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Abstract. In this paper, the stability and bifurcation oftioas in a fermi oscillator under dual
excitations are presented using the theory of digtoous dynamical systems. The analytical
conditions for motion switching in such a fermi-istor are obtained, and the generic map-
pings are introduced to describe the periodic drabtic motions for such oscillator. Bifurcation
scenarios for periodic and chaotic motions aregmiesl together with analytical predictions of
periodic motions. Finally, numerical illustration$ periodic and chaotic motions in such an os-
cillator are given. In addition, the flutter osatilbns of such an oscillator are presented through
the switching section for the Neimark bifurcation.

Keywords: Fermi oscillator, discontinuous dynamical systeimpacting chatter, sticking mo-
tion, Neimark bifurcation.

Introduction

The Fermi acceleration oscillator is a typiphi/sical model, and such impact phenomena
extensively exist in physics and engineering. IMM9,9the Fermi acceleration was first
introduced by Fermi [1] to explain the origin ofswoic radiation. In 1964, Zaslavskii and
Chirikov [2] provided the criterion of the Fermiaederator in one-dimensional case to explain
chaotic motion existing. In 1982, Holmes [3] stullithe dynamics of a ball impacting with an
oscillating table. However, it was assumed thattlass of the ball is much smaller than the one
of the table, and the impacts between the balltabks are at the same position. In 1983, Shaw
and Holmes [4] investigated the harmonic, sub-haimoand chaotic motions of a single-
degree of freedom non-linear oscillator. Bapat Bagplewell [5] experimentally investigated
the asymptotically stable periodic motions of a balan impact-pair. In 1988, Bapat [6] used
the Fourier series and perturbation methods toradiie the stability regions of two-
equispaced-impact motion of a ball in an impact-gdai 1995, Bapat [7] discussed the general
motion of a ball in an inclined impact damper wiftiction. In 1996, Luo and Han [8] revisited
the dynamics of a bouncing ball with a sinusoididrating table. To further understand the
nonlinear dynamical behaviors of the Fermi os@lain 1989, Luna-Acosta [9] investigated the
dynamics of the Fermi accelerator with a viscougtifm. In 1998, Lopac and Dananic [10]
provided a further investigation of the chaotic ayics and energy conservation in a
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gravitationally driven Fermi accelerator, and Saifil [11] discussed the classical and quantum
dynamics of a Fermi accelerator and determineexistence of dynamical localization for both
position and momentum in a window of the modulatamplitude. In 2004, Bouchet [12]
presented a simple stochastic system to generamadous diffusion of both position and
velocity for the Fermi accelerator. Leonel et aB][lused a discrete dynamical systems
formalism to investigate the effect of a time-degemt perturbation on a Fermi accelerator
model. In 2005, Leonel and McClintock [14] studibeé dynamical and chaotic properties of a
Fermi-Ulam bouncer model. In 2006, Leonel and Cawdg15] used a two-dimensional
nonlinear area-contracting map to study the Feooelgrator model with inelastic collisions. In
2008, Leonel and Silva [16] studied the dynamicalpprties of a bouncing ball model with a
nonlinear excitation force. The aforementioned istaidid not consider the motion switchability
and impact chatters, which cause the dynamicali@heomplexity.

On the other hands, in 2002, Luo [17] discugbedstability and bifurcation analysis for the
unsymmetrical periodic motion in a periodically #&d horizontal impact oscillator. In 2004,
Giusepponi et al [18] used the asynchronous samptiethod to study the dynamical behaviors
of a bouncing ball. In 2005, Luo [19] proposed thepping dynamics method to determine
periodic motion in a piecewise linear system. Fopedter understanding of such a kind of
dynamical systems, Luo [20] developed a theorytf@ non-smooth dynamical systems on
connectable and accessible sub-domains. Luo andh @ used such a discontinuous
dynamical system theory to investigate the flowd grazing bifurcations of an idealized gear
transmission system with impacts. In 2006, Luo &®dyg [22] used such a theory to develop
the force criteria for stick and non-stick motidnghe friction-induced oscillator. In 2007, Luo
and O’Connor [23, 24] studied the nonlinear dynantita gear transmission system through an
impact model with possible stick. Luo and Guo [Z8-Zystematically investigated the
switching bifurcation and chaos in a generalizednfreoscillator accelerated with a simple
excitation. Under dual excitations, the complexdfy chaos and periodic motions for the
particles in the Fermi oscillators will be diffetelnom the single excitation. Thus, in Luo and
Guo [28], the initial studies were completed.

In this paper, motion complexity in the Fermi ostdr with dual excitations will be
investigated. The analytical conditions for switisitiy of the motions in such a system will be
developed. Generic mappings will be introducedédecdibe different types of motions in such
oscillators. Analytical predictions of periodic rmots will then be presented through the
mapping structures. Finally, periodic and chaotations in such an oscillator will be simulated,
and Poincare mappings for the Neimark bifurcatidhbe presented as well.

