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Abstract. In this paper a new non-parametric hysteresis model is offered for simulation of 
behaviors of magneto-rheological dampers. The offered model takes the excitation frequency, 
amplitude and current as variables and because of that it is capable of estimating the hysteresis 
force in different stimulation conditions with a good level of accuracy. Also, the model has the 
required level of flexibility for simulation of different dampers. The model completion is free of 
all complications observed in other models. Finally, the accuracy of simulations provided by 
this model are compared with experimental data as well as two parametric and non-parametric 
models.  
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1. Introduction 
 

Magneto-rheological (MR) dampers are semi-active control tools that have received a lot of 
attention in recent years due to their structural simplicity, wide range of applications, low 
energy consumption, high capacity and high reliability. Automobile suspension and structural 
vibration control systems are among the most frequent uses of such dampers. The main 
challenge to the expansion of using these dampers is presenting a model capable of simulating 
their non-linear and complex hysteresis behaviors in a suitable manner. So far many different 
models have been presented for simulation of hysteresis of magneto-rheological dampers. 
Models such as Bouc-Wen parametric model and other non-parametric models are based on 
sigmoid functions. Nevertheless, many of these models demonstrate differences between results 
of experimental tests and simulations. Also, in most models the model characterizing 
parameters are not functions of frequency, amplitude and current of stimulation. Thus they must 
be recalculated for different stimulation conditions. Shames and Cozarelli [1] presented a model 
that used a dry friction element in parallel with a viscous damper, known as the Bingham Visco-
Plastic model. Gamato and Filisko [2] presented their parametric viscoelastic-plastic model 
based on Bingham’s model. Ehrgott and Masri [3] and Gavin et al [4] used Chebychev’s 
polynomials to present a non-parametric method for estimation of controllable fluid damper 
through the use of displacement and damper velocity data. Wereley et al [5] presented a linear 
hysteresis bi-viscous model with improvements in its pre-yield hysteresis accuracy in 
comparison to bi-viscous models. Choi and Lee [6] developed a polynomial model in which 
only the stimulation current was taken as the model variable. Despite its structural simplicity 
that made simplified the task of control system designer, this model suffers from low simulation 
accuracy [10]. The Bouc-Wen model [8] has been frequently used to simulate the behaviors of 
magneto-rheological dampers. Yet one of the main problems with this model is the calculation 
of its unknown parameters. A range of methods have been proposed to determine these 
parameters such as the trial and error or some optimization techniques such as SQP, all aimed at 
minimizing the discrepancies between experimental and simulation results. In this method the 
combination of parameters to be optimized creates a large solution space for which there is 
normally no accurate and agreed solution. In other words, because the search space covers a 
large range, the final answer cannot necessarily be fitted with the hysteresis phenomenon. 
Therefore, sometimes there are considerable differences between experimental and simulation 
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results [6, 9]. Moreover, characteristic parameters of Bouc-Wen model are not functions of 
excitation current, amplitude and frequency, and estimated parameters can only simulate the 
damper behaviors in special circumstances. Spenser et al [9] offered his optimized model based 
on the Bouc-Wen model. It identifies damper behaviors at lower velocities with better accuracy 
than the Bouc-Wen model, and it is a function of the stimulation current too. Like Bouc-Wen, 
Spenser’s model is known as a model associated with permanent problems in finding the 
required parameters [7]. The goal of this paper is the offer an accurate model for simulation of 
magneto-rheological dampers behaviors that takes into account the excitation current, amplitude 
and frequency as input variables. The newly offered model is capable of estimating the damper 
force for any combination of excitation current, amplitude and frequency. Given the special 
characteristics of this model, identification of its parameters is not such a hard task because 
their approximate values may be easily calculated according to primary experimental data. 
Also, the final accuracy of the model is controllable during the modeling process, and the 
offered model has a high degree of flexibility which makes the modeling process easier. 

 
2. Presented Model 
 

This model is based on simulation of force-velocity hysteresis behavior of magneto-
rheological dampers. Many of the models presented so far have taken the same approach to 
modeling [6, 7, 10]. In the presented model, modeling includes several separated stages in the 
following order. 

 
2.1. Creating a Base Model 
 

First we need a base model capable of covering with sufficient accuracy the hysteresis 
phenomenon of the force-velocity curve for different excitation currents, frequencies, and 
amplitudes through changing the model parameters. For instance, the Bouc-Wen model or other 
models using sigmoid functions to model damper behaviors may be good choices for a base 
model. 

