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Abstract. The application of general control theory to complex mechanical systems represents 
an extremely difficult problem. If industrial piezoelectric robots have large number of joints, 
development of new control algorithms is unavoidable in order to achieve high positioning 
accuracy. The efficiency of computer algebra application was compared with the most popular 
methods of forming the dynamic equations of robots in real time. To this end, a computer 
algebra system VIBRAN was used. Expressions for the generalized inertia matrix of the robots 
have been derived by means of the computer algebra technique with the following automatic 
program code generation. As shown in the paper, such application could drastically reduce the 
number of floating point product operations that are required for efficient numerical simulation 
of piezoelectric robots.  
 

Keywords: Computer algebra; piezoelectric robots; real-time dynamics; numerical-symbolic 
computation. 

 
1. Introduction  

 
If industrial piezoelectric robots have large number of joints, the application of such a 

theory and development of new control algorithms are unavoidable in order to achieve high 
positioning speed and accuracy. In on-line control, the calculation of model equations must be 
repeated very often, preferably at sampling frequency that is not lower than 50 Hz. It appears to 
be necessary to develop computer methods of mathematical modeling for at least two reasons. 
One of them is that it is impossible to immediately choose the most convenient configuration 
when designing robots. Thus, it is necessary to analyze a number of different robot 
configurations and select the most appropriate to the future purpose of the device.  

Knowing how complex is a task of writing a mathematical model by hand, the need for an 
algorithm that would enable a computer to perform the task seems quite logical. The other 
reason is the need in multiple applications for real-time control of robots. The development of 
computer methods, such that perform real-time calculations of robot dynamics, is a direct 
contribution to the synthesis of control algorithms for practical purposes [8, 14, 15]. 

Manipulator and robot systems possess several specific qualities in both mechanical and 
control sense. From the mechanics point of view, a feature that is specific to manipulation 
robots is that all the degrees of freedom are “active”, i.e., powered by their own actuators, in 
contrast to conventional mechanisms in which motion is produced primarily by the so-called 
kinematics degrees of freedom. Another specific quality of such a mechanism is their variable 
structure, ranging from open to closed configurations, from one to another kind of boundary 
conditions. A further feature typical of spatial mechanisms is redundancy reflected in the excess 
of the degrees of freedom for producing certain functional movements of robots and 
manipulators. With respect to control, robot and manipulator systems represent redundant, 
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multivariable, essentially nonlinear automatic control systems [14]. A manipulation robot is 
also an example of a dynamically coupled system, and the control task itself is a dynamic task 
[16]. 

The methods that model the dynamic behavior of manipulators are divided in two types: 
methods that solve the inverse dynamic problem and those that give the solution to the direct 
dynamic problem. In the former, the forces exerted by the actuators are obtained algebraically 
for certain configurations of the manipulator (position, velocity, and acceleration). On the other 
hand, the direct dynamic problem computes the acceleration of joints of the manipulator once 
the forces exerted by the actuators are given. This problem is part of the process that must be 
followed to perform the simulation of the dynamic behavior of the manipulator. This process is 
completed once calculated the velocity and position of the joints by means of the process of 
numerical integration in which the acceleration of the joints and the initial configuration are 
data input to the problem. So, the methods may be divided with respect to the laws of 
mechanics on the basis of which motion equations are formed. Taking this as a criterion, one 
may distinguish methods based on Lagrange-Euler’s (L-E), Newton-Euler’s (N-E), Gibbs-
Appell’s (G-A) and other equations. The property of whether the method permits the solution of 
the direct or inverse problem of dynamics may represent another criterion. The direct problem 
of dynamics refers to determining the motion of the robot for known driving forces (torques), 
and the inverse problem of dynamics to determining driving forces for the known motion. 
Clearly, the methods allowing both problems of dynamics to be solved are of particular 
importance. The number of floating-point multiplications (divisions) / additions (subtractions) 
required to form a model is the most important criterion to compare the methods. This criterion 
is also important from the point of view of their on-line applicability. 