Physical model

As in Luo and Guo [28], the Fermi acceleratothwdual excitations consists of a particle
moving vertically between two periodically excitescillators. The mass in each oscillatef”

(o {1, 2}) is connected with a spring of constakt” and a damper of coefficient'™ to
the fixed wall. Both oscillators are driven withrjpelic excitation force F)(t), as shown in
Figure 1. The mass of particle isi® and the restitution coefficients of impact for thettom

and top oscillators ar&® and&?, respectively. The gap between the equilibriumitjmos of

the two oscillators ish. If the particle does not move together with afiyhe oscillators, the
corresponding motion is called the non-stick matiBar this case, the equations of motion are
given by the Newton’s law, i.e.,
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velocity, and XD is the displacemeni &1, 2, 3).
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Fig. 1. Mechanical model

If the particle stays on one of the two oscilfatand moves together, this motion is called a
stick motion. For this case, the equations of nméice given as

(a

(@)
R 4 2@ K 4 ()X = L - cos@t,
m

_ 2
(@) -
K91+ 2d 9% + (0 9)? %9 = —(3? —cosN@t,
m® + m®
where X(O) is the acceleration)'((o) is the velocity, andX(O) is the displacement for both the

ball and oscillator. Alsod® = c®/2(m® + M), " =\/ K/ M+ i) where
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2, ifa=1
a=<_ . 3
1 ifa=2.
The impact relations among the particle and thdlatos are

Xig) _ Xia) = X = )

M+ ) %) nf) &) ("R - %)

x = m® 4 i | @
" m(3)xf3)+ n;')§“)+ rr(f) 8)( '_S?)_ '_S())
T M 1 |

Discontinuous descriptions

Due to the discontinuity of the system, the dim®and boundaries in absolute coordinate
system are introduced as sketched in Figure 2.ofilgin of the absolute coordinate is set at the
equilibrium position of the bottom oscillator. Trbsolute domaing,® and @ for the

bottom and top oscillators and domagsf> for the particle without stick are defined as

Qb = {(x‘l) X(l))‘ X0 ¢ (=0 X(S))}
QP ={(x®, x)| x? e (X, +0)}, (5)

QP = {(X(s) X(S))‘ x® e (x® X<2))} .
The corresponding absolute boundaries are defised a

0 ={(X(i)’ )'(‘”)‘(010(100) =x) X)) =0, = ')f)} :
' DKl = % ' ©®)
o0, :{(X(J)’ )-((1))‘(0&_)00) 0 ) 5 f )} |

where i =2,3 andi = 3,: with (j=1,3 andj = 3,). The domains are represented by a

shaded area and the boundaries are depicted bedlastd solid curves in Figure 2. The
boundaries ofpQ® ~and 6Q® =~ are the curves ax® = x® and the boundaries of

0., and o,

) , are the curves ax® = x?_ For stick motion, the absolute domaig

and O (i=1,2,3) for the two oscillators and particle are defiraesd
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ob = {(x(l), x‘”)\ XV e (9, X2, %= -X(s)} ’
(x?, X(Z))‘X(Z) e (X0, x9), xP= )53)}

of) ={
@ DY 33 _ 3D
X e (=0, X)), X X
9(3) {(X(g) X(S) () (2) L3) _ 2’
orx® e (X?,+0),x% = K

Qo = {(x(l) x(l’)‘x(l) %, (rs))’ 5@ 'x(l)},
QP = {(X<2) X<2))‘X(2) )2(3) +OO) %3 2 X(z)}
x® e()gﬁf), X(Z)), NORRVE)

orx® e (x?, ), x¥ = x?

(7)

QO = (x@, x®)

D ishi i i (3) — (@) (3) — y(@)
where x is for appearance and vanishing of stick motioth =% and x>’ = x2,
and ¢ =1,2 are for stick on the bottom and top, respectivehe domains ofQ’ and QJ’

are presented by shaded and filled regions in Ei§urThe corresponding absolute boundaries
are given by dashed curves, and the stick bourddareedefined as

® _ ® 5@ D _ @ (3 — (1) — (3)
ano—{(X » X )‘(”10:)( - X% =0,X )«é}

2 2) (2 2) _ (2 3 (2 (3
oR :{(x‘ ) ))‘(01(0)= X@_ x@=0, x= )}

(8)
(3) — (@) (1) _ (3) —
201 — (x(3) (3)) o =XT =% =0,X )ﬁr
10 —
The vectors for absolute motions can be definddlsvs
for i=1,2,3andi= 0,1 9)

f(l) (X/(ll)l F(I))

where | =1, 2,3 represents the bottom, top oscillators, and thiégs respectively; 4 = 0,1
stands for the stick or non-stick domains. Theratiqn of absolute motion is

xP =fOxt) fori=123and= 0, (10)
For non-stick motion,
FOOXD, 1) =205 — (0 2 X0 + Q - cot, (= 1,2),
RO =g

11)
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For the stick motion,

FO (X 1) = - 2@ KD — (0! Y X + Q COSQ(“)t
(i=a,3).

