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Abstract. The application of general control theory to compleechanical systems represents
an extremely difficult problem. If industrial pieglectric robots have large number of joints,
development of new control algorithms is unavoidaisl order to achieve high positioning
accuracy. The efficiency of computer algebra appilinn was compared with the most popular
methods of forming the dynamic equations of rokiotgeal time. To this end, a computer
algebra system VIBRAN was used. Expressions foigdmeeralized inertia matrix of the robots
have been derived by means of the computer algebrmique with the following automatic
program code generation. As shown in the papeh application could drastically reduce the
number of floating point product operations that exquired for efficient numerical simulation
of piezoelectric robots

Keywords. Computer algebra; piezoelectric robots; real-ting@agnics; numerical-symbolic
computation.

1. Introduction

If industrial piezoelectric robots have large numiboé joints, the application of such a
theory and development of new control algorithms anavoidable in order to achieve high
positioning speed and accuracy. In on-line conttd, calculation of model equations must be
repeated very often, preferably at sampling frequehat is not lower than 50 Hz. It appears to
be necessary to develop computer methods of matleieodeling for at least two reasons.
One of them is that it is impossible to immediatehpose the most convenient configuration
when designing robots. Thus, it is necessary tolyaeaa number of different robot
configurations and select the most appropriatéeduture purpose of the device.

Knowing how complex is a task of writing a matheicet model by hand, the need for an
algorithm that would enable a computer to perfoha task seems quite logical. The other
reason is the need in multiple applications fol-timae control of robots. The development of
computer methods, such that perform real-time t¢aticins of robot dynamics, is a direct
contribution to the synthesis of control algorithfos practical purposes [8, 14, 15].

Manipulator and robot systems possess severalfgpgcialities in both mechanical and
control sense. From the mechanics point of vievieature that is specific to manipulation
robots is that all the degrees of freedom are Vattii.e., powered by their own actuators, in
contrast to conventional mechanisms in which motfoproduced primarily by the so-called
kinematics degrees of freedom. Another specifidigguaf such a mechanism is their variable
structure, ranging from open to closed configurajofrom one to another kinof boundary
conditions. A further feature typical of spatial chanisms is redundancy reflected in the excess
of the degrees of freedom for producing certaincfiomal movements of robots and
manipulators. With respect to control, robot andnipalator systems represent redundant,
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multivariable, essentially nonlinear automatic cohsystems [14]A manipulation robot is
also an example of a dynamically coupled systerd,tha control task itself is a dynamic task
[16].

The methods that model the dynamic behavior of mdators are divided in two types:
methods that solve the inverse dynamic problemthosde that give the solution to the direct
dynamic problem. In the former, the forces exetigdhe actuators are obtained algebraically
for certain configurations of the manipulator (fiosi, velocity, and acceleration). On the other
hand, the direct dynamic problem computes the acatbn of joints of the manipulator once
the forces exerted by the actuators are given. pitublem is part of the process that must be
followed to perform the simulation of the dynamihlavior of the manipulator. This process is
completed once calculated the velocity and positibthe joints by means of the process of
numerical integration in which the accelerationtlod joints and the initial configuration are
data input to the problem. So, the methods may ibiledl with respect to the laws of
mechanics on the basis of which motion equatioesf@mmed. Taking this as a criterion, one
may distinguish methods based on Lagrange-Eulérg)( Newton-Euler's (N-E), Gibbs-
Appell's (G-A) and other equations. The propertywfether the method permits the solution of
the direct or inverse problem of dynamics may re@né another criterion. The direct problem
of dynamics refers to determining the motion of thbot for known driving forces (torques),
and the inverse problem of dynamics to determirdniging forces for the known motion.
Clearly, the methods allowing both problems of dyits to be solved are of particular
importance. The number of floating-point multiplicas (divisions) / additions (subtractions)
required to form a model is the most importanteciiin to compare the methods. This criterion
is also important from the point of view of their-bne applicability.