The algorithms developed to solve the direct dynamic problem use, regardless of the 
dynamics principle from, which they are derived, one of the following approaches [2, 11]: 

• Calculation of the acceleration of the joints by means of the method proposed and 
solution of a system of simultaneous equations. 

• Recursive calculation of the acceleration of the joints, propagating motion and 
constraint forces throughout the mechanism. 

The algorithms derived from the methods that use the first approach require the calculation 
of the generalized inertia matrix and the bias vector [2]. The generalized inertia matrix is also 
used in advanced control schemes, as well as in parameter estimation procedures. For this 
reason its calculation, by means of simple and efficient procedures, is also beneficial to other 
fields, not only to motion simulation of mechanical systems. The generalized inertia matrix can 
be obtained through the Hessian of kinetic energy of the mechanical system with respect to 
generalized velocities; however, the most computationally efficient algorithms are not based on 
this procedure. The best known method that follows this first approach was proposed by Walker 
and Orin [17] who have developed (using N-E equations) the method of a composed rigid body, 
in which the generalized inertia matrix is obtained recursively with a complexity O(n2). Angeles 
and Ma [1] have proposed another method that follows this approach, based on the calculation 
of the natural orthogonal complement of the manipulator kinematics constraint equations with a 
complexity O(n3), using Kane’s equations to obtain the bias vector. 

On the other hand, algorithms derived from the methods that use the second approach 
usually have a complexity O(n). These algorithms do not obtain the generalized inertia matrix, 
and for this reasons their application is limited to system motion simulations. The best known 
method among those that use the second approach is the articulated body method developed by 
Featherstone [7]. The number of required algebraic operations is lower to those needed in the 
composed rigid body method, but only for the systems that contain nine or more bodies. In [13], 
Saha has symbolically performed the Gaussian elimination to obtain a decomposition of the 
generalized inertia matrix. As an application of this decomposition, he proposed an O(n) direct 
dynamic algorithm with a computational complexity very similar to that of [7]. 
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The complexity of the numerical algorithms mentioned above for forming the generalized 
inertia matrix will be compared with computer algebra realization. The computer algebra 
technique application in the formation of the generalized inertia matrix of robots is very 
attractive, because it allows the analytic work to be pushed before the numerical integration of 
the system of nonlinear differential equations starts. This approach was successfully applied to 
the inverse dynamic problem of the robot [4]. 

The first efficient recursive algorithm for the solution of the inverse dynamic problem was 
proposed by Luh et al. [10]. This algorithm, based on the N-E equations, has been improved 
repeatedly in the course of years [2, 7]. Other authors have developed efficient recursive 
algorithms to solve the inverse dynamic problem based on other principles of dynamics. As 
examples of these, we have the work of Hollerbach [16] that uses the L-E equations; and those 
of Kane and Levinson [16], and Angeles et al. [1], which use Kane’s equations. The complexity 
of the above mentioned numerical algorithms will be compared with computer algebra 
realization. Some efforts to apply symbolic calculations for dynamics of robot were done [12, 
16], however due to tremendous final closed form equations these efforts were unsuccessful.   

Simulations by means of numerical methods are powerful tools for investigations in 
mechanics but they do have drawbacks, e.g. finite precision, errors generated when evaluating 
expressions. The computerized symbolic manipulation is a very attractive means to reliably 
perform analytic calculations with even complex formulas and expressions. But frequently a 
semi-analytical approach, combining the features of analytical and numerical computations, is 
the most desirable synthesis. This allows the analytic work to be pushed further before 
numerical computations start. 

For numeric-symbolic computation of the real-time dynamics of piezoelectric robots with 
large number of joints computer algebra system VIBRAN [6, 9] was used [12]. The computer 
algebra system VIBRAN is a FORTRAN preprocessor for analytical computation with 
polynomials, rational functions and trigonometric series. Special VIBRAN's procedure can 
generate optimized FORTRAN code from obtained analytical expressions, which can be 
directly used in the programs for the further numerical analysis. 