‘ . (@)
RO (), 1) =-2d7%7 - (@) X+ @Q—mfa) cos )t

§\\/

/

(2)
) A v

///

(b)

(©)

Fig. 2. Absolute domains and boundaries without stickb¢tjom oscillator,
(b) top oscillator, and (c) particle
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Fig. 3. Absolute domains and boundaries with stick:
(a) bottom oscillator, (b) top oscillator, and particle

For simplicity, the relative displacement, vétpcand acceleration between the particle and
the bottom or top oscillators are defined a8’ = X — X, 20 =) - ¥ | and
720 =50 _ %) 'wherei=¢,3 and T =3, represent the particle and one of the two oscil-

lators, accordingly. The relative domains and bawied for the particle and oscillators are then
defined as sketched in Figure 4 and Figure 5 femtiotion relative to bottom or top oscillators.

The stick domain and boundaries in the relativesphepace becomes a point in Figure 4 and
Figure 5(a) and (c). Therefore, the stick domams laoundaries in the relative velocity and ac-

celeration (i.e., (Z(i), 'Z(i))) plane are presented in Figure 4 and Figure 5{d)d).

The filled regions represent the stick motion doreawhile the shaded regions indicate the
non-stick motion domains. The domaig3’ and Q" for the relative motions for the parti-
cle and the two oscillators are
72
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Qf ={(z", 22 =0, £ =0,
QP ={(2%, )| 2 € (-=,0)f,
QP ={(z?, 2%)| 27 € (0,+0))}, (13)

Q® =1 (2@, 79)
or 2% e (0,xX? — X))

zZ% e (X - X2,0), }
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Fig. 4. Domains and boundaries definition relative to lla¢tom oscillator: (a)(Z, Z) -plane for bottom

oscillator, (b) (Z, 2) -plane for bottom oscillator, (cfZ, Z) -plane for particle, and (d)Z, Z) -plane
for particle
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Fig. 5. Domains and boundaries definition relative to tbe oscillator: (a)(Z, Z) -plane for top
oscillator, (b) (Z, ) -plane for top oscillator, (c)(Z, 2) -plane for particle, and (dYZ, 2) -plane for
particle

The boundaries@Qf()m), 8Q§i({w), oQl), and 6QY) for the particle associated with

the bottom or top oscillators are

00, ={(2°, 2)|pl,= 2 =0, %0,
8Q§(jlw) = {(Z(j)u '2(j))‘(ﬂ§{fw) =2)=0,% = O} , (14)

20 =0 = (2", Aty = £ =0, £ =
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where 1=1,3,j=2,3, 1=1,2,3. 6@5200) and 6Ql(+w) are the impact chatter bounda-
ries for the particle relative to the bottom or twgillators, respectivelyﬁQig) and 6Q$)
are the stick motion boundaries for the partic%)ﬁ)_w) and 8Q§(2+)w) are the impact-chatter
boundaries for the bottom or top oscillators, resipely. 8(2%) and GQ(()ll) are the stick mo-

tion boundaries for the bottom oscilIato@.Qig) and 89821) are the stick motion boundaries
for the top oscillator. The relative vectors in tieéative coordinates are

20 =(2).4).d)=2)=(4 . ¢'). (15)

where | =1,2 are the bottom and top oscillators, respectivaly;3 are for the particle.
A1=0,1 gives the corresponding stick and non-stick dosafor i =1,2,3 and 1 =0,1, the
equations of relative motion are in the relativetee form of

2 = @ (X 1) |
2‘;"— g (27, X0.1) (16)
28 = (2%, X ) |

where X' = (x)1).

0] For non-stick motion, the relative forces per unéss are
( )
(a)(z(a) X(a) t) (a) ; (a)(a)) X(la) (a) CO@(Q)I
019 (2, X 1) = 2D 3 _ (@) o x4 L cosQ(“)t+ g 17)

90 (20, X, t) = =g+ 265 + (@) X - Q — ot

(i) For stick motion, the relative velocities and tb&tive forces per unit mass are
3 _ Z()a) -0
B B B o ( )
9@ (2@, XD t) = —2E@ KD _ (@ 2 ) 4 (a) conN@t (18)

gl (2, X 1) = g (22, X, 1) = 0.

Mathematical conditions of switchability

To develop the analytical conditions for stiakdagrazing motions of the Fermi oscillator,
the normal vector of the boundary relative to tb&dm or top oscillator is
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a¢aﬂ a¢aﬂ )T

n, =V = , 19
m, =V =50, (19)

where V =(0/0z, 8/8'2)T . n

ries, and the normal vectors ¢t__,, and N__,
Y, (i)

@ and n__, are the normal vectors of the stick bounda-
0Qyy 0Qpy

are for impact chatter boundaries. Thus,

=(0,2),
- (L,0V.

i =g (20)

n =N

503 3
095(1:@) (795(2:@ )

Zero-order and first-order G-functions for the lstimundaries relative to the bottom or top os-
cillators are introduced from Luo [29, 30],

(0,0) (5 (@) y(3) —_n' @) (5@) (3)
GaQE{i) (25" %" b, ) = Moo 97z X% e ),

(L0) (@) (3) _n' @) (o) ?3)
Gaggg)(zl 1 X 1tm¢)—nm§g>'g (7, x7 b)),

(0.1) (@) (3) —_n' @)(5@) (3)
GaQEf{) (25" %0 b ) = Moot D9 (25", X5 ts )

11 3 T 3
GEY (2, xP b ) =N, -Dg“(Z, Xt L),

i o0l o
GO (28, XE ) = L - 920, X ),
GE9 (20 1, )-GO ),
G;S)g) (Zég)' Xéa)’tmr) = n;QEﬁ) . Dg(s)(z(()s), X((;Z),tmir ),
G(%;Og)) (21(3)’ Xl(a )’tmi )= n;Qig) ) Dg(g)(zfg), Xi(a ),tm ).