The algorithms developed to solve the direct dywamioblem use, regardless of the
dynamics principle from, which they are derivedeg @f the following approaches [2, 11]:

. Calculation of the acceleration of the joints byame of the method proposed and
solution of a system of simultaneous equations.

. Recursive calculation of the acceleration of théntgy propagating motion and
constraint forces throughout the mechanism.

The algorithms derived from the methods that usefitist approach require the calculation
of the generalized inertia matrix and the bias mef2]. The generalized inertia matrix is also
used in advanced control schemes, as well as ianper estimation procedures. For this
reason its calculation, by means of simple anctieffit procedures, is also beneficial to other
fields, not only to motion simulation of mechanisgktems. The generalized inertia matrix can
be obtained through the Hessian of kinetic enerfgthe mechanical system with respect to
generalized velocities; however, the most compuatiy efficient algorithms are not based on
this procedure. The best known method that folltwsfirst approach was proposed by Walker
and Orin [17] who have developed (using N-E equeficghe method of a composed rigid body,
in which the generalized inertia matrix is obtaimedursively with a complexit@(n®). Angeles
and Ma [1] have proposed another method that falthis approach, based on the calculation
of the natural orthogonal complement of the marifmrl kinematics constraint equations with a
complexityO(n®), using Kane’s equations to obtain the bias vector

On the other hand, algorithms derived from the mwdshthat use the second approach
usually have a complexit®(n). These algorithms do not obtain the generalizedtian matrix,
and for this reasons their application is limitedsystem motion simulations. The best known
method among those that use the second approéuh ésticulated body method developed by
Featherstone [7]. The number of required algelopirations is lower to those needed in the
composed rigid body method, but only for the systémat contain nine or more bodies. In [13],
Saha has symbolically performed the Gaussian editiin to obtain a decomposition of the
generalized inertia matrix. As an application asttlecomposition, he proposed @) direct
dynamic algorithm with a computational complexigry similar to that of [7].
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The complexity of the numerical algorithms mentidrabove for forming the generalized
inertia matrix will be compared with computer alggelrealization. The computer algebra
technique application in the formation of the geafieed inertia matrix of robots is very
attractive, because it allows the analytic worlb#&opushed before the numerical integration of
the system of nonlinear differential equationststarhis approach was successfully applied to
the inverse dynamic problem of the robot [4].

The first efficient recursive algorithm for the gtbn of the inverse dynamic problem was
proposed by Luh et al. [10]. This algorithm, basedthe N-E equations, has been improved
repeatedly in the course of years [2, 7]. Othehaenst have developed efficient recursive
algorithms to solve the inverse dynamic problemeldagn other principles of dynamics. As
examples of these, we have the work of Hollerbd&j that uses the L-E equations; and those
of Kane and Levinson [16], and Angeles et al. yi}jch use Kane’s equations. The complexity
of the above mentioned numerical algorithms will bempared with computer algebra
realization. Some efforts to apply symbolic caltiolas for dynamics of robot were done [12,
16], however due to tremendous final closed formegigns these efforts were unsuccessful.

Simulations by means of numerical methods are piolveools for investigations in
mechanics but they do have drawbacks, e.g. finikeigpion, errors generated when evaluating
expressions. The computerized symbolic manipulaisoa very attractive means to reliably
perform analytic calculations with even complexnfiofas and expressions. But frequently a
semi-analytical approach, combining the featurearalytical and numerical computations, is
the most desirable synthesis. This allows the aicalyork to be pushed further before
numerical computations start.

For numeric-symbolic computation of the real-timgamics of piezoelectric robots with
large number of joints computer algebra system \ABH6, 9] was used [12]. The computer
algebra system VIBRAN is a FORTRAN preprocessor #oralytical computation with
polynomials, rational functions and trigonometrieriss. Special VIBRAN's procedure can
generate optimized FORTRAN code from obtained aitaly expressions, which can be
directly used in the programs for the further nuoaranalysis.

