. The lower-left non-
resonant branch is denoted A1, while the upper-right resonant branch is named A2 
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(a) 
 

 
(b) 

 

Fig. 3. (a) Frequency-amplitude behaviour chart. Saddle-node bifurcation (black line, 1) and pitchfork 
bifurcation (red line, 2) are reported. (b) Escape curve (the escape area is above the curve). ζ= 0:05; a3 = 
−4; β = 0:05 
 

To perform the Melnikov analysis we introduce a small parameter ε into the differential 
equation (2) and rewrite the governing system as the set of the first order differential equations: 
 

     (23) 
 

Note that we rescale the parameters ζ and a0 as in Sec. 2.1, while a3 remains unchanged. 
The unperturbed Hamiltonian equations associated to Eq. (23) are 

 

        (24) 
 

while the Hamiltonian and the corresponding potential are 
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        (25) 

        (26) 
 

respectively. Note that a3 < 0 guarantees the presence of two symmetric hilltop saddles at 

 (Fig. 4). They are connected by the two symmetric heteroclinic orbits 
 

       (27) 
 

       (28) 
 
 

 
Fig. 4. The energy H(x; v) for a3 = −4 in the unperturbed (ε= 0) system. The full black oriented lines 
denote the heteroclinic orbits connecting two saddle points ‘1’ and ‘2’ 
 
 
 

The expression of the component y* of the heteroclinic orbit can be obtained by solving 
(3), which becomes 
 

      (29) 

and has solution (use is made of the condition ) 
 

     (30) 
 

The Melnikov integral M(t0) can be written as [26] 
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   (31) 
 

The above integral splits in the two parts (use is made of the time symmetry of v*) 
 

      (32) 
 

where 
 

       (33) 
 

       (34) 
The second integral M2 can be estimated by the theory of residue, 
 

       (35) 
 
while the first integral M1 must be integrated numerically using Eq. (28) and Eq. (30). 

According to the Melnikov theory we have heteroclinic intersections if and only if there 
exists a t0 such that 
 

       (36) 
 
From (32) this occurs, simultaneously in the upper and lower heteroclinic orbit, when 
 

       (37) 
 

The critical threshold is reported in Fig. 5 as a function of ω (Fig. 5a) and as a function of β 
(Fig. 5b). It is worth to remark that above the critical curve we have fractal basin boundaries. 
Moreover, through this fractalization the basin of attraction of the escape solution starts to enter 
the potential well and to erode the in-well basins. 

The area below the curves indicate the regular solutions while above them the 
corresponding solutions have sensitivity to initial conditions, chaotic transient and fractal basin 
boundaries. The plus signs in (b) correspond to the points where the basins of attraction of the 
next Figs. 6a-d are built. a3 = −4. 

To confirm the analytical predictions we consider 2D sections at y = 0 of the 3D attractor-
basins phase portraits. For the given excitation frequency ω = 0.78 and for increasing excitation 
amplitude a0 they are reported in Fig. 6. 
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Fig. 5. The critical threshold (a0=2ζ)cr versus (a) frequency and (b) the coefficient β 

 
 

For low values of a0 (Fig. 6a) we have the resonant A2, previously appeared by a saddle-
node bifurcation (see Figs. 2a and 3), and the non-resonant A1 attractors which coexist within 
the potential well. They have a smooth reciprocal basin boundary (color to color); furthermore, 
since we are below the heteroclinic bifurcation threshold, also the white to color boundary with 
the out-of-well attractor (white basin) is smooth. 

Although coexisting and being both period-1 oscillations, resonant and non-resonant 
attractors have very different maximum displacement and velocity; for example, the time 
history of the displacement (Fig. 7a) shows that the resonant attractor has an amplitude which is 
about 4 times that of the non-resonant one. 

In Fig. 6a the resonant attractor was just born, and this is why it has a small basin of 
attraction. For increasing forcing amplitude a0, the basin of A2 grows against that of A1 (Fig. 
6b). Furthermore, as soon as we cross the heteroclinic bifurcation threshold (an event which 
occurs in between Figs. 6a and 6b, see Fig. 5b), fractal basins boundaries are observed (Fig. 6b). 
The fractality first appears on the border between A2 and the out-of-well attractor (Fig. 6b), but 
for increasing a0 it spreads (Figs. 6c and 6d), then affecting those parts of the basin which 
originally were deep inside the basin of A2. Thus, we can conclude that the main consequence 
of the increment of a0 is a reduction of the dynamical integrity [28, 29] of A2 and of the 
robustness of A1 (in fact, the basin of A1 is not fractal but only reduces its dimension). It is 
worth to note that the present numerical results confirm the Melnikov prediction. All the 
analyzed cases plotted in Figs. 6a-d have been denoted in Fig. 5b by pluses. The case (a) is 
below the Melnikov critical curve (for ω = 0.78) while the cases (b)-(d) are above. One can see 
that the fractalization of the boundary basins visible in Figs. 6b-d coincides with the global 
transition indicated by the Melnikov criterion (Eq. 37). 