Notice that t is the switching time of the motion on the cormsging boundary and

t.. =t,£0, which represents the motion on each side of thentiary in different domains.
The G-functions for the impact chatter boundaries a

Gaip, @ 87 ) =y 002040 1),

O
G (20 %P, ) =1, DIz x2,),
Y - 22)
Ga(g;?))x) 2z, xOt )= n;gﬁlw) g9z, xOt ),
G;gliglf)}x) (21(3), Xl(l)' (o )= ngﬁiﬁlm) -Dg (3)(21(3)’ X:fl)’tmi ).
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Using the G-functions, the analytical conditions $ick motion on bottom or top oscillators
can be obtained for the passable flow conditiomfdomain Qi') to Qg) in Luo [29, 30],

Therefore,

(-G @7 Y 4, )< 0,

(a
10

-1*G2 ¥, x%t )< 0.

395?) 0 M+
(23)
-)*GY3) (2. x{.t, )> 0,

ol

(-D*GL 28 %, )> 0.

(
a0

-D"g” (" %" 1, )< 0,
(-795” (257, %3 4. )< O
-D"g” (2"} t,)> 0,
(=795 (25" x5 . )> O,

(24)

Simplification of the foregoing conditions givestbnset conditions of stick motion on bottom

or top oscillators, i.e.,

Pt ) > x¥(t, ) =—g, for the bottom),
x@(t )< X¥(t ) =-g, for the top,

(25)

which means that the acceleration of the bottonillatar X(l)(tmi) should be larger than the

particle’s acceleration oﬁ((s)(tmi) =—g in order for the particle to stick on the bottostid-

lator. However, the acceleration of the top osm'HaX(z)(tmi) should be less than the particle
acceleration in order for the particle to sticktba top oscillator. Similarly, the criteria for van
ishing of the stick motion from the bottom or togcilator at 89801) are from Luo [29, 30],

(2% 4. )= 0, €I GG &) X 8y )> O

o0y

(Z]Fa)) X](,g)! tm+) = o! (_ 1Y fo;-gé]‘.i)) (21(3) ,le‘ ) ’tm+ )> O

(26)
3 (3 0, 3 a .
2 x§4,)=0, C1F G (2, x5 4, )< O;
3 (3 11 3
(Z]F )' le )’tm+) = 07 (_ 1Y 60(9531)) (Zl( )’lel )’tm+ )< O
From the foregoing equations, the relative fordatiens for GQEﬁ) are
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0 ""'m-

a a d a a
95" (26", X5 )=0.617 o) @) X3 4, > 0

a a d a a
9”27, % 1,.) =0, (—D"agi '@ XY )< 0

1 e+
d (27)
0 (2747 6, )= 0, €17 o @6 X6 4, )< O
(24 d o
1(3)(Z£3), Xi )'tm+) =0, (_;|_)aa l(3) (Zf) 1X§ ) b )> 0
With the relative acceleration and jerk, one gets
(1) w(3)
X =X7(t.)=-0,
() (t)=-0 for the bottom)|
Xl < X =0, (28)

X (t,.) =XV (t,) =-g

X,:i) S Xr(ri) _0, } for the tOp.

Using the G-functions of the flow to each boundéng conditions of grazing motions are from
Luo [29, 30}, i.e.,

(-D°GLo @7 Xt )=0,andt HGLH &) %7 4. » 0 fobQy, ;

a0f?, 204,
-1)"GLY (7 xPt,.)=0, and{ HGED £ x® ¢, » 0 fodQ,
o ) (29)
(_1)“6;;?3);) @®,x*)t,)=0, and { I)GE(&%%) £t ¥ 0 fobf) ),
(_1)0‘ G;;E;L) (Z:E?’)' X:E‘Jf),tmi ): O, and ‘€ I)Gr“(é;%y) 11(3) Xl(l )tmi )< O dr an(?w) .

So the grazing motion conditions on the bottom tpdfor the non-stick motion boundaries are

X® =% and XY < ¥¥=-g foroQ’,, pQL, ;

X9 = X9 and X2 > %9 =— g fora®, 00 [ O
Similarly, the grazing conditions for stick motiboundaries are from Luo [29, 30], i.e.,
Gy (@ . t,.)=0,and € G £ %V 1, » 0 fobQyg’ |,
Gl 2 4)=0.and € HGLY & X7 k 0 fopQ).
G (29X 1) = 0,and ¢ HGL) £ () t,. ¥ O foeQfy o
GO (28, %4, t,.) = 0,and € YGUY &7 %t » 0 fob)|.
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The corresponding accelerations and jerks shotishs¢he following relations.

