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Abstract. We investigate the power of a ripping head in thecess of concrete cutting. Using
nonlinear embedding methods we study the correspgniiime series obtained during the
cutting process. The calculated maximal Lyapunoyoeent indicates the exponential
divergence typical for chaotic or stochastic systefirhe recurrence plots technique has been
used to get nonlinear process statistics for ifleation and description of nonlinear dynamics,
lying behind the cutting process.
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1. Introduction

A cutting process, studied experimentally and dbedrtheoretically by Merchant [1]
in the middle of 20th century, is a highly nonlingaocess involving such phenomena as
friction, impacts and chips breaking. In case ofaheutting, the most important criterion of its
reliability is the high quality of the final produdn practice one has to achieve a compromise
between the precision of cutting and cutting coStmsequently such a process is not designed
in a perfect way but it is disturbed by various téhdlities including dynamical chatter
vibrations. Recently those vibrations have beerestigated [2—8] in the context of chaotic
motion appearance. Such non-periodic vibrationsvarg similar to stochastic ones but they
have the origin in the nonlinear dynamics of cgjtin

Cutting applied to rocks is even more challengisght®e machined materials are not
uniform and brittle. The main purpose in rock agtis to achieve maximal efficiency [9, 10]
using a relatively small amount of energy. Thogerjites lead to the evolution of tools and, in
particular, to the technology of multi-tool rippitngads use [11]. In this paper we will present
the time series of the ripping head power appliedatstandard rock. The application of
Recurrence Plots (RP) enabled us to examine thinean properties of the cutting process.

The paper is divided into 5 sections. After thespre introduction (Sec. 1) we describe
the experimental stand and present a typical exawoitime series with a short discussion of its
properties (Sec. 2). In Sec. 3 we perform the emlingddimension analysis to the studied time
series. In Sec. 4 we analyze recurrence plots aakienthe recurrence plots quantification
analysis. Finally in Sec. 5 we end up with condusi
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Fig. 1. Multi-tool ripping head on the test bed (a) arsdsitheme (b) with the following specification:
1 - Machine foundation; 2 - Frani 1600; 3 - Electric motor P=140 kW, 4 - Connector |
5 - Torque meter; 6 - Reduction gear; 7 - Conndtt@ - Shaft; 9 - Frame Il; 10 - Speed indicator
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2. Experimental stand and results

Here we present the results of experiments perfdrinehe test-rig (Fig. 1a). Such
experiments are usually conducted to identify thafpstatus of cutting tools in ripping heads
of headwall combined cutter-loaders. Rapidly chaggnining conditions require an adaptive
control procedure to be applied in this proces® tbnditions of cutting tools, and especially
their edges, installed on a multi-tool head arem®sal in the context of optimization procedure
[12].
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Flg 2.The measured time series of the power of a rippaegx (a) and the time series of surrogated data

X (b) versus time-like measurement indexrhe powerx(i) (and also X (i)) was expressed in [kW],
sampling interval was fixed ait = 0.00% while the total number of points for the analysisN = 6600.
Note that the corresponding standard deviationaatadiffer so much asy = 14.665 kW whileo-i =

14.688 kW

The ripping head load measured as the supplied pdsveapidly changing in a
complex way. Thus the corresponding cutting procesifficult to describe mathematically. A
lot of factors can influence the ripping processieTbhasic group of parameters includes:
technology and conditions of excavating, rippingdéechnical parameters, characteristics of
the rock, constructional features of the tool. Bheeme and specification of our test stand are
presented in Fig. 1b [13].

A system with a full control and automation of thecavating process has not been
developed so far. However, the control processtdiiito adjusting the ripping speed to current
excavating conditions, can be applied. In this psscthe ripping speed could be estimated
through particular parameters of the head driveomsignal. Up to now, the operation of the
ripping head depends only on the operator's subpcassessments. It is important at a
significant variance in the optimum combined cutterder operation. Monitoring the condition
of a cutting tool point and the type of a presentitalled cutting tool is crucial for the proper
multi-tool head operation. The system that will gratally allow to assess the status of the
cutting edges and to identify the cutting tool typay. on account of the face of cut and the tool
flank, cannot be susceptible to changing qualifethe ripped material [14-16].