The base model used here is of linear type. As observed in Fig. 1, the model consists of 6 
separate linear functions. Since modeling for negative accelerations is done on the force-
velocity curve, according to Fig. 1 four key points A, B, C, and D are taken on the force-velocity 
curve. A represents the maximum force at positive velocity, D represents maximum force for 
negative velocity, B represents yield force at positive velocity, and C represents yield force at 
negative velocities. Also, C* and B* points are the images of B and C points in relation to the 
coordinate system reference point. As can been observed in Fig. 1, the base function for 
modeling consists of six separate linear functions passing through all points highlighted in the 
model. Thus the base modeling function is expressed in the following way: 

for negative accelerations: 
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for positive accelerations: 
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where Fd is the damper force and also: 
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)/()( BABAa xxyyh −−=                                                                                   (3) 

)/()( CBCBb xxyyh −−=                                                                                                 (4) 

)/()( DCDCc xxyyh −−=                                                                                                  (5) 

)/()(* CACAa xxyyh ++=                                                                                                (6) 

)/()(* BDBDc xxyyh ++=                                                                                                (7) 

In the above equations the longitudinal coordinates of A, D (xA, xD) are calculated as follows: 

mDA xxx ɺ=−=                                                                                                              (8) 

where x, xɺ , and xɺɺ  are position, velocity and acceleration of the damper. mxɺ  is the maximum 

damper velocity calculated from the following equation: 

xxxfaxm
ɺɺɺɺ ...2 2

−== π                                                                                                      (9) 

where a is the amplitude and f is the frequency of stimulation. 
Therefore by having the longitudinal positions of B and C (i.e. parameters xB and xC) and 

latitudinal positions of A, B, C, and D (i.e. yA, yB, yC, and yD) we can simulate the model 
completely. The model has six unknown parameters which change according to current, 
amplitude and frequency of stimulation. 

To fit the base model over experimental samples, we need to find the six parameters xC, xB, 
yD, yC, yB and yA.  

 
Fig. 1. Base model function 

 
Given the simplicity of the base function the approximate values of each model parameter 

can easily be estimated from experimental data for different stimulation conditions. So fitting 
the model for different stimulation conditions on experimental curves, either by trial and error 
or by practical optimization techniques, will not be such a hard task after all. This is another 
advantage of the presented model over other models such as Spenser’s. 

 
2.2. Calculation of Model Parameters  
 

To calculate model parameters we need experimental data obtained for different currents, 
frequencies and ranges of stimulation. To complete the model we first need to take one current, 
one amplitude and one frequency as the zero excitation condition. Zero excitation condition 
may be taken as an average range of any excitation conditions. For example, if the excitation 
current ranges from 0 to 1.5 A, 0.75 A is taken as the zero excitation current. Also, zero 
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excitation values for each condition may be considered to be equal to the value for which 
maximum excitation occurs. For instance, if excitation frequency ranges from 0.5 to 1.5 Hz but 
maximum applied frequency is between 0.5 and 7.5 Hz, then 5 Hz will be a good choice for 
zero excitation frequency. Once the zero excitation conditions are set it is time to obtain the 
required experimental data for the model. To do this we must suppose that one of the triple 
excitation conditions is variable and the other two are zero and then test the damper to obtain 
the needed data. This is repeated for all excitation conditions. Thus the data required for 
modeling are three group of force-velocity curves each having one different stimulation 
condition as variable and the other two as zeroes. 

One model that uses amplitude and frequency besides the current in its modeling is 
represented by Wang et al [7]. X. Q. Ma et al optimized Wang’s model and compared his model 
accuracy with those of corrected Bouc-Wen. In this paper the modeling is performed over 
experimental data provided by X. Q. Ma et al (Fig. 2) so that the accuracy of the presented 
model may be compared not only to experimental data but also by X. Q. Ma and Bouc-Wen’s 
corrected models. 

Now it is time to fit the base model over experimental curves to obtain the model 
parameters. Because experimental data are functions of stimulation current, frequency and 
amplitude, once the model is fitted on all experimental data, each model parameter will be a 
function of three variables: stimulation current, frequency and amplitude, unless it is made clear 
after the fitting process that one or more of model parameters are not functions of some 
stimulation conditions. In this paper the fitting of model over experimental data is done by trial 
and error method. 

 
2.3. Calculation of Parameter Change Function 
 

In this section for each model parameters and each stimulation condition a function is passed 
over the points obtained after fitting the base model over experimental data. For instance, for 
parameter yA which is a function of all three stimulation conditions, we pass it through all 
experimental points in all different conditions of variable current, variable amplitude and 
variable frequency. 