M = %® =—gandx® > x®= 0 forQy pQY,
%2 = x® =-gandx® > x3’— 0 foreQ? pQ ¥
o o ., ¢ for top
x? = x® = —g andx® = 0 foreQ{? pQY

M = ¥¥ =—gandx® < %x® = 0 forQY 00,2
for bottom;

(32)

Periodic solutions and stability

Using the discontinuous boundaries in Eq.(6),aWwitching sets of the Fermi oscillator with-
out stick are introduced as

—y@® (2) 3
L) = Zi(n) O Xy O X1,
= {000 P = o
(33)
z:l(-¢—oo) :2 ®21(+oo ®2 1Ge0)
. 2) 2) 3) 3 3 2) ¢(3) _, (2
0 KA 5 A0, = P 5
where the switching set§f()_oc and Zi'(m are defined on boundar@Q(') and 0Q){) 1(s0)

respectively. The corresponding definitions for tbp and bottom oscnlators plus the particle
are given as

0 = {0 0.4 )| 40 = %0, K0 = K0} coa,) e =13,

(34)
() ( ) a) _ k@) yfa) &) (i) —
le(+oo) {(Xkl xﬁ )‘)é - ){< ' )§< # )%f }Canl(+oo)’a_ 2’3
Thus, the generic mappings for motions withoutkstimtion are
B2 )22y B2y 220y
(35)

From the above definitions, the switching subsatstae sub-mappings without stick motion are
sketched in Figure 6 (a) and (b) for the bottom toploscillators, respectively. In Figure 6 (c),
the sub-mappings without stick motion for the paetiare presented.
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(©
Fig. 7. Switching sets and generic mappings for stick amin absolute coordinates:
(a) bottom oscillator, (b) top oscillator, and particle

They are given by:

R=("R,“R “R), R= ("R, R “P)

(36)
1 2 3 1 2 3
pgz(()%,( )Pai()%)’ a:(()a’( )a,()a)’
Hp -y (@) @) Hp -y0) 0)
R: 2ty ™ iy Pz-zmoo ) Xy @7)
Hp -s@) @) Op -y0) 0)
P, .Zl(m) - Zl(m), P,: Zlaw)—> me y

Similarly, the switching subsets and the sub-maggpiwith stick motion are presented in
Figure 7 (a) and (b) for the bottom and top ostills, respectively. The sub-mappings with
stick motion for the particle are sketched in Fegir(c). From the boundaries in Eq. (6) and (8),
the switching sets of the Fermi oscillator wittcktmotion are defined as

ZlO “a zg.]g ®a z(].20) ®a 2(133
= {6 K 40K O R R = K= %)

=30 3@ yC

(=) 1(=0) 1(=0) 1(=0)

= {0 52 2, 5260, 0, 1) §0= 2 A= R,

=30 3@ yC

1(+0) 1(+o0) 1(+0) 1o )

= {0, 50, X2, 52040, ) X0= o A= f

a

z
(38)

z
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where o =1,2 with & =2,1. The switching set, X, is defined on the boundargQ,

(3) — yl@)
50 2 (%0, xp,k)xk T ool fora=1,2;i=1,2,2
= %",
» ) ot X&3)—xk .
20 = (X&'),;(g),p)x&g)ixi 00/, fori=1,3; (39)
() 6 o X =X 0 .
Zl(Jroo) (Xk ’Xi 1'%) X;Es)i )'(‘((2) 8Ql(+oo)’f()r| =2,3.

Thus, the generic mappings for the stick motiondafned as

~J

.y (@ (2
120 —>21(+w), oerm)eZlo ,

e

. (€ )
'Zl(Jroo) —> 21, Or 2y > X 1w )
. W p-yv@
DI DRTHN VPPN v D IPH

2 5320 andP, 2% -3

(40)

0nd U

where the global mappings df, andP, will map from one switching set to another. Thealb
mappings of &, P,, R, and P,) map from one switching set to itself, as in Fi§sand 7.
From the above definitions, the governing equatifursgeneric mappingP, (]=1,2,3,9
can be expressed by

fO(Y,,Y ) =0forP,, (41)

with

f(i):(fl(J),fz(i)’fs(l')’fij)’féj),fg))-r

Vi = (4 5 AL X ) m

X2 =x" andx? = x% fork,

€= andi)= £, forR "

X =X andx® = X!, forR,

x¥ = x? andx® = X2 forP
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The governing equations for the stick mappiﬁﬁ“) and PG(“) can be expressed as
fPEP,z8))=0 forP® (j=5,6) 43)

and

Zf(j) :(Xl(f), )-(La), Xf), -){3)’ tk)T |
Zwl = (Xﬁfi’ szi, i)l’ ; 3)1’ ttel)T )
f Z((g) fl(O) f2(0)
(@) fs(o) = gia) (01Xf<i)l’tk+1)'

K0 = 0 and? = %) % =X andx, = m}

()" % < (-1f"g,and € X > £ By,
withj = 5,6 for @ @ )= (1,2)and(2,1).