Using the above presented equipment we collectedidta of the ripping head power
during cutting of a standard concrete (Fig. 1).yTae presented as time series in Fig. 2a. In the
first sight one can observe that this time histdopes not exhibit any periodic oscillations.
Examining the properties of this representativeetiseries is the main purpose of the current
analysis.
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To check nonlinearity of the time series we havaliad a surrogate test [17], which is
based on the Fourier transform

y R % 5 ,
a; = TZ x(i) cos(iAtw;), b; = ~ Z.J'{JJ sin(iAtw; ),
==l =l (1)

where the corresponding amplitudgeand the frequency; are defined respectivelyt is the
sampling interval.
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Fig. 3. Return maps in different scales: (a) data in thele/region and (b) data limited the chosen interva
(from 10 to 50 kW). Figure (b) shows the noticeabteken reflection symmetry with respect to the
diagonal line

After adding random passesto terms withw; one can calculate the inverse transform

N/3
o ey} E Y ) :
(i) = F Z A; sinfw;i 4+ 15),

®3)

wherer; represents a random number wigidés a constant.
The results of the above prescripted surrogateXégtare presented in Fig. 2b. Two
signalsx(i) and X (i) (Fig. 2a and b) can be easily compared throudimated statistical

properties. Here we have calculated standard dengfor both time seriess( and O_i) and

observed that they are close to each other. Thiklanean that our system is influenced by a
significant noisy term. Note that the surrogatet,teghich mixes the phases of different
harmonics in random way is hardly sensitive forsgosystems. It is also possible that the
examined time series differ more in higher momer@antinuing this discussion on
nonlinearities in the time series, we have alsdt@ibthe return map in Fig. 3. Magnifying the
scale one can see in Fig. 3b that the diagonal styris barely broken. That could imply the
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broken time reversal symmetry, which is an impdrtafiect appearing most frequently in
nonlinear systems [18]. However, this effect allraticeable is not very clear in the present
case. Thus we need another test to conclude abalihearity of the examined system.

On the other hand, the Fourier transfoiifEgs. 1-2) is presented in Fig. 4a. Note that
the spectrum has a typical structure composed wide band and free singular frequencies
related to the natural frequencies and the rotatilequency of the ripping head system (Fig.
1). Investigating further the statistical propestief the time series we have constructed its
histogram which is presented in Fig. 4b. Here care @bserve that the probability distribution
is nonsymmetric in respect to horizontal axis. &ctf small power consumptions are more
probable than higher ones. Clearly it resembledPibisson distribution probability, which can
be associated with the existence of some rare gvidaturally, the power is proportional to the
torque acting on the ripping head. Thus, the irggeaf it can be related with the stronger
resistance of the material. To explain the rockirgtprocess one should also take into account
the nonuniform structure of rocks and cracks palgsis.
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Fig. 4. Fourier transform expressed in the inverse ofstrapling time unit Wt (At = 0.00%) (a) and the
related histogram of the examined time sex{€spresented in Fig. 2 (b)

3. Embedding properties of the time series

We start with reconstruction of the phase spacegudie Takens theorem [19]. To
apply this theorem we had to calculate time defay @mbedding dimension. After that we will
obtain a new time series which preserves topolbgitaperties of the initial one.

According to the Takens theorem [19] the nonlingéae series of single variable
can be represented in the reconstructed phase gsae® evolution of the vector fiek]
composed of the current and delayed values ofipipéng head power

i = [.‘.lf;.'. Ti—Asy Ti—9Ad: eens Ti— (A =1 :._.j,;']. )

whereAi is the time delay in sampling unitg, is the embedding dimension. To find we use
the average mutual information method (AMI) [20-22]

 Pu(di) 4(5!]
AMI(é2) el de) 1n
( ZJM .