2. Real-time dynamics of robot

The real-time dynamic model of a robot was constdiaising Uicker-Kahn’s method [12,
16], based on L-E equations, that is very converfiencomputer algebra implementation [5,
12]. This method enables the calculation of allnterices of dynamic robot model: the inertial
matrix, the matrix of Coriolis and centrifugal effe and the gravity vector. The dynamic
equations of an n-degree-of-freedom manipulatorivdd using this method, have the
following form:

n | AN ANT
PFZZ”(K'J;QJ O +

i k

1)
i T
22 tr(ﬂj W g -mgr 2,
dqi mkml dqi

where p is a driving torque acting at the i-th joing is a generalized joint coordinate
corresponding to the i-th degree of freedamn;is the transformation matrix between the i-th
local coordinate system and the reference systgns the inertia matrix of the i-th link with
respect to local coordinate systeg;is the mass of the link  is the distance vector between
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the center of mass of the linkand the origin of reference coordinates systemressed in the
local coordinate system of the i-th linkj is the gravity vector.
Equation (1) may be expressed in the matrix form

P=H(a)d+a"C(a)q+g(q) @
where P is the vector of driving torquesi (q) is the inertial matrix of the systeng(q) is the

nxnxn matrix of Coriolis and centrifugal effectg{q) - the vector of gravity effects.

The flexible piezoelectric robot with a large numbéjoints is shown schematically in Fig.
1. The robot is composed of cylindrical piezoceanmansducers and spheres, made from
passive material, in this case, from steel [3, Bje contact force between the spheres and
cylindrical piezoceramic transducers is maintaingth the aid of permanent magnets. Here the
resonant oscillations of each piezoelectric transdware controlled by a microprocessor that
switches on and off the high-frequency and highage signal from the signal generator. The
phase and duration of every pulse, applied to teetredes of transducers, are synchronized
with the rotation of an unbalanced rotor, mountedhie gripper of the robot. High-frequency
resonant mechanical oscillations of ultrasonic dmty cause motions (rotations) in all
directions and, at the contact zone, they turrotdinuous motion.

n Q

Microprocessor

Signal generator Angular position

Gripper position

Zone of oscillations L e ‘

Fig. 1. The scheme of the flexible piezoelectric robotwétlarge number of joints

The external torque vector placed in the grippet motating in the plane perpendicular to
the gripper direction expressed in the form [5]:

F, = mro® cosgt)
F =1 F, =mro’sin(et) (3)
0]
where m, is the mass of unbalancejs the radiusg is the angular velocity.

The recursive algorithm consists of two steps fachelocal coordinate. Therefore, the first
step is the calculation of active forces and tresd one is the definition of the active torques.
This algorithm may be expressed in the form:
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i = AH Fa (4)

where Ifn =F, see formula (3). Expressions (4) are calculatedtisg fromi=n-1 to
i=1.

The generalized torque for the i-th joint may Ibéained in the form:
Q =Mz, (5)
where Z,, is the unit vector of the respective axis.

3. Algorithm for calculating the generalized inertia matrix

The algorithm for calculating the generalized irrerhatrix has been constructed using the
Uicker-Kahn method [13], based on the L-E equatidhat is very convenient for computer
algebra implementation [5]. The same approach wad to solve the inverse dynamic problem
[4,18], but formation of the generalized inertia matrix mbg considered more carefully,
because the matrix must be recalculated at evepyaftnumerical integration time of the robot
dynamic model [16, 17]. The equations of the diréghamic problem formulated by
Vucobratovic [16] are contained in the following tnaexpression:

H(@)d = P-C(q,d) + G(a). (6)
where H(q) is the generalized inertia matriy,g,g are generalized coordinates, velocity, and
acceleration of the robot respectively;is the generalized force vecta(g,q) is the vector of
Coriolis and centrifugal effectsG(g) is the vector of gravity effect. The bias vector