T
B f (0) f (0) f (0)

) 1 (3 1 1 (3 2 ) 5 1

(@) (3) (3) @) ) (44)

The notation for mapping action is introduced as

=P oP o-0oP, (45)

IPER ik Tk i1

where j, e{1,2,3,4,5,$ is a positive integer. For a motion witin-time repeated mapping

structure of P] J.

i the total mapping structure can be expressed as

PjiTk)*l”'jl :(Fj)k ° Fj)kflo.“o Ij:)l)o“.o( Pk ° Rilo---o jPl): ﬁkjk—l'”jl)m' (46)

Consider a motion with a generalized map,

P=P

4M o'el ok 3N gk

ore PA“ldBléZlglill: P(4n G 2ok @ 6wy (47)

|-terms I-terms

where k. €{0,1} and m,neN (s=1,2,--,I). Define vectors

Xy E(Xkl’ Xizs Xizr Xiar Xiss Xke)T ( Xy E{XS)’ Xil)v XEZ)' ')éZ)! ){3)’ ‘>§3)’ tt ) and
Y=V Yo Yo Yoo Yoo Yo (Yo e {0 X0 %20 %2 X7, X, ). The motion per-
taining to the mapping structure in Eq. (47) camdbgermined by

PX k= Fz4"l o823t .. (drgsila g 111))< k* (48)

I-terms

kiShy (Mot lo sk N k)
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From the algebraic equations for generic mappingegs. (41)-(44), one can obtain a set of
nonlinear algebraic equations for such a mappingstre, i.e.,

f(l)(Xk’Yk+l)=o,...f (3)Q< Kok Y k+l§,+1)= 0;--,
f(Z)(Xk+I<1|+r]’Yk+lg,+n+l):O"“’

f(4)(x
Y

(49)
)=0,

Y
ke Zgg (Mytlogtlo ok Ngr K 3-17 k=g me k4 kg g k)¢

=X

k+o k+o?

where o =1, 2L (M, + k. + k .+ n+ k J—1. The periodic motion pertaining to such a
mapping requires

k+Z'¥1(nS+ kgt Met b & k) = X K (50)
or
0 =x0
fz'g(rrgws;km ng k) | for =1,2,3
+Ig (Mt kot oo N K ) ’
(i) =Ot"
th+2|k1(ms+|%s+ e Ns kY th +2Nr.

Solving Egs. (49)-(51) generates the switchirtg séperiodic motion relative to the mapping
structure in EQ.(47). Once the switching points dospecific periodic motion are obtained, its
local stability and bifurcation analysis can be eteted through the corresponding Jacobian
matrix. For instance, the Jacobian matrix of thepiag structure in Eq.(48) is computed, i.e.,

DP = DFz4m 0'9 24 3N 18 .. (41 gs1 det & 1 )
| |-terms (52)
—[]DP™ -DR?. DR . DE™. DE*?,
s=1
where
oY, .
oo {2] {e].
o _16x6 oj 6x6

for o=k k+1-- k+Z,, (m+ k.+ k .+ n+ k)-1 and all the Jacobian matrix compo-
nents can be computed through Eq. (49). The vanatiequation for a set of switching points
{XI(!Y:(+11.”)X* }|S

k2 (Mot kg gt bo sk g K )
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AY kst sttt e 1y =~ DP XX e (54)

If AYk+Z;1(rrg+kgs+kzs+ he k) = AAX , the eigenvalues are computed by

IDP(X)-41|=0. (55)

If all |4 k1 for (i=12,--,6), the periodic motion is stable. If one ¢ff 1 for
(i e{1,2,---,6}), the periodic motion is unstable. If one of =-1 and |/1J. k1 for
(i,j €{1,2,3,4,5,6] and ] #1), the period-doubling bifurcation of periodic mastioccurs. If
one of 4 =1 and |, k1 for (i, €{1,2,3,4,5,6] and j #1), the saddle-node bifurcation
of the periodic motion occurs. If4, , .,k 1 with the complex eigenvalues dfi, . |- 1, the

Neimark bifurcation of the periodic motion occurowever, the eigenvalue analysis cannot be
used to predict sticking and grazing motions. Bottthem should be determined through the
normal vector fields, and the stick motion is detimed by Eq. (23) and the grazing bifurcation
is determined by Eq. (29) or (31).

Numerical illustrations

Setting e = d? = ¢ the bifurcation scenario of varying@ for the Fermi oscillator is
presented in Figure 8. The parameters @fe=Q2=200, O =0?=10.0, m® = nf? =1.0,
m®=0.01, h=0.5, k®=k®=80.0, c”?=c?=0.1. The switching displacement, velocity,
and phase of the particle versus the restitutiosffioient € are shown in Figure 8 (a)-(c),
respectively. The acronyms ‘PD’ and ‘GB’ indicales tperiod-doubling bifurcation and grazing
bifurcation respectively. The shaded areas areegions of periodic motion. Foee (0,0.5),
the impact chatter with stick motion exists. In ethwords, the particle is undergoing the
periodic motion where stick motion with top or lwott oscillator occurs after impact chattering.
At e=0.323,0.336,0.37: and 0.5, grazing bifurcations occur and the current pedod
motion disappears, and another different periodition starts.