 
2. Real-time dynamics of robot   

 
The real-time dynamic model of a robot was constructed using Uicker-Kahn’s method [12, 

16], based on L-E equations, that is very convenient for computer algebra implementation [5, 
12]. This method enables the calculation of all the matrices of dynamic robot model: the inertial 
matrix, the matrix of Coriolis and centrifugal effects and the gravity vector. The dynamic 
equations of an n-degree-of-freedom manipulator, derived using this method, have the 
following form:  
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where 
iP   is a driving torque acting at the i-th joint; 

iq  is a generalized joint coordinate 

corresponding to the i-th degree of freedom; 
iW  is the  transformation matrix between the i-th 

local coordinate system and the reference system; 
iJ  is the inertia matrix of the i-th link with 

respect to local coordinate system; 
im  is the mass of the link i; 

0
~

ir  is the distance vector between 
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the center of mass of the link i and the origin of reference coordinates system, expressed in the 
local coordinate system of the i-th link; g

�
 is the gravity vector. 

Equation (1) may be expressed in the matrix form 
 

)()()( qgqqCqqqHP T ++= ɺɺɺɺ                                                                                (2) 
 

where P  is the vector of driving torques; )(qH  is the inertial matrix of the system; )(qC is the 

n×n×n matrix of Coriolis and centrifugal effects; )(qg  - the vector of gravity effects. 

The flexible piezoelectric robot with a large number of joints is shown schematically in Fig. 
1. The robot is composed of cylindrical piezoceramic transducers and spheres, made from 
passive material, in this case, from steel [3, 5]. The contact force between the spheres and 
cylindrical piezoceramic transducers is maintained with the aid of permanent magnets. Here the 
resonant oscillations of each piezoelectric transducer are controlled by a microprocessor that 
switches on and off the high-frequency and high-voltage signal from the signal generator. The 
phase and duration of every pulse, applied to the electrodes of transducers, are synchronized 
with the rotation of an unbalanced rotor, mounted in the gripper of the robot. High-frequency 
resonant mechanical oscillations of ultrasonic frequency cause motions (rotations) in all 
directions and, at the contact zone, they turn to continuous motion.  
 

 
 

Fig. 1. The scheme of the flexible piezoelectric robot with a large number of joints 

 
The external torque vector placed in the gripper and rotating in the plane perpendicular to 

the gripper direction expressed in the form [5]: 
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where 0m  is the mass of unbalance; r is the radius; ω is the angular velocity. 
The recursive algorithm consists of two steps for each local coordinate. Therefore, the first 

step is the calculation of active forces and the second one is the definition of the active torques. 
This algorithm may be expressed in the form: 
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where FFn

��
= , see formula (3). Expressions (4) are calculated starting from 1−= ni  to 

1=i . 
 The generalized torque for the i-th joint may be obtained in the form: 
 

0iii zMQ
��

=                                                                     (5) 

where 0iz
�

 is the unit vector of the respective axis. 

 
3. Algorithm for calculating the generalized inertia matrix  

 
The algorithm for calculating the generalized inertia matrix has been constructed using the 

Uicker-Kahn method [13], based on the L-E equations, that is very convenient for computer 
algebra implementation [5]. The same approach was used to solve the inverse dynamic problem 
[4,18], but formation of the generalized inertia matrix must be considered more carefully, 
because the matrix must be recalculated at every step of numerical integration time of the robot 
dynamic model [16, 17]. The equations of the direct dynamic problem formulated by 
Vucobratovic [16] are contained in the following matrix expression: 

 

)(),()( qGqqCPqqH
��ɺ��

��
ɺɺ�� +−= ,                         (6) 

 

where )(qH
�  is the generalized inertia matrix; qqq ɺɺɺ

��
,,  are generalized coordinates, velocity, and 

acceleration of the robot respectively; P
�

 is the generalized force vector; ),( qqC ɺ��
�

 is the vector of 

Coriolis and centrifugal effects; )(qG
��  is the vector of gravity effect. The bias vector 

))(),(( qGqqC
��ɺ��

�

+  could be calculated separately, using the computer algebra approach for the 

inverse dynamic problem, presented in the previous work [4]. 
The elements of the generalized inertia matrix, according to Uicker-Kahn method, could be 

expressed in the form [2, 12]: 
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where 
ijH  are the elements of the generalized inertia matrix; 

iq is a generalized coordinate of 

the i-th joint; 
jJ  is the inertia matrix of the j-th link with respect to the local coordinate system.  

