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Abstract. In this study, an auto-associative neural netwdRNN) is designed as a fault
detector using the cybernetic concepts. In thissean artificial neural network structure is
connected with a finite state system or a finitomata and an AANN topology is described as
a virtual detector. In terms of the practical apgiion, vibration signals, which are taken from
an induction motor of 5 HP for both the healthy dadlty motor cases, are considered in the
spectral domain. The vibration signal presentetha healthy motor case is separated into 4
blocks and the spectral set of these blocks is aseihput and target pattern sets during the
training of the AANN. After the training processnaw vibration spectrum, which is defined in
the faulty motor case is applied to this trainetivoek and the faulty case is determined by the
error variation at output nodes of the AANN. Instlapplication, the error signal shows huge
amplitudes between 2 and 4 kHz as an indicatdnebtaring damage.
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1. INTRODUCTION

Early detection methods used in induction motoeay al very important role in terms of the
reliable operation of the industrial processes bseatheir usage is very wide in various
industrial fields. Fault types for the induction tms are of the electrical and mechanical
character and majority of the detection methodsbaged upon signal processing techniques
[1]. In this manner, one of the popular approadkespectral analysis methods based on the
Fourier transform. Hence, spectra of the electrdgal mechanical signals related to the stator
and rotor faults can be considered to get the tigaaanalysis [2-4]. And also, there are so
many different approaches applied in this area fikezy logic, artificial neural networks and
various pattern recognition methods [5]. Nowadayevelet transform and its application to the
rotating machinery are very popular as an alteveatnethod to the Fourier transforms [6]. In
this study, an induction motor of 5 HP is aged uritie accelerated aging processes and data
are gradually collected from the initial to agedeauring the aging process [7]. In this sense
vibration signals, which are taken from the healtéimg faulty (aged) motor case are used to
extract the damage characteristics. For this pespbe spectra of the vibration signals are used
for training process of an auto-associative nenedvork (AANN) and its topology is trained
for the healthy motor case. Hence, faulty casdsis @asily determined by considering the error
variation observed in spectral domain at the outmates of the AANN. This AANN structure
that is used in this study can be considered adbaraetic system because it can be defined as
an automaton. In the related literature, the autanoa finite state system is described with
finite sets like neural networks [8]. From this wigoint, a neural system can also be defined as
a cybernetic system in the manner of an automaton.

In terms of current applications, many automata @repled to the man, machines and
society. And also, the advanced techniques in coengachnology, system and control theory
and their applications as well as advanced sigratgssing techniques and learning systems
are successfully applied to so many fields of tleural science like molecular biology,
neurophysiology, and genetics and so on. For #8san, general system theory approaches
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related to the cybernetics can be interpreted awralasince deals with a particular kind of
interaction between the subject and object, theficial neural network approaches can also be
evaluated and defined in this sense [8]. In thislptwe wanted to emphasize this aspect and
therefore designed a virtual fault detector baggehuthe artificial neural network like a finite
state system.

2.MATHEMATICAL METHODS

There are three different approaches of the mattiemhanethods used in this study. These
are finite automata, neural network approach asasning system and the spectral analysis
technique.

2.1. Finite automata and its neural network inter pretation

Finite automata can be described by five quantifiéese are input, output, internal states
end state functions. In this manner architecturahef finite automata can be given by the
following equation (1) [9].

A=(1,0,W,Q,¥) 1)
where,l: a finite input setD: a finite output setyV: a finite set of the internal states.

And also, function§2 and¥ are next state function and next output functespectively.

Using the quintuple definition of the automatacdn be expanded to the neural network
concept by the following theorem.

And also state function® andy are defined by the mathematical operation whiah ar
shown as below.

Q:WxIl->W 2
¥Y:Wx|l—->0

Let A=(1,0,W,Q,¥) be a finite automata. If its finite input, outpanid internal state sets

can be given ad ={io,i,,.i .}, 0={0,0,...q} and W={w, w,...,w_,} respectively,

then there exists a neural MtsubsetS{io,il,...jml} of its input, {oo, q,...,ql} of its output

PR

and {Wo,vvl,...,vw_l}of its states such that if inpuf ,i; ,..i; to Ainitially in state w; yields

*

output o, ,0,...,0 then input i, i ,..J; to N initially in state w, yields output

0410 -0 -
As a special case, far=k, the dimensions of the input and output sets graleto each
other and hence, the neural hetan be called as an auto-associative neural n&NiB. The
AANN can be represented by the following structure:
AANN= (ARC, LR) 3)
where ARC denotes the architecture and LR is disoléarning rule. In terms of the feed-
forward neural networks, one of the most popularrang algorithms is the back-propagation
algorithm.

2.2. Neural networks and back-propagation algorithm

Neural networks are parallel distributed informatjorocessing systems. One of the most
important models is the feed-forward neural netwdémkthis sense, the information flows from
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the input layer to the output one. Hidden layersicv take place between the input and output
layers, play an important role related to the kremgle extraction in the network topology.
There are two important aspects of the neural fi¢tsse are learning and recalling procedures.
In the learning procedure, the neural net learrdeurthe input-output relationships and this
type of the learning procedure is hamed as leamittiy target. After the learning procedure,
the information is stored in the weight factorsesfch processing elements of the network
topology by the nonlinearity. In the recalling, tineknown data is applied to the neural network
and then it produces a suitable response. In tefrtise learning procedure, the most popular
one is the back-propagation algorithm [10-15].

LR

ARC

Fig. 1. An auto-associative neural network representaifdhe finite automata
The classical back-propagation algorithm

The back-propagation algorithm, which is considdoeda multilayered feed-forward neural
topology, can be described by the following caltalasteps [10]:

Step 1. Initialize the weight factors\, with small random numbers.

Step 2: Determine the learning rate

Step 3: Apply the input patterr®.

Step 4: Propagate the input pattern from the input layethgooutput layer using the following
computation

qui(zp:WkQJ (4)

Here the functiorf (.) is a nonlinear activation function.
Step 5: Calculate the error term at th® output node,

1 p
E%(wW) =§Z(Q“ -y (5)
i=1
Step 6: Calculate the delta term for the output layer
5 =1 QX wz)(d - V), (6)
k=1

where, the functioff ' indicates the derivative of the nonlinear activatiunction.

Step 7: Calculate the delta term for the hidden layer mppgating the delta term of the output
layer

n P
68 = £ Qw4 (@)
k=1 =1
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Step 8: Calculate the difference in the weight factors
AW, =780 (8)
and then update them.
Step 9: Change the state froqto g+1, and go to the step 3.

The algorithm leads to the optimal weight facters when the difference in the error
approximately becomes zero.

2.3. Spectral analysis

A common approach for extracting the informatioroatbthe frequency features of a
random signal is to transform the signal to theyfiency domain by computing the discrete
Fourier transform [16-19]. For a block of data efigthN samples, the transform at frequency
mAf is given by:

X (MAf) = :g:x(km Yexp— j2akm/ N]. (9)

where Af is the frequency resolution antt is the data-sampling interval. The auto-power
spectral density (APSD) oft) is estimated as:

S (f) =%|X(mAf ), f = maf. (10)

3. EXPERIMENTAL STUDY AND VIBRATION MEASUREMENTS

The experimental study is focused on the electdgatharge from the shaft to the bearing.
Figure 2 shows this experimental setup to simulla¢eelectrical discharge machining (EDM