With the same parameters the analytical predictib periodic motions with varying the
restitution coefficiente€ is presented in Figure 9. The displacement, vgloeind switching
phase of the particle versus the coefficient ofittggon € are shown in Figure 9 (a), (b), and
(c), respectively. The solid and dotted curves esent the stable and unstable solutions,
respectively. The acronyms ‘PD’, ‘SN’, ‘NB’, and B35 represent the period doubling
bifurcation, saddle node bifurcation, Neimark bifation, and grazing bifurcation, respectively.
For ee(0.0,0.5) the periodic motion of impact chatter with stickxiss. At

e=0.323,0.336,0.37; and 0.5, the grazing bifurcations occur. Fae (0.5396,0.5522,

the stable periodic motion 01‘3(33241)2 exists. At e=0.539€, a period doubling bifurcation

occurs. At e=0.5522, a saddle-node bifurcation of periodic motion rs,:f33241)2 occurs and this

periodic motion disappears. Such a valueenf 0.5522 is also for period-doubling of periodic
motion of Poa The stable periodic motion OfP33241 exists in the region of
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ee(0.5522,0.5626. At e=0.5626, the saddle-node bifurcation of periodic motion Bf

occurs, and such a periodic motion disappears. &010.6688,0.696(, the stable periodic
motion of P exists. At e=0.6688, a period doubling bifurcation occurs, and the

(413 2y
periodic motion of 341322)2 becomes unstable. A&=0.696C, a saddle node bifurcation of
periodic motion of P(41322)2 takes place, and the periodic motion 9(f41322)2 vanishes.

However, the periodic motion 011341322 starts; this corresponds to the period doubling
bifurcation of P.s, motion, where the motion becomes unstable. THaestzeriodic motion of

P41322 lies in e (0.6960,0.766¢. At e=0.766€ the stable periodic motion OP41322

disappears because of the saddle-node bifurcakorally, for e< (0.9042,1.0, the stable
periodic motion of Pz is observed. Ate=0.9042 and , the Neimark bifurcation of the

periodic motion of P takes place. The prediction stopset1.0 because the restitution

coefficient cannot be greater than one. The regkpanaginary parts, and magnitudes of the
eigenvalues are illustrated in Figure 9 (d)-(fspectively.

GBGB GBPD PD
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Fig. 8. Bifurcation scenario of varying restitution coeiéint €: (a) displacement of particle, (b) velocity
of particle, and (c) switching phaseQf = Q® =20.0, Q¥ =0®=10.0, m® = nf? =1.0,
m® =0.01, h=0.5, k” =k®=80.0, ¢ =c?=0.1)
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Fig. 9. Analytical prediction of varying the restitutioonefficient of impact €: (a) switching displacement
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imaginary part of eigenvalues, and (f) magnitudeigénvalues.@® = Q® = 20.0, Q% =Q® =10.0,

m®=m?=1.0, mM®=0.01 h=0.5, k®=k®=80.0, ¢ =c?=0.1)
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Using the same parameters, a periodic motionplgajzed is illustrated with e=0.2 in Figure
10. The initial conditions arex( =0.7953491", x=-5.4902522(, Xx{?’=1.3037385:,

x? = 55108593, X’ =1.3037385, X¥ =-5.5782891¢ for t,=0.36891903. The time

histories of displacement and velocity are preskenig-igure 10 (a) and (b), respectively. The
thin solid curves give the motion of the bottom aml oscillators. The thick solid curve depicts
the motion of the particle. The shaded area indic#tte region of stick motion, and the black
circles represent the switching points of the nmtidhe particle with the top oscillatoip,{

impacts seven times, and the stick motion is forméd the top oscillator §7). The particle
will free flight. The particle with the bottom odlator impacts seven times(). After that, the
stick motion with the bottom oscillator() is formed. This forms a complete periodic motion.

Discontinuity of the velocities can be observedrfrbigure 10 (b). The velocities of the bottom

and top oscillators are very close to each othed, they do not change much after impact
because the mass of the particle is much smaléar the two oscillators. The corresponding

phase portrait of the particle with moving boundaris presented in Figure 10 (c), where the
thin solid curves indicate the moving boundaries] the thick solid curve represents the motion
of the particle. The discontinuity due to impaasliso observed from Figure 10 (c) for both of
the moving boundaries and the motion of the partiEbr illustration of the onset and vanishing

condition of stick motion, the time histories ofcateration and jerk are presented in Figure 10
(d) and (e), respectively. After impacting sevanets with the top oscillator, the velocities of

particle and top oscillator become equal, and twelaration of the top oscillator is less than
the acceleration of the particle-¢), thus the onset conditions of stick motion wikte ttop

oscillator (p) are satisfied. Thus, the particle starts to ntogether with the top oscillator. This
motion will continue until the forces per unit mgss acceleration) equal te-g again. At the

same time, the jerks of the two become greater zkam, which satisfies the vanishing condition
of stick motion on top. Thus, the motion relatiee ¢ switches into the motion relative tg,.

