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Abstract. This paper deals with the description of a thecaktbackground of systematic
computer algebra methods for the formation of $tmad matrices of piezoceramic finite
elements. Piezoceramic actuators are widely usedif-precision mechanical systems such
as positioning devices, manipulating systems, obnéquipment, etc. In this paper, the
efficiency of computer algebra application was camag with the numerical integration
methods of formation of the structural matricestloé finite elements. Two popular finite
elements are discussed for modeling piezoceranti@trs: sector type and the triangular one.
All structural matrices of the elements were deatiusing the computer algebra technique with
the following automatic program code generatione Ba smaller floating point operations, the
computer time economy is followed by an increasecligacy of computations, which is the
most important gain achieved in many cases.

Keywords: computer algebra, structural matrices, piezoactivaterials, piezoceramic
structures.

1. Introduction

Recent advances in the development, theory andicapiphs of new smart materials,
structures and devices, including the materialshwéxtremely high piezoelectric or
magnetostrictive properties have extended the afeaechatronics, providing systems with
very high levels of integration and multifunctioital[3]. Some concepts, e.g., actuators with
an infinite number of degrees of freedom, transiois®f energy to actuators through some
distance, active bearings, etc., could be descréisesblutions looking for a problem (Fig. 1).
In some cases the introduction of piezomechanigstesms creates a new synergistic effect
and, as in all the integrated systems, the probEfmmaximum interaction between
subsystems is the key to optimum design. Althouggé introduction of new piezoactive
materials, which have found application in the ared actuators, transducer technology,
energy transformers, control devices, etc., has eey intensive in recent years [1,7,13,17],
the main concepts, ideas and effects are relativeknown to design engineers. Describing
the holistic complex interaction of dynamic effeasergy transformation and devices based
on them, while the physics involved in piezoelacttieory may be regarded as a coupling
between Maxwell's equations of electromagnetism tedelastic stress equations of motion
[10,12,14,15].

The finite element method (FEM) is widely used foodeling of complicated structures
[18]. In the FEM the continuum is digitized and shilhe numerical approximation is chosen.
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A result of sufficient accuracy can often be obggirby numerical integration, and with more
effective computer facilities this technique is nosmmon. However, the order of numerical
integration implies a thorough adjustment to theeorof polynomial expressions to be
integrated, and this fact is not generally knowmeTuse of a more precise formula for
numerical integration will not produce more accaretsults, but will sometimes ‘stiffen’ the
examined structure [5,6]. On the other hand, ehenuse of an exact numerical integration
scheme always yields some numerical errors, whigly fmecome important in particular
finite element applications, requiring a high a@ay of analysis [11,16].

Moreover, it is known that the formation of struetlu matrices is one of the most
computationally expensive procedures in FEM [1]d &me use of numerical integration for
these purposes is not the optimal solution. Thit EEecomes particularly keen in the finite
element applications in structures of piezoactivatearals. In addition to the conventional
stiffness matrix, there appear three additionalrivas of mass, electro elasticity and capacity
[1, 4]. The numerical integration procedure for floemation of the mentioned matrices is
especially expensive, because the power of integptessions is higher. Computer algebra
offers wide opportunities in forming structural megs of finite element. It is a pity to
observe that a lot of routine algebraic operation&EM is usually conducted by hand or
with the help of numerical approximations, but thatld be accomplished by means of the
computer algebra technique in a faster, more ridiabhd smarter manner. Another key aspect
is that the results, obtained in this way, oftemega remarkable economy of computer
resources and assure the proper accuracy of eimladb]. Despite that, even the classical
books on FEM [18] do not mention the possibility symbolic manipulations in the
formation of structural matrices.