The transformation matrix 
iW  between the i-th local coordinate system and the reference 

system can be expressed as:  
 

i
ii AAAW 1

2
1

1
0 ... −= ,                          (8) 

where k
kA 1−

 is a (4×4) - homogenous transformation matrix between two local coordinate 

systems, and is of the form: 
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where k
kA 1
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1, −kkb
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 are rotation and transition transformations between two local coordinates; O 

and I mean zero and unit matrices, respectively. Transformation matrices are of the shape [17]: 
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where kkk da ,,α  are kinematic parameters of the joint k. 

The external torque vector, appearing in the gripper and rotating on the plane perpendicular 
to the gripper direction, is calculated by the computer algebra approach described in [4]. 
Dynamic simulation of this kind of flexible robots is a very complicated problem, because there 
are two types of motions – continuous and vibration [8, 14].  

 
4. Computer algebra implementation 

 
In the algorithm for automatic generation of the analytical model, it will be assumed that the 

parameters of a robot (lengths, masses, inertias, etc.) are known and will be treated as constants. 
Joint coordinates, as well as their derivatives will be treated as independent variables, i.e., as 
symbols. Using computer algebra technique the Uicker-Kahn’s method is very convenient, 
because enables to obtain equations of motion in a closed form and may be applied in solving 
either the direct or the inverse problem of dynamics. 

Fig. 2 illustrates fragment of VIBRAN program that implements the Uicker-Kahn method. 
In this program the sparse matrix technology was used to achieve the best performance. To have 
a possibility to compare various results and algorithms, only two joints of the proposed robot 
will be considered. 

 

Fig. 2. A fragment of the VIBRAN program 
 

This program calculates all elements of matrices )()()( qgqqCqqqHP T ++= ɺɺɺɺ . These 

matrices were calculated for the discussed flexible robot with the 6-degree-of-freedom. The 
kinematic parameters of this robot in Denavit-Hartenberg’s notation [5, 12, 16] are presented in 
the Table 1. 

 

                                  Table 1. Kinematic parameters of the robot 
 

N qi αi ai di 
1 q1 0 0 0 
2 q2 90° 0 0 
3 q3 0 0.04 0 
4 q4 -90° 0 0 
5 q5 -90° 0 0 
6 q6 0 0 0.04 

POLINOM A(16),B(20),C(20) 
RACIONAL D,E,U 
INTEGER*2 NA(18),NB(22),NC(22) 
DATA G/0.,0.,-9.80621,0./ 
..... 
RFND(C,NC,J,K,NF3) 
RTRN(C,NC) 
RMLT(C,NC,B,NB,C,NC,D,E,I) 
ADDA(U,D) 
100 RSMP(U,E,D,N) 
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For simplicity, a substitution was made to avoid numerical trigonometric calculation of the 

function:  

ii

ii

qC

qS

cos

sin

=

=
 

The fragment of analytical calculations of flexible robot matrices performed by the 
VIBRAN program is presented in Fig. 3. In total 153 elements were calculated and about 15% 
of them were equal to zero. 

 

 

Fig. 3. Analytical expressions of robot matrices 
 
A special VIBRAN procedure [6, 9] generates two FORTRAN subroutines from the 

obtained analytical expressions of robot matrices. The code of the first generated subroutine 
contains a dictionary of monomials included into expressions of robot’s matrices. This 
dictionary of monomials is sorted in ascending order of monomials multi-indices to reduce the 
number of floating point multiplications. The code of second generated subroutine contains the 
calculation of common members included in all expressions and all the elements of robot’s 
matrices. The generated subroutines can be immediately compiled and used for real-time 
operation, simulation or control synthesis. 