And then the particle impacts seven times with ib&om oscillator, until the velocity of the
particle equals to that of the bottom oscillatohiler at the same time, the acceleration of the
bottom oscillator is greater than the one of theigla (—g); the onset condition of the stick
motion on the bottom#) satisfies. Thus, the particle starts moving tbgewith the bottom
oscillator until their acceleration equals teg again; mean while, their jerk is less than zero,

which satisfies the vanishing condition of the Istimotion on bottom. Thus the particle
separates with the bottom oscillator and switches the free flight motion in domaim, until

the particle impacts with the top oscillator again.
The simulation of a chaotic motion is given ingliie 11 under the same parameters

with e=0.9. The initial conditions are x{V=0.94196819: , x{"=1.8610961: ,
x? =1.4570911¢, x? =1.8272204:, x{¥ =1.4570911¢, and x{¥ =10.713481" for
t, =0.28971160. The time histories of displacements and velazitiee presented in Figure

11 (a) and (b), respectively. The thin solid curdepict the motions of the bottom and top
oscillators, and the thick solid curve represemsrhotion of particle. The switching sections for
the particle, bottom and top oscillators in phakae are also shown in Figure 11 (c) and (d),
respectively. Furthermore, the switching sectiarspharticle’'s displacement and velocity versus
switching phase are presented in Figure 11 (e)(Bndespectively. The invariant set of such a
chaotic motion is presented.
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Fig. 10.Periodic motion with a mapping structure 62537161 : (a) time history of displacement, (b) time

history of velocity, and (c) a trajectory of paléievith moving boundariesQ® = Q® = 20.0,
QY =0®=10.0, m?=n?=1.0, m¥=0.01, e¥=€”=0.2, h=05, k® =k®=80.0,
c® =c® =0.1). The initial conditions arex® =0.7953491", X =-5.4902522t,
x$? =1.3037385, % =-5.5108593( x¥ =1.3037385: and x¥ = -5.5782891¢ for
t, =0.36891903
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Fig. 11. Chaotic motion: (a) time history of displacemetit) time history of velocity, (c) switching
sections of (x¥,y®) , (d) switching sections of (x{*),y{”)) , (e) switching section of
(x®, mod@Qt, ,2r )), and (f) switching section of(y® mod@Qt, ,2r)). (Q® =Q® =20.0,
QP =0®=100, m?=m?=10, m®=001 e=09, h=05 k®=k®=80.0,
c®=c?®=0.1 ). The initial conditions arex®=0.94196819:  %¥ =1.86109613
x? =1.45709118 x? =1.82722042 x{¥=1.45709118 and  %®=10.713481  for
t, = 0.28971160!
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Two Neimark bifurcations withe=0.9067 and e=1.0 coexist with chaotic motions.
The two Neimark bifurcations have five strangeaattors with a very small scale dio3. To
illustrate the Neimark bifurcations, switching sens of the Neimark bifurcation with
e=0.9067 are carried out as shown in Figure 12. The inpua diat initial conditions of the
simulation are listed in Table 1, and the centertlona of each of the five strange attractors are
listed in Table 2. The overall view of the five stganattractors of the Neimark bifurcation is
presented in Figure 12 (a). The acronyrgg indicates theith strange attractor with

i=12..5 A zoomed view of each strange attractor in Pomaaapping sections is then

presented in Figure 12 (b)-(f), respectively. Thetdluoscillation zone can be observed from
each of the zoomed plots.
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Fig. 12. Switching sections for the Neimark bifurcationpzfrticle at e=0.9067: (a) global view and

(b)-(f) local view (SA, SA. SA. SA. andSA) (Q®=Q®=20.0, Q®=0®=10.0,
m®=m?=1.0, m®=001 h=05, k?=k®=80.0, c®=c?=0.1)

Table 1.Input data for switching sections of the Neimaifiidzation
(X: %) (%r %)
(-0.812857;- 13.054. (—0.813146;- 13.054:
(—0.812946;- 13.054: (-0.813217 13.054:
(—0.813038;- 13.054:

Table 2. Center location of each strange attractor

Strange Attractors Center Locations(x,, Y,)
SA (1.1098,11.7877
SA (1.4663, 2.8409
SA (0.7860;- 6.6410
SA (—0.6566, 0.4242
SA (-0.8129- 13.054=
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Conclusions

The analytical conditions for stick and grazingtions to the boundaries for the Fermi
oscillator with dual excitations were obtained ariegity. The generic mappings are introduced
to describe the periodic and chaotic motions. Biftiocascenarios are presented numerically,
and the analytical predictions of the stable and biestperiodic motions with certain mapping
structures were also completed by eigenvalues stabil#yysis. Then, numerical illustrations of
periodic and chaotic motions in such oscillators weverg The switching section for Neimark
bifurcations was illustrated.
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