Fig. 1. Developed piezoceramic actuators

There is one advantage of numerical integrationtimeead: for a particular type of finite
elements, the structural matrices should alwaysekgressed in the same way through
interpolating functions and their derivatives. Téfere the universal computational
subroutines can be applied to various finite ele4®, 18]. However, the same extent of
generality is a characteristic feature of compualgebra methods, too. Still more, the user of
programs, generated by computer algebra does edttoeconsider the powers of polynomial
expressions to be integrated, which is necessargdlecting a proper numerical integration
scheme [2]. Even the users of modern commerciatsgduch as COMSOL, ANSYS, etc.)
have to determine the necessary number of integrapioints for some types of finite
elements at the stage of initial data reading [5].
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2. Finite Element Method for Modeling PiezoceramicStructures

The mechanical and electrical phenomena as welthag coupling complicate the
application of FEM to piezoceramic structures, sastactuators and other devices mentioned
above. Thus, the state of each finite element npdait can be represented by the values of

the nodal displacemen{&} and potential{(p} [1]. When describing a finite element, the
displacements and potentials at any point are ssprkvia nodal values as:
v} =[NJis) .
1)
(o} =[LLe},
where [N] and [L] are interpolating functions in the general casel &}, {p} are nodal

displacements and potentials, respectively.
The strain vector could be expressed in the for@j:[1

te}=[Blis}. @)

The electric field could be similarly expressedhe form [1]:

{E}=[BJi}. 3)

Thus the equations of piezoelectric effect on {eeentary volume are expressed as [16]:

{{0} = e Jte}- [ {E}, ()
{D}=[elie}+ b°]{E}

where [€], [e], [>%] are the matrix of stiffness for a constant electield; the matrix of the
piezoelectric constant and the matrix of dielectranstant evaluated under constant strain,
respectively; &}.{c},{D}, {E} are the vectors of stress, strain, elect induction, and the
electric field, respectively.

The analysis of a piezoelectric actuator must beopeed appreciating the electric
occurrence in the system. Based on FEM, each nbtie @lement has an additional degree of
freedom used for electric potentials in FEM modglifihe solution applied in the equations of
motion, suitable for the actuator, can be derivedhfthe principle of minimum potential energy
by means of variation functional [4]. The basic dyic FEM equation of motion for
piezoelectric transducers that are completely @/evith electrodes can be expressed as [1]:

[M J{aij+ [Cl{aj+ [K [{u}+ [T ]} + [T, Ko, § = {F .
[Tl {u}_ [Sll] {¢1}_ [Slz] {¢2} = {Ql}' ®)
[T {up=[8.] {4} -[S..]i0.}= {0}

where M], [K], [T], [S], [C] are matrices of mass, stiffness, electro eldgficdapacity and
damping, respectively{u}, {F}, {Q,} are vectors of nodes of structural displacemenigrnal

mechanical forces, and charges coupled on theretisst; {4}, {#,} are vectors of nodal
potentials of the nodes associated with electr@dek vectors of nodal potentials calculated
during numerical simulation. Mechanical and eleetrboundary conditions can be applied to a
piezoelectric actuator, i.e., mechanical displacgntd the fixed surfaces of the actuator is
equal to zero and the electric charge of piezoceratements that are not coupled with
electrodes is equal to zero as well.
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Here the structural matrices of the piezocerammitdielement with volum¥ are:

= [[8] [c*] [B]av, (6)
[T]= I (6] [¢] [B.]dv. ™)
[sl= [[8.] "] [Be]av, ®
M ]=VJ NFNEZ ©)
[Cl=a[Mm]+pIK] (10)

The damping matrix{] is derived using the mass and stiffness matrigeassigning the
constantsxandg. y is the mass density.

The procedure for obtaining the structural matriodsfinite elements consists of the
following steps:

1.Definition of interpolating functions, which containverse of the configuration matrix

obtained from the interpolating polynomials.

2.0btaining the derivatives of interpolating functson

3.Multiplication of all the necessary sub-matrices.

4.Integration of these products into the volume @ihde element.