In the fractal areas small changes in the initial conditions can lead to different attractors. As 
a consequence of this sensitivity to initial conditions, we do not know exactly in advance the 
final response of our system. The motion becomes unpredictable, even if the system is 
completely deterministic. 

Depending on the fractality ‘magnitude’ of the basin, the system response can exhibit 
relatively short, fairly long transient, or fully developed chaotic behaviours. A chaotic transient 
is a long series of erratic oscillations occurring before the system settles onto one or the other 
attractor. An example is reported in Fig. 7b, where we see that the chaotic transient lasts for 
about 40 excitation periods before approaching the attractor A2. Note that usually for regular 
motion 10 periods are enough to reach the attractor. Thus, if the chaotic transient is long 
enough, it has the same practical consequences of a chaotic attractor. We can conclude that this 
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fractal area implies unpredictability both in the final response and in the transient behaviour of 
the analyzed system, and thus it is likely unwanted from a practical point of view. 

 

 
Fig. 6. 2D sections at y = 0 of the 3D basins of attraction for ζ = 0:05, a3 = −4, β = 0:05, ω = 0:78 and (a) 
a0 = 0:03, (b) a0 = 0:04, (c) a0 = 0:05, and (d) a0 = 0:06. Yellow, A1: non-resonant attractor; blue, A2: 
resonant attractor; white: out-of-well (escape) attractor 

 

 
 

Fig. 7. Time histories for (a) resonant (A1) and non-resonant (A2) periodic oscillations (a0 = 0:03) and (b) 
a chaotic transient (a0 = 0:05). ω = 0:78, ζ = 0:05, a3 = −4 and β = 0:05 
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A further increment of the excitation amplitude causes the disappearance of the non-
resonant attractor A1 by an inverse saddle-node bifurcation (Figs. 2a and 3). Figure 6d shows 
how the resonant attractor A2 remains the unique attractor within the potential well. At this 
level, the fractality spread all around the potential well. Only around A2 there is compact part of 
the basin representing the (residual) robustness of the attractor with respect to accidental 
changes in initial conditions, i.e. the (residual) dynamical integrity. 

In the previous case the main role is played by the two saddle-node bifurcations where A1 
and A2 are born/disappear, and by the heteroclinic bifurcation triggering the fractal erosion of 
the dynamical integrity. However, we have seen in Figs. 2b and 2c that also the period-doubling 
bifurcation plays an important role for different values of the parameters. To highlight its 
effects, we have reported in Fig. 8 three different basins of attraction for ω = 1.0. Note that only 
the resonant attractor A2 is present. 

At a0 = 0.2 (Fig. 8a) the fractalization of the basin boundaries is already advanced, since we 
are well above the heteroclinic bifurcation threshold. The basin of A2 has both a small compact 
part, which implies a reduced dynamical integrity, and a small magnitude (including fractal 
parts), meaning that it is difficult to catch the attractor by random initial conditions. It follows 
that the escape is the most probable final outcome. 

In Fig. 8a we are still below the pitchfork bifurcation. At a0 = 0.25 (Fig. 8a), on the other 
hand, the pitchfork bifurcation occurred, and A2 is substituted by the two new period-1 
attractors A3 and A4, which share the former basin of A2 (which further reduced since a0 
increased). The basins are regular; the boundary is constituted by the stable manifold of the 
period-1 oscillation which looses stability (and becomes a saddle) at the pitchfork bifurcation. 

At a0 = 0.2663 (Fig. 8c) A3 and A4 become chaotic attractors. Both are confined in a very 
narrow region of the phase space, so that the chaoticity is not very pronounced. However, the 
principal feature is that the basins of attraction are completely fractal and shrunk, while the 
white area is wider and wider with respect to the other cases. 

It is worth to underline that, even if the a0−ω diagram shows the presence of attractors up 
to the escape curve, the attractor-basins phase portrait reveals that these attractors have so small 
basins and integrity that, from a practical point of view, they can be neglected. 

We can conclude that, even if the two attractors disappear by boundary crisis, the transition 
to the escape is not so sudden, but it is progressive and clearly forewarned both by the 
increment in the initial conditions leading to the escape area, and by the simultaneous complete 
destruction of the dynamical integrity of the attractors. In this particular case, this transition is 
also associated with an extensive fractality of the basin boundaries, and with a sequence of 
bifurcations of the attractor up to its final disappearing. 

 
4. Escape from the potential well 
 

In the previous Fig. 3b we anticipated the numerically obtained escape curve. In Fig. 9 we 
compare it with the Melnikov threshold for heteroclinic bifurcation. The latter is the starting 
point of the dynamical integrity erosion proceeding for increasing values of a0 (see Fig. 6), 
while the former is the ending point of the erosion. 