(C(q,q) + G(q)) could be calculated separately, using the compalggbra approach for the

inverse dynamic problem, presented in the prewaeusk [4].
The elements of the generalized inertia matrixpediag to Uicker-Kahn method, could be
expressed in the form [2, 12]:

i oW,
H, = [trac ‘Jjawkj : (7)
=) oq od,

where H, are the elements of the generalized inertia matyiis a generalized coordinate of

thei-th joint; J, is the inertia matrix of theth link with respect to the local coordinate system

The transformation matrixy between the-th local coordinate system and the reference
system can be expressed as:
W =AA.A, (8)
where A is a (44) - homogenous transformation matrix between twcall coordinate
systems, and is of the form:
A = |:Al(l Bk,k1:| , (9)

O I

where A, BKYH are rotation and transition transformations betwieo local coordinate)
andl mean zero and unit matrices, respectively. Transdtion matrices are of the shape [17]:
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cosg, —cosz, sing,  sing,sing,

A, =|sing, coszcosq, -sing, cosq, |’ (10)
0 sing, cosa,
B 8
b .. =| dsing, (11)
d, cosy,

where o, ,a,,d, are kinematic parameters of the jdint

The external torque vector, appearing in the grigmel rotating on the plane perpendicular
to the gripper direction, is calculated by the coiep algebra approach described in [4].
Dynamic simulation of this kind of flexible robatsa very complicated problem, because there
are two types of motions — continuous and vibraf&yr4].

4. Computer algebraimplementation

In the algorithm for automatic generation of thalgtical model, it will be assumed that the
parameters of a robot (lengths, masses, inertie$,age known and will be treated as constants.
Joint coordinates, as well as their derivatived bd treated as independent variables, i.e., as
symbols. Using computer algebra technique the Uiklehn’s method is very convenient,
because enables to obtain equations of motiondiesed form and may be applied in solving
either the direct or the inverse problem of dynamic

Fig. 2 illustrates fragment of VIBRAN program thatplements the Uicker-Kahn method.
In this program the sparse matrix technology waslue achieve the best performance. To have
a possibility to compare various results and athars, only two joints of the proposed robot
will be considered.

POLINOM A(16),B(20),C(20)
RACIONAL D,E,U
INTEGER*2 NA(18),NB(22),NC(22)
DATA G/0.,0.,-9.80621,0./
RFND(C,NC,J,K,NF3)
RTRN(C,NC)
RMLT(C,NC,B,NB,C,NC,D,E,l)
ADDA(U,D)
100 RSMP(U,E,D,N)
Fig. 2. A fragment of the VIBRAN program

This program calculates all elements of matrices- H(q)q+ ' C(g)q+g(g). These

matrices were calculated for the discussed flexibleot with the 6-degree-of-freedom. The
kinematic parameters of this robot in Denavit-Halokerg’s notation [5, 12, 16] are presented in
the Table 1.

Table 1. Kinematic parameters of the robot

N o7 Ol g di
1 o 0 0 0
2 o o0 0 0
3 & 0 0.04 0
4 o -90° 0 0
5 o -90° 0 0
6 % 0 0 0.04
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For simplicity, a substitution was made to avoidneuical trigonometric calculation of the
function:

S =sing,
C, =cosqg
The fragment of analytical calculations of flexibtebot matrices performed by the

VIBRAN program is presented in Fig. 3. In total 1&i@ments were calculated and about 15%
of them were equal to zero.

H11 =.8326E-4+.1296E-3* C3**2-.9964E-4* C3** 2* C4**2* C5**
+.9964E-4* C3* S3* S4* C4* C5** 2-

G3=-.113752E-6* S5* C4* C3+.113752E-6* S5* S4* S3+.14121E-
5*C4* C3*C6* C5+.14121E-5* C3* S4* S6-.14121E-5* S4* S3* C6* C5+.14121E-5* C4* S3* S6
"éé";.14121E-5* S3* $4* C6-.14121E-5*C4*C3* C6-.14121E-
5*S3* C4* C5* S6-.14121E-5* C3* S4* C5* S6

Fig. 3. Analytical expressions of robot matrices

A special VIBRAN procedure [6, 9] generates two HB®AN subroutines from the
obtained analytical expressions of robot matriddse code of the first generated subroutine
contains a dictionary of monomials included intopmessions of robot's matrices. This
dictionary of monomials is sorted in ascending omfemonomials multi-indices to reduce the
number of floating point multiplications. The codesecond generated subroutine contains the
calculation of common members included in all esprens and all the elements of robot’s
matrices. The generated subroutines can be imnedgliabmpiled and used for real-time
operation, simulation or control synthesis.