(5
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where for some partition of the ripping head powelues intervalk € [Xmin, Xmax Pk iS the
probability to find a time series value in tkeh interval, andyy is the joint probability that an
observation falls later into tHeth element and the observation time is givemibyn Fig. 5a we
plotted AMI versus corresponding time deldy The optimal time delayi = di is to be
determined by AMI minimum. In our cage = 8 (Fig. 5a).

On the other hand, the embedding dimension canabmulated from an analysis of False
Nearest Neighbors Fraction (FNNF) [22—-24,8]. Ong toachoose the point indicated Xyand
calculate the distance to its nearest neighbortpamthe m-dimensional space; an Euclidean
distance is typically used and is writtenas- [x|m.
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Fig. 5. The analysis of embedding: (a) Average Mutual imi@tion — AMI versus time delagi and (b)
False Nearest Neighbour Fraction — FNNF versus ddibg dimensiomm
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Fig. 6. FunctionS (Eq. 8) as a function of time The short straight line indicates a positive sltgndency

S~ 0.1857 + const (in terms of sampling units), which indé&ahe positive value of the maximal
Lyapunov exponent

Iterating both points along the time series we cot@pthe control parametep;
defined as

; |xi'_xﬁ| 1+1
Qi = e R
X — K-"“'Tl

(6)
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By comparing the above value to a chosen thresQgldve calculate the fraction of cases for
which Q, ,, exceeds the threshold val@a. The FNNF can then be estimated from the following
expression

FNNF(m) = %Z O(Osm — Qo).
o @

whereN is the number of vector elements in the vectoetsaries@(x) is the Heaviside step
function. This so-called fraction analysis is repeaby choosing different values of the
dimensionm. The results of FNNF for varying are presented in Fig. 5b. FNNF vanishrfos

5 and this defined the proper embedding dimensian5.

The maximal Lyapunov exponeitdescribes the rate of divergence of the trajegsori
in the phase space. The most reliable methodssfanating; for systems which can involve
discontinuities (in our case generated by frictioracks and impact phenomena) are described
in [25,26,8]. Here, to calculaty we use the Kantz algorithm [25,20], which is defirie the
reconstructed phase space. Following this algorthenconsiders the representation of the time
series data as a trajectory in the embedded spate find a close returx,, to a previously
visited pointx,. By using the distance, — x, as a small perturbation one checks whether the
perturbation would grow exponentially in time. Tstimate the growth of the perturbations, we
need to compute the average for different obsematdintsn using

1
Sle, M. 7)= <ln i Z IXnrti — Xnti| >

- T xh,:;{'n

T (8)

HereU, ~ ", being a small parameter characterizing the mamirdistance around the poixt
such thatx, is in its vicinity &, € U,). The slope of the linear part 8fversus timer curve
yields the Lyapunov exponent.

AS
A= .
AT ©)

Using the numerical package by Heggerl. [22] we have estimate8 (Eq.8) as a
function of timer (in the sampling time unitat). The results of our calculations are presented
in Fig. 6. The obtained line is monotonous goingama down but for > 25 the oscillation
amplitude decreases considerably. The short strdigh in Fig. 6 shows a positive slope
tendency

S 2 0.1857 4 const., (10)

which indicates the positive value of the maximghhunov exponert; typical for chaotic or
noisy systems.

