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Abstract. This paper deals with the description of a theoretical background of systematic 
computer algebra methods for the formation of structural matrices of piezoceramic finite 
elements. Piezoceramic actuators are widely used for high-precision mechanical systems such 
as positioning devices, manipulating systems, control equipment, etc. In this paper, the 
efficiency of computer algebra application was compared with the numerical integration 
methods of formation of the structural matrices of the finite elements. Two popular finite 
elements are discussed for modeling piezoceramic actuators: sector type and the triangular one. 
All structural matrices of the elements were derived using the computer algebra technique with 
the following automatic program code generation. Due to smaller floating point operations, the 
computer time economy is followed by an increased accuracy of computations, which is the 
most important gain achieved in many cases. 
 

Keywords: computer algebra, structural matrices, piezoactive materials, piezoceramic 
structures. 
 
1. Introduction 
 

Recent advances in the development, theory and applications of new smart materials, 
structures and devices, including the materials with extremely high piezoelectric or 
magnetostrictive properties have extended the area of mechatronics, providing systems with 
very high levels of integration and multifunctionality [3]. Some concepts, e.g., actuators with 
an infinite number of degrees of freedom, transmission of energy to actuators through some 
distance, active bearings, etc., could be described as solutions looking for a problem (Fig. 1). 
In some cases the introduction of piezomechanical systems creates a new synergistic effect 
and, as in all the integrated systems, the problem of maximum interaction between 
subsystems is the key to optimum design. Although the introduction of new piezoactive 
materials, which have found application in the areas of actuators, transducer technology, 
energy transformers, control devices, etc., has been very intensive in recent years [1,7,13,17], 
the main concepts, ideas and effects are relatively unknown to design engineers. Describing 
the holistic complex interaction of dynamic effects, energy transformation and devices based 
on them, while the physics involved in piezoelectric theory may be regarded as a coupling 
between Maxwell’s equations of electromagnetism and the elastic stress equations of motion 
[10,12,14,15]. 

The finite element method (FEM) is widely used for modeling of complicated structures 
[18]. In the FEM the continuum is digitized and thus the numerical approximation is chosen. 
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A result of sufficient accuracy can often be obtained by numerical integration, and with more 
effective computer facilities this technique is most common. However, the order of numerical 
integration implies a thorough adjustment to the order of polynomial expressions to be 
integrated, and this fact is not generally known. The use of a more precise formula for 
numerical integration will not produce more accurate results, but will sometimes ‘stiffen’ the 
examined structure [5,6]. On the other hand, even the use of an exact numerical integration 
scheme always yields some numerical errors, which may become important in particular 
finite element applications, requiring a high accuracy of analysis [11,16]. 

Moreover, it is known that the formation of structural matrices is one of the most 
computationally expensive procedures in FEM [1], and the use of numerical integration for 
these purposes is not the optimal solution. This fact becomes particularly keen in the finite 
element applications in structures of piezoactive materials. In addition to the conventional 
stiffness matrix, there appear three additional matrices of mass, electro elasticity and capacity 
[1, 4]. The numerical integration procedure for the formation of the mentioned matrices is 
especially expensive, because the power of integral expressions is higher. Computer algebra 
offers wide opportunities in forming structural matrices of finite element. It is a pity to 
observe that a lot of routine algebraic operations in FEM is usually conducted by hand or 
with the help of numerical approximations, but that could be accomplished by means of the 
computer algebra technique in a faster, more reliable and smarter manner. Another key aspect 
is that the results, obtained in this way, often give a remarkable economy of computer 
resources and assure the proper accuracy of evaluations [5]. Despite that, even the classical 
books on FEM [18] do not mention the possibility of symbolic manipulations in the 
formation of structural matrices. 