3. Comparison of Two Formation Methods

Usually piezoceramic actuators have a simple fam,, plates, rings, cylinders etc. [3, 7].
Therefore, finite elements of a simple form aredusewo popular finite elements will be
presented here for modeling of piezoceramic actsattamely, sector type elements and the
triangular ones. The interpolating functions foe thector type finite element with four nodal
points in polar coordinatesy( @) could be expressed [1] as follows:

(R, - pX0,-0)

B 1 (p RX6,-9)|
{N}_(Rz—axez—el) (p—R)O-0), -
(R,—p)0-6,)

where R, R,,0,,0, are sector values of radii and angle boundaries.
And the matrix[B, | for thei-th node of the element is [1]:

N
op
B]=| N LN g4 (12)
p p 00
10N, oN, N,
P30 p p |

Analogously, the matri>[BEi] for thei-th node has the same form [16]:
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oN,

[B.]=| A, li=14 13)

p 00

Thus, the expression for the stiffness matrix efskctor type finite element becomes:

[K]=h[ 18T [c¥] [Blo doce. 1)

R

whereh is the thickness of the element.

Analogously, the formulas (7-10) of the other nwatsi have the same structure.

The structural matrices of the sector finite eleme@re derived using the computer algebra
system VIBRAN, which is a FORTRAN preprocessor famalytical perturbation with
polynomials, rational functions and trigonometrégies [3]. A special VIBRAN procedure can
generate an optimized FORTRAN code from the obtharalytical expressions [2], which can
be directly used in the programs for numerical gsial The computer algebra technique is
more convenient for this problem than numericatawse the polynomials under integrals have
negative power order -1 for the sector finite elatria the polar coordinates. Thus, numerical
integration is not very useful. Table 1 illustrathe number of floating point products necessary
to form the structural matrices of the piezoceraseictor finite element. For the sake of clarity,
let us consider only three matrices: that of masi§iness, electro elasticity, because their
formation is more expensive.

Table 1. The number of floating point products to formag #ector type element matrices

Matrix Numerical Computer
integration Algebra
K 1296 820
T 972 634
M 2792 926
Total: 5060 2380

The other geometrically suitable finite elementrisngle, which allows modeling of various
surfaces [18]. The first member of a triangular rheame or a bending element family is the
element with three nodes and interpolating polyrbrof the second order. Also, a triangular
finite element is suitable to determine the optiraldctrode configuration determination of
piezoceramic actuators [4]. The interpolating fiors for a triangular finite element are
expressed in the area of L-coordinates [5,18]:

L+ UL, + L - L5 - LiLg
N} = bz(l-sl-f + 05'—1'—2'-3)_ bs(l-fl-z + 05'—1'—2'-3) , (15)
G, (LyL2 + 05L,L, L, ) c(L2L, + 05L,L,L, )

i=123

where b, C, are differences of nodal coordinates, with a cygermutation of indices
1-52—->3-1 for the remaining coefficients [5]. The matl[ii] of the triangular element for the
i-th node is [17]:
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2
B]=|-2-n, | (16)

i=123
Thus, the expression for the stiffness matrix eftiiangular finite element becomes:

[K]= th'l__[Ll[B]T [c®] [B]dL,dL, . (17)

whereh is the thickness of the element.

Analogously, formulas (7-10) of the others matribase the same structure. Integration of
the products (17) in algebraic form into the arééirote element inL-coordinates according to
[18] could be expressed as:

ntmik!

— —  _2A, 18
(n+m+k+2) 49

[LLpLsda =
A

where 2A is a triangle area.
Table 2 illustrates the number of floating poinbgucts necessary for the formation of
structural matrices of the piezoceramic triangfitdte element.

Table 2. Number of floating point products for the formatiofitriangular element matrices

Matrix Numerical Computer
integration Algebra
K 2430 1204
T 1660 946
M 3240 794
Total: 7330 2944

4. Conclusions

The proposed analytical formation of the structurstrices of the piezoceramic finite
elements reduces the number of floating point djmera more than twice, particularly for the
mass matrix of the elements. The highest econoraghigeved during the integration procedure,
because, after integration, the expressions of ixnalements become shorter, due to
disappearance of variables. The distributed mdsestre elasticity, damping matrices always
yield relatively simple final analytical expresssofor complex finite elements. Due to the fact
that the integral expressions to be integrateché@se cases have the power higher at least by
twice than the ordinary stiffness matrix, the ugecomputer algebra delivers a particularly
remarkable economy of the required computer timeoaspared with the numerical integration
technique. It should also be emphasized that tldeict®n in computational time is also
accompanies by an increased accuracy, which isnihgt important gain achieved in many
cases.
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