The number of floating point product operationsuiegd to construct the dynamic model by
Uicker-Kahn method numerically dependsrén(n is the number of degrees-of-freedom) and,
by contrast, the recursive methods based on N&-Arequations have a linear dependency on
the number of the degrees-of-freedom. Some diffeserappear using the computer algebra
technique. Uicker-Kahn method produces closed-fdifferential equations and only recursive
equations can be obtained from other well-knownomtigms which mean that only the
numerical implementation is possible and this metkaits only for inverse dynamics. The
computational complexity of the proposed approashcomparable with that of the most
efficient algorithms that are known, as shown itl€2.

Table 2. Computational complexity of algorithms

Authors Principle Products{6) Number of operations
Luh et al. [9] N-E 156-48 852

Angeles et al. [1] Kane 105109 521

Balafoutis and Patel [2] N-E 9369 489

Mata et al. [10] G-A 96-101 475

This work L-E Closed form 371

Generalized torques were calculated in the samenenaThese torques are required to
complete the control scheme of the robot. Anoth88RAN program calculates the acting
forces and torques, using formula (4) and generdlinrques using formula (5).

The number of floating point product operationsjuieed to form the generalized inertia
matrix of the robot by the Uicker-Kahn method, nuicelly depends om* (n - number of
192
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degrees-of-freedom) and, vice versa, the recursiethods based on N-E or G-A equations
mainly depend on the number of degrees-of-freed@vhen using the computer algebra
technique, there emerge some differences. By votfuke Uicker-Kahn method the expressions
for the elements of the generalized inertia madrie found in closed form, meanwhile, other
well-known algorithms yield only recursive equasonThis fact indicates that only the

numerical implementation is possible and therefthie method is suitable for the direct

dynamics problem only. The code presented in Figprgains only 144 floating point products

and 186 sums. The computational complexity of tleppsed approach is comparable with that
of the most efficient algorithms known so far, kewn in table 3.

Table 3. Computational complexity of algorithms

Authors Principle Produc{®=6) Sums(n=6)

Walker and Orin [9] N-E 1P+56n-27 (741) T>+67n-56 (598)
Angeles and Ma [1] N-E %17n%-21n+8 (710) f+14n%-16n-+5 (629)
Mata et al. [11] G-A 11.5+19.51-49 (482) 8.5°+31.51-69 (426)
This work L-E 144 186

Some remarks could be made to explain these re§itss of all, computer algebra systems
work very efficiently with a large number of sharkpressions, which enables an effective
simplification of these expressions during anabjticomputation. It appears that a lot of
numerical methods are developed especially to awoicherical differentiation and most of
them are recursive, which is inconvenient for atiedy computation. However, the calculation
of derivatives is a very simple procedure for cotepalgebra systems.

5. Conclusions

The proposed mixed numerical-analytical impleméatatof the Uicker-Kahn method
drastically reduces the number of floating poinémggions, particularly for piezoelectric robots
with a large number of joints. The use of compuatigebra technique enables us to obtain the
equations of motion in a closed form. It can beliggpin solving both direct and inverse
problems of dynamics as well as employed in reaétdynamic modeling for realization of
intelligent control scheme.

The expressions for the generalized inertia matiithe robots with a large number of joints
have been obtained using the Uicker-Kahn methoseda&n Lagrange-Euler’s equations, and
realized by means of computer algebra techniquee Fbmputational complexity of the
proposed approach is comparable with that of thet eificient algorithms known so far.
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