 
Fig. 2. Force-velocity curves measured for MR damper at stimulation conditions (a) 6.35 mm and 1.5 Hz, 
(b) 6.35 mm and 0.75 A, (c) 2.5 Hz and 0.75 A. (from X. Q. Ma et al, 2007) 
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Fig. 3. Polynomial functions fitted over experimental data of model parameters for variable current and 
a=6.35 mm, f=1.5 Hz 
 

Passed functions are functions of the polynomial and their maximum exponent is four. 
Functions passed through points related to variable frequency are slightly different due to the 
complexity of the passing function.  

Figure 3 shows the functions fitted over experimental values of model parameters in 
different currents. The overall form of the functions is as follows: 
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where Zi is model parameter, i is stimulation current, and c11, c12, c13, c14, c15 are constant 
coefficient for each mode parameter taken from Table 1. 

Figure 4 presents the functions fitted over experimental values of model parameters in 
different amplitudes. The overall form of the functions is as follows: 
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where Za is model parameter, a is stimulation amplitude, and c21, c22, c23, c24 are constant 
coefficient for each mode parameter taken from Table 2. 

Figure 5 shows the functions fitted over experimental values of model parameters in 
different frequencies. Since changes in model parameters for frequency are more complex that 
the previous two cases, the fitted functions are a little more complex. Thus the overall form of 
the functions consists of two sections, the first being a polynomial of the following format: 
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The second section of the function is an exponential function multiplied in the first function. 
The overall form of the functions is as follows: 

( )1)).(exp(.)()( 2
321

*
++×= dfddfZfZ ff                                                                         (13) 

where Z is model parameter, f is stimulation frequency, and c31, c32, c33, c34, d1, d2, d3, are 
constant coefficient for each mode parameter taken from Table 3. 
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Table 1. Polynomial constant coefficients for variable current 
 Z 

 yA yB yC yD xB xC 
 c11 0.6526 0 0 0 0 0 
c12 -1.705   0.2533 -0.08733 -0.03493 0.001146 -0.002419 
c13 0.6023  -1.08 0.7448 0.7535      -2.025e-4   0.01223 
c14  1.596   1.736   -1.625   -1.879 -5.822e-3  -0.02017 
c15 0.09428   0.06339   -0.02713  -0.08569 7.927e-3  -0.01634 

 

 
Fig. 4. Polynomial functions fitted over experimental data of model parameters for variable amplitude and 
i=0.75 A, f=1.5 Hz 
 

 
Accuracy of functions fitted over obtained values plays the major role in our model 

accuracy. The important point is that the fitted function must be approximated at a high level of 
accuracy with related points under zero stimulation conditions, even if we need to approximate 
the other points with lower levels of accuracy, because the points have key influence on the 
model. 

 
2.4. Calculation of Multivariable Functions for Parameters 
 

So far the relation between each model parameter and related excitation conditions affecting 
that parameter was obtained separately. Now it is time to convert these separate relations into 
one multivariable function from excitation conditions of each single model parameter. For 

Table 2. Polynomial constant coefficients for variable amplitude 
Z 

 
yA yB yC yD xB xC 

c21 0 0 89.79 0 0 0 
c22 -11.62 -13.99 -17 8.541 1.051 0.2497 
c23 7.128 5.527 -2.431 -6.523 -0.08838 -0.615 
c24 0.7196 0.594 -0.7336 -0.7386 6.501e-3 -0.01005 
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instance, yA parameter is a function of any excitation condition that may be expressed in the 
following manner: 

)(),,( 020 aFfiayA =                                                                                                                 (14) 

)(),,( 010 iGfiayA =                                                                                                                      (15) 

)(),,( 00 fKfiayA =                                                                                                                    (16) 

where a is amplitude variable, i is current and f is frequency variable, and i0, a0, f01, and f02 are 
zero values of excitation conditions. It must be pointed out here that we can take two zero 
excitation values only for one excitation condition. For instance, here the two zero excitation 
values of f01 and f02 are taken for frequency. This increases the accuracy of damper behavior 
recognition for this special excitation condition. The same can be done for excitation condition 
which includes a large range of changes or whose change introduces special complications into 
damper behaviors. 