Although being the initial and the final point of erosion, these two thresholds are due to 
completely different phenomena (heteroclinic bifurcation of the hilltop saddle, the first, 
disappearance of the last in-well attractor, the second) and thus they are some uncorrelated. This 
is confirmed by the fact that they have different shapes. In fact, for example, while the 
Melnikov curve is not influenced by the resonance, the escape curve is influenced, since 
resonance entails large oscillations which facilitate the escape from the potential well. This is 
confirmed by Fig. 9, which shows that escape curve has a minimum at about ω = 0.70, which is 
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close to the resonant frequency ω = 1.0. The Melnikov curve, on the other hand, has not a 
minimum. 
 

 
Fig. 8. 2D sections at y = 0 of the 3D basins of attraction for (a) a0 = 0:2, (b) a0 = 0:25 and (c) a0 = 
0:2663. ω = 1:0, ζ = 0:05, a3 = −4 and β = 0:05 
 
 

 
 

Fig. 9. Escape vs heteroclinic bifurcations (Melnikov) thresholds. 
ζ = 0:05, a3 = −4 and β = 0:05 
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Roughly speaking, we can say that the Melnikov curve is influenced by what happens at the 
top of the potential well, while escape curve is also susceptible to what happen at the bottom of 
the well. 

We now analyze what the minimum in the escape curve means in terms of dynamical 
integrity. We compare four different cases (Figs. 10 and 11) at a0 = 0.1, i.e. slightly above the 
minimum of the escape curve. 

For ω = 0.225, i.e. on the left of the vertex of the escape curve of Fig. 9, A1 is the unique 
attractor of the system. Its basin, plotted in Fig. 10a, is wide and with smooth boundaries. 

As soon as ω increases and gets closer to the resonant frequency, the basin strongly reduces 
in size, as shown in Fig. 10b, which corresponds to ω = 0.65 and it is very close to the escape 
curve. Even if we apply the same forcing amplitude, a shift in the excitation frequency towards 
the resonance is able to produce the escape of almost all initial conditions. The fall of the 
dynamical integrity of the attractor clearly forewarns the transition to the complete escape from 
the potential well. Another small increment of ω, in fact, destroys the A1 attractor, and in fact in 
the range 0.66 < ω < 0.75 we have that no in-well attractors exist: we are in the escape region 
of Fig. 9. 

 

 
Fig. 10. 2D sections at y = 0 of the 3D basins of attraction for a0 = 0.1, ζ = 0.05, a3 = −4 and β = 0:05. (a) 
ω= 0.225; (b) ω = 0.65 

 

 
Fig. 11. 2D sections at y = 0 of the 3D basins of attraction for a0 = 0:1, ζ = 0:05, a3 = −4 and β= 0:05. (a) 
ω= 0:76; (b) ω = 2:50 
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The in-well attractors reappear at ω = 0.76 (Fig. 11a), which is just above the escape 
region. At the beginning, it has a residual dynamical integrity (Fig. 11a), which however 
increases as we move away from the escape region (Fig. 11b). Again, as before, we see that the 
transition to escape (now by decreasing values of ω) is forewarned by the destruction of the 
dynamical integrity. In this case, it is also associated both with fractal basin boundaries and 
with a pitchfork bifurcation of the resonant branch where the attractors A3 and A4 were born. 
 
5. Summary and Conclusions 
 

In this paper we investigated local and global bifurcations of a softening Duffing oscillator 
with a non-classical damping term taking into account the past history of the velocity. This 
memory term is of integral type with an exponential kernel, and thus it is of fading type with a 
given time length β of ‘relaxation’. This is the main parameter. 

We initially investigated the nonlinear oscillations around the resonant frequency, and 
found that, as expected, the memory terms contribute to the overall damping of the system, 
although it is smaller than in the classical case, a fact that confirms the findings of [5]. Detailed 
calculations have been performed by means of the multiple scale method. 

We then studied the global behaviour of the system, by paying attention to the problem of 
the dynamical integrity. 

The heteroclinic bifurcation of the hilltop saddles have been analytically detected by a 3D 
version of the Melnikov method. The analytic results have been compared with numerical 
simulations, which confirm how above the Melnikov threshold the erosion of the basins of the 
in-well attractors develops up to the final escape, i.e. up to the final disappearance of any in-
well attractor. 

A detailed analysis of the escape phenomenon is carried out by the combined use of 
bifurcation diagrams and of basins of attraction. 

We have shown how the fractal basins of attraction can lead to unpredictability of the 
system response and to a chaotic transient, which may be dangerous in applications. However, 
even with fractal basins, there is a compact part around the attractor, which represents the 
robust (or the integer) part of the basin. From a design point of view, this is the unique relevant 
part of the basin. If it is large enough, the design is safe against unexpected changes in initial 
conditions, otherwise the system loses ‘practical’ stability. We refer to [28, 29] for more details 
on this important issue. Here we limit to remark the importance of the global analysis, 
performed by the combined use of path following and attractor-basins phase portraits, to have 
reliable results in terms of dynamical integrity. 

In this paper a relatively small value of β is used. Larger values of β require three 
dimensional basins of attraction, which are more difficult to be obtained and more expensive in 
terms of CPU time. This issue is left for future works. 
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