The number of floating point product operations required to construct the dynamic model by 
Uicker-Kahn method numerically depends on n4  (n is the number of degrees-of-freedom) and, 
by contrast,  the recursive methods based on N-E or G-A equations have a linear dependency on 
the number of the degrees-of-freedom. Some differences appear using the computer algebra 
technique. Uicker-Kahn method produces closed-form differential equations and only recursive 
equations can be obtained from other well-known algorithms which mean that only the 
numerical implementation is possible and this method suits only for inverse dynamics. The 
computational complexity of the proposed approach is comparable with that of the most 
efficient algorithms that are known, as shown in Table 2. 

 
Table 2. Computational complexity of algorithms 

 

Authors Principle Products (n+6) Number of operations 
Luh et al. [9] N-E 150n-48 852 
Angeles et al. [1] Kane 105n-109 521 
Balafoutis and Patel [2] N-E 93n-69 489 
Mata et al. [10] G-A 96n-101 475 
This work L-E Closed form 371 

 
Generalized torques were calculated in the same manner. These torques are required to 

complete the control scheme of the robot. Another VIBRAN program calculates the acting 
forces and torques, using formula (4) and generalized torques using formula (5).  

The number of floating point product operations, required to form the generalized inertia 
matrix of the robot by the Uicker-Kahn method, numerically depends on n4 (n - number of 

  H11  =.8326E-4+.1296E-3*C3**2-.9964E-4*C3**2*C4**2*C5** 
+.9964E-4*C3*S3*S4*C4*C5**2- 
........... 
 
  G3=-.113752E-6*S5*C4*C3+.113752E-6*S5*S4*S3+.14121E- 
5*C4*C3*C6*C5+.14121E-5*C3*S4*S6-.14121E-5*S4*S3*C6*C5+.14121E-5*C4*S3*S6 
........... 
  G6  =.14121E-5*S3*S4*C6-.14121E-5*C4*C3*C6-.14121E- 
5*S3*C4*C5*S6-.14121E-5*C3*S4*C5*S6 
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degrees-of-freedom) and, vice versa, the recursive methods based on N-E or G-A equations 
mainly depend on the number of degrees-of-freedom. When using the computer algebra 
technique, there emerge some differences. By virtue of the Uicker-Kahn method the expressions 
for the elements of the generalized inertia matrix are found in closed form, meanwhile, other 
well-known algorithms yield only recursive equations. This fact indicates that only the 
numerical implementation is possible and therefore this method is suitable for the direct 
dynamics problem only. The code presented in Fig. 3 contains only 144 floating point products 
and 186 sums. The computational complexity of the proposed approach is comparable with that 
of the most efficient algorithms known so far, as shown in table 3. 
 

Table 3. Computational complexity of algorithms 
 

Authors Principle Products (n=6) Sums (n=6) 
Walker and Orin [9] N-E 12n2+56n-27 (741) 7n2+67n-56 (598) 
Angeles and Ma [1] N-E n3+17n2-21n+8 (710) n3+14n2-16n-+5 (629) 
Mata et al. [11] G-A 11.5n2+19.5n-49 (482) 8.5n2+31.5n-69 (426) 
This work L-E 144 186 

 
Some remarks could be made to explain these results. First of all, computer algebra systems 

work very efficiently with a large number of short expressions, which enables an effective 
simplification of these expressions during analytical computation. It appears that a lot of 
numerical methods are developed especially to avoid numerical differentiation and most of 
them are recursive, which is inconvenient for analytical computation. However, the calculation 
of derivatives is a very simple procedure for computer algebra systems.  

 
5. Conclusions  

 
The proposed mixed numerical-analytical implementation of the Uicker-Kahn method 

drastically reduces the number of floating point operations, particularly for piezoelectric robots 
with a large number of joints. The use of computer algebra technique enables us to obtain the 
equations of motion in a closed form. It can be applied in solving both direct and inverse 
problems of dynamics as well as employed in real-time dynamic modeling for realization of 
intelligent control scheme. 

The expressions for the generalized inertia matrix of the robots with a large number of joints 
have been obtained using the Uicker-Kahn method, based on Lagrange-Euler’s equations, and 
realized by means of computer algebra technique. The computational complexity of the 
proposed approach is comparable with that of the most efficient algorithms known so far. 
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