4. Analysis of recurrence plots

Recurrence plots (RPs), which were invented by Eakmet al. [27], were used later
for identification of nonlinear systems with vargopossible behaviours [28]. Such plots are
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constructed from a phase space vectors by spatiainpity analysis of stateg (defined in Eqg.
4). In fact using the above qualitative methoddeterministic systems it is possible to classify
the dynamics of an examined system by its chaiatitepatterns showing diagonal, vertical or
horizontal structure of lines [29,30]. The same hodtapplied to an unknown time series is
capable of distinguishing chaotic and stochastitabi®r. A pattern for a stochastic system is
based on uniform distribution of points in the neence plot, while a chaotic system possesses
structure of lines with finite lengths. On the athand in a case of the intermittent motion [31],
a vertical stripe structure is expected [32—-35].

The recurrence plot can be defined by the followinmtrix form R™ with

corresponding eIementh’”j‘g [36-38]

TML.E - i 3
Ry =0(e — |xi — xj) (11)
having 0 and 1 elements to be translated into ¢barrence diagram as an empty place and a
black dot respectively.

Using the proper embedding parameters analyzedhdnptevious section we have
plotted the corresponding recurrence plot (in Fag. for the examined time series. Figures 7b-c
show the corresponding RPs for the surrogated atutegressive time series.

The autoregressive time series have been calcutgteding the following formula

r—1
Tarlin+1)= E Bz sp(n—1i) + fi
i=0 (12)

wheref; are random numbers with Gaussian distribution o reean and the unit variance. In
our calculations we usqu= 100. For the best least square fit to the oaigiime seriex(i) we
obtained coefficient8;, (i = 0, ..., 99) and presented them in Fig. 8. Omesee that the first
four coefficients @;| > 0.4,i = 0, ..., 3) are the most important in the algonittEq. 12).

For comparison we present the RP obtained for #se of random number serigs
(Fig. 7d). Note that the black points in that R distributed uniformly. In contrast to the
uniform cover for random numbers (Fig. 7d) the otttgee time series Figs. 7a—c create
characteristic patterns. However the original patfer the experimental time series is partially
destroyed. Especially, the vertical line structtoe the surrogated data (Fig. 7b), and in the
system simulated by the phenomenological auto-ssgge model (Eg. 12) with a random
component (Fig. 7c) look differently.

Closer inspection to distinguish diagonal and hmrtal lines variation may be
performed by using the Recurrence Quantificatiomlpsis (RQA). This method was invented
by Webber and Zbilut [29] and later developed byWan [36,37].

Starting with the RQA analysis we define the reence rate RR:

N
RR= S B3 for Ji-jl>w

which determines the black dots fraction in thegthan.w = 1 denotes the Theiler window used
to exclude diagonal points from the above summg#ian 13).

Furthermore the RQA can be used to identify velrticadiagonal lines through their
maximal lengthd ., Viax for diagonal and vertical lines respectively. ta frame, the RQA
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enables to perform probabilipfl) or p(v) distribution analysis of lines according to thieingth
| orv (for diagonal and vertical lines). Practicallyeyhare calculated

P(y)

ply) = .
yLig'y ‘_ai:‘zy,-...r. P((y) (14)

wherey =1 or v depending on diagonal or vertical structures edpecific recurrence diagram.
P“(y) denotes unnormalized probability for a given ¢hi@d valuee. In this way Shannon

information entropies Lentr @and Veyr) can be defined for diagonal and vertical lines
collections

N
Lentr=— % p(l)inp(1),
=l in (15)

N
Venre=— Y plv)np(v).
V=Trrin (16)
Other properties as determini€d&ET and laminarityLAM and the trapping timéT are
also basing on probabiliti¢%(x).

All the seriesx(i), X (i), xar(i) andf, have been renormalized by the square deviation
andRR = 0.01 (Tab. 1).

Z-J.,I':I r.j- (17)

(18)

(19)
where |;, and v, denotes minimal lengths of diagonal and vertioaéd which should be

chosen for a specific dynamical system.