 
 

  

 

 
Fig. 1. Developed piezoceramic actuators 

 
There is one advantage of numerical integration mentioned: for a particular type of finite 

elements, the structural matrices should always be expressed in the same way through 
interpolating functions and their derivatives. Therefore the universal computational 
subroutines can be applied to various finite elements [9, 18]. However, the same extent of 
generality is a characteristic feature of computer algebra methods, too. Still more, the user of 
programs, generated by computer algebra does not need to consider the powers of polynomial 
expressions to be integrated, which is necessary for selecting a proper numerical integration 
scheme [2]. Even the users of modern commercial codes (such as COMSOL, ANSYS, etc.) 
have to determine the necessary number of integration points for some types of finite 
elements at the stage of initial data reading [5]. 
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2. Finite Element Method for Modeling Piezoceramic Structures 
 
The mechanical and electrical phenomena as well as their coupling complicate the 

application of FEM to piezoceramic structures, such as actuators and other devices mentioned 
above. Thus, the state of each finite element nodal point can be represented by the values of 
the nodal displacement { }δ  and potential { }ϕ  [1]. When describing a finite element, the 

displacements and potentials at any point are expressed via nodal values as: 
{ } [ ]{ }
{ } [ ]{ }


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where [ ]N  and [ ]L  are interpolating functions in the general case, and { }δ ,{ }ϕ  are nodal 

displacements and potentials, respectively. 
The strain vector could be expressed in the form [18]: 

{ } [ ]{ }δε B= .              (2) 

The electric field could be similarly expressed in the form [1]: 

{ } [ ]{ }ϕEBE = .              (3) 

Thus the equations of piezoelectric effect on the elementary volume are expressed as [16]: 

                                    
                            (4) 

 

 

where [cE], [e], [∋s]  are the matrix of stiffness for a constant electric field; the matrix of the 
piezoelectric constant and the matrix of dielectric constant evaluated under constant strain, 
respectively; {σ},{ ε},{D}, {E} are the vectors of stress, strain, electric induction, and the 
electric field, respectively. 

The analysis of a piezoelectric actuator must be performed appreciating the electric 
occurrence in the system. Based on FEM, each node of the element has an additional degree of 
freedom used for electric potentials in FEM modeling. The solution applied in the equations of 
motion, suitable for the actuator, can be derived from the principle of minimum potential energy 
by means of variation functional [4]. The basic dynamic FEM equation of motion for 
piezoelectric transducers that are completely covered with electrodes can be expressed as [1]: 
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where [M], [K], [T], [S], [C] are matrices of mass, stiffness, electro elasticity, capacity and 
damping, respectively; { } { } { }1,, QFu  are vectors of nodes of structural displacements, external 

mechanical forces, and charges coupled on the electrodes; { } { }21 , φφ  are vectors of nodal 

potentials of the nodes associated with electrodes and vectors of nodal potentials calculated 
during numerical simulation. Mechanical and electrical boundary conditions can be applied to a 
piezoelectric actuator, i.e., mechanical displacement of the fixed surfaces of the actuator is 
equal to zero and the electric charge of piezoceramic elements that are not coupled with 
electrodes is equal to zero as well.  
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Here the structural matrices of the piezoceramic finite element with volume V are: 

[ ] [ ] [ ] [ ] ,dVBcBK ET

V
∫=                            (6) 

[ ] [ ] [ ] [ ] ,dVBeBT E

T

V
∫=                               (7) 

[ ] [ ] [ ] [ ] ,dVBBS E
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V

E ∋= ∫                         (8) 

[ ] [ ] [ ] ,dVNNM
T

V

γ∫=                                 (9) 

[ ] [ ] [ ].KMC βα +=                                    (10) 

The damping matrix [C] is derived using the mass and stiffness matrices by assigning the 
constants α and β. γ  is the  mass density. 

The procedure for obtaining the structural matrices of finite elements consists of the 
following steps: 

1. Definition of interpolating functions, which contain inverse of the configuration matrix 
obtained from the interpolating polynomials. 

2. Obtaining the derivatives of interpolating functions. 
3. Multiplication of all the necessary sub-matrices. 
4. Integration of these products into the volume of a finite element. 
 