 

 
Fig. 5. Functions fitted over experimental data of model parameters for variable frequency and i=0.75 A, 
a=6.35 mm 
 

Table 3. Polynomial and exponential constant coefficients for variable frequency 
Z 

 
yA yB yC yD xB xC 

c31  1.1101e-4  1.309e-4  2.395e-4 0 0 0 
c32 -4.522e-3  0.003264 -4.377e-3  3.625e-3 -1.1159e-4  3.39e-4 
c33   0.1364  0.01385 -0.03523 -0.1469   1.87e-3 -0.01691 
c34   0.9223  0.8363 -0.8218 -0.8741  -8.98e-4   3.56e-4 
d1 -0.091  0.0975   0.115 -0.0825   1.419   0.37 
d2 -5.292 -0.292  -0.532 -5.292  -0.5  -0.92 
d3 -2.54 -5.73  -5.43 -2.49  -1.246  -3.746 
 
Given (14), (15) and (16) we have: 

)()( 010 fKiG =                                                                                                                        (17) 
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)()( 020 fKaF =                                                                                                                         (18) 

So yA may be expressed as the following three-variable function: 

)().(

)().().(
),,(

00 iGaF

fKiGaF
fiayA =

                                                                                                    (19) 

It can easily be shown that equation (19) covers all three equations of (14), (15) and (16). 
According to Figure 2 on which modeling is done, the zero stimulation parameters are 

chosen as follows: 

HzfHzfmmaAi 5.2,5.1,35.6,75.0 020100 ====                                                                          (20) 

Now according to equation (18) we can express each model parameter in the form of a 
multivariable function of excitation conditions. Replacing the obtained equations in the base 
model (equations (1) to (7)) with then give us a complete model whose parameters are all 
functions of excitation conditions. 
 
3. Model Evaluation 
 

In this part we do a comparison between simulation of the presented model and experimental 
data, and another comparison between the presented model and two models of X.Q. Ma et al 
and Bouc-Wen [10].  

Figure 6 provides the comparison of results obtained from damper behavior simulation and 
experimental data for variable current, frequency and amplitude. As can be observed there is a 
good correlation between model and experimental data. Experimental data used in this figure 
are the same on which the modeling was based.  

To ensure that the presented model is capable of simulating damper behaviors under any 
excitation conditions, figure 7 provides a comparison between experimental data and results of 
model simulation in different excitation conditions. Here too our model offers a very nice 
simulation. 

To compare the accuracy of presented model with X. Q. Ma et al and Bouc-Wen models [8, 
9], the behavior simulated by the two models and experimental data for variable frequency and 
constant current were compared in Figure 8 (data required for Bouc-Wen were taken from [7]). 
It is observed that the two models lack a good level of accuracy for excitation conditions 
different with that they were based on.  
 

 4. Conclusions  
 

In this paper a new hysteresis model was reported for simulation of magneto-rheological 
dampers under different excitation conditions. The proposed model contains several exclusive 
innovations. Since modeling is done through choosing 4 key points (A, B, C, D) over the force-
velocity curve of the damper, model parameters are easily extractable. Thus there is no need to 
use optimization procedures. Moreover, each model parameter changes incrementally or 
decrementally according to excitation conditions, which facilitates the modeling process. 

Also, here a linear function was used as a base function, but the presented method is not 
bound to use such a function and may well use any other function suitably fitted to force-
velocity curves of the damper, and that is because the next steps of modeling are independent of 
the type of base function.  

Accuracy of the function fitted over experimental data for each model parameter determines 
the final accuracy of the model, so increase of accuracy will result in increased complexity of 
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the functions related to model parameters. Also, the presented model has several stages of 
completion with high flexibility. 

 

 
Fig. 6. Comparison between simulation results and experimental data for (a) 1.5 Hz and 6.35 mm (b) 
6.35mm and 0.75 A (c) 2.5 Hz and 0.75 A (experimental data from X. Q. Ma et al, 2007) 
 

 
Fig. 7. Comparison between simulation results and experimental data for 6.35 mm and (a) 1.5 Hz, (b) 
2.5Hz, (c) 5Hz (experimental data from X. Q. Ma et al, 2007) 
 

 
Fig. 8. Comparison between simulation results and experimental data in stimulation conditions 2.5 Hz and 
0.75A for (a) by model Xia, 2007, (b) corrected Bouc-Wen model (experimental data from X. Q. Ma et al, 
2007) 
 

The model may be used for any type of magneto-rheological damper with any given 
accuracy. Other characteristics of the model include simplicity in the modeling process and 
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guaranteed final accuracy in comparison to other models that need optimization of model 
parameters in an infinity space, making them both time consuming and poorly accurate. 
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