Table 1. Summary of recurrence quantification analysis (R@®) 'experimental’, 'autoregressive’ and
'surrogate’ dataw = 1 (Theiler window) antl,, = 2, Vi, = 2. Note, for all casaR’R is the same.

iype RR | M | Ai | DET | LAM | Lmar | LENTR | Vinas | VENTR Tr
"expermmental’ 0. 5 5 086G | 0015 3611 1.799 45 1.810 3.705
‘antoregressive’ | (101 5 5 0883 0.902 G54 2.121 43 1.356 1.029
surrogate’ .01 B 5 0840 | 0809 T2 1.758 50 1.754 3.674
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Fig. 7. Recurrence plots of the experimental data for ripping head power: the experimental (a),
surrogated (b) and autoregressive (c) time sendda the Gaussian noise serigd)
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DeterminismDET is the measure of the predictability of the exasdirime series,
gives the ratio of recurrent points formed in diags to all recurrent points. Note in a periodic
system all points would be included in the lines.t®e other hand laminarityAM is a similar
measure, which corresponds to points formed inicadrtines. This measure is telling about
dynamics behind sampling points changes. For spmlit to point changes the consecutive
points form a vertical line. Finally, trapping tinig refers the average length of vertical lines
measuring the time scale (in terms of samplingruatis) of these small changes in the
examined time history.

To express the quantitative differences betweesemted RPs (Fig. 7a-c) we have
performed calculations of all the specified quaesi{Eqs. 13,15-19) for our time series and the
surrogate (Figs. 2a and b) as well as for the agtessive simulated series and included them
into Tab. 1.

Note that determinisET of the 'autoregressive’ time series has the largakie. It
is because of a liner autoregressive model (Eq.al®) a large number delays= 100.
FurthermoreLAM is the largest for the experimental data. Thisliespsome vertical structure
of the system dynamics. The parameteidl, Venr andTT (all are the largest for the original
time series) are also closely related to vertitmicsure. Such a characteristic vertical structure
appears for the intermittency phenomenon [39]. &nily, two other examined time series
('surrogate and 'autoregressive’) cannot reved pienomenon. Note also that the lardgst
= 3611 is for the experimental time series. Theehdifference irL.x could be interpreted as
the strong correlation between neighboring poifitee other parameteid,.x and Lgytr reach
the medium value for the original time series. lestingly, Lentr has clearly the largest value
for the autoregressive time series, informing that noisy componerit present in Eq. 12 can
dominate here. On the other hang, is comparable to all three examined cases.

5. Summary and conclusions

We have investigated the power of a ripping headtsnworking conditions. Our
results indicate that the system is nonlinear. Was visible in time series (Fig. 2a) analysis in
terms of the return map (Fig. 3). The correspondiagrier transform course (Fig. 4a) and the
histogram graph (Fig. 4b) provided some initiaighs into the noisy statistic properties of this
process. Interestingly the surrogate test showedl slifferences in terms of square deviations.
However by using some more sophisticated measgies by recurrence plots quantification
measures, we obtained obvious differences betweenriginal and surrogated time series (see
Tab.1). Finally, the examined process appeare@ twmpletely different from the noise having
some specific correlations shown also by recurrepoaperties (Fig. 7, Tab. 1). Using
embedding methods we estimated a positive valughef maximal Lyapunov exponent
demonstrating the exponential divergence typicalcftaotic or stochastic systems (Fig. 6). In
summary we conclude that the recurrence plots ndsttappeared to be a useful tool in
characterizing this type of systems.

The presented methods based on the embedding thediRQA enable to identify the
complexity of the experimental signal and couldubibzed in future development of the control
procedure for the ripping head operation. One ohathges of the recurrence plots application
is that they do not need long time series. Interglst, this technique could be easily applied for
monitoring of sudden increases of supplied powes].[TParticularly, the vertical lines
parameterd AM, Vegyrr @and TT for the original time series are the largest iy some
specific behaviour of the system. This effect iatés that the dynamics of the investigated
system is complex. It is also clear that apart fetathastic noise the fractal structure related to
the intermittency phenomenon can be present.
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