3. Comparison of Two Formation Methods 
 
Usually piezoceramic actuators have a simple form, e.g., plates, rings, cylinders etc. [3, 7]. 

Therefore, finite elements of a simple form are used. Two popular finite elements will be 
presented here for modeling of piezoceramic actuators, namely, sector type elements and the 
triangular ones. The interpolating functions for the sector type finite element with four nodal 
points in polar coordinates (θρ, ) could be expressed [1] as follows: 
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where 2121 ,,, θθRR  are sector values of radii and angle boundaries. 

And the matrix [ ]iB  for the i-th node of the element is [1]: 
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Analogously, the matrix [ ]EiB  for the i-th node has the same form [16]: 
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Thus, the expression for the stiffness matrix of the sector type finite element becomes: 
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where h is the thickness of the element. 
Analogously, the formulas (7-10) of the other matrices have the same structure. 
The structural matrices of the sector finite element were derived using the computer algebra 

system VIBRAN, which is a FORTRAN preprocessor for analytical perturbation with 
polynomials, rational functions and trigonometric series [3]. A special VIBRAN procedure can 
generate an optimized FORTRAN code from the obtained analytical expressions [2], which can 
be directly used in the programs for numerical analysis. The computer algebra technique is 
more convenient for this problem than numerical, because the polynomials under integrals have 
negative power order -1 for the sector finite element in the polar coordinates. Thus, numerical 
integration is not very useful. Table 1 illustrates the number of floating point products necessary 
to form the structural matrices of the piezoceramic sector finite element. For the sake of clarity, 
let us consider only three matrices: that of mass, stiffness, electro elasticity, because their 
formation is more expensive. 

 
Table 1. The number of floating point products to format the sector type element matrices 
 

 
 

 
 
 
 

 

The other geometrically suitable finite element is triangle, which allows modeling of various 
surfaces [18]. The first member of a triangular membrane or a bending element family is the 
element with three nodes and interpolating polynomial of the second order. Also, a triangular 
finite element is suitable to determine the optimal electrode configuration determination of 
piezoceramic actuators [4]. The interpolating functions for a triangular finite element are 
expressed in the area of L-coordinates [5,18]: 
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where 
ib , ic  are differences of nodal coordinates, with a cyclic permutation of indices 

1→2→3→1 for the remaining coefficients [5]. The matrix [ ]iB  of the triangular element for the 

i-th node is [17]: 

Matrix Numerical 
integration 

Computer 
Algebra 

K 1296 820 
T 972 634 
M 2792 926 

Total: 5060 2380 
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Thus, the expression for the stiffness matrix of the triangular finite element becomes: 
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where h is the thickness of the element. 
Analogously, formulas (7-10) of the others matrices have the same structure. Integration of 

the products (17) in algebraic form into the area of finite element in L-coordinates according to 
[18] could be expressed as: 
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where ∆2  is a triangle area. 
Table 2 illustrates the number of floating point products necessary for the formation of 

structural matrices of the piezoceramic triangular finite element. 

 
Table 2. Number of floating point products for the formation of triangular element matrices 
 

 
 
 
 
 
 

 
4. Conclusions 
 

The proposed analytical formation of the structural matrices of the piezoceramic finite 
elements reduces the number of floating point operations more than twice, particularly for the 
mass matrix of the elements. The highest economy is achieved during the integration procedure, 
because, after integration, the expressions of matrix elements become shorter, due to 
disappearance of variables. The distributed mass, electro elasticity, damping matrices always 
yield relatively simple final analytical expressions for complex finite elements. Due to the fact 
that the integral expressions to be integrated in these cases have the power higher at least by 
twice than the ordinary stiffness matrix, the use of computer algebra delivers a particularly 
remarkable economy of the required computer time as compared with the numerical integration 
technique. It should also be emphasized that the reduction in computational time is also 
accompanies by an increased accuracy, which is the most important gain achieved in many 
cases. 
 

Matrix Numerical 
integration 

Computer 
Algebra 

K 2430 1204 
T 1660 946 
M 3240 794 

Total: 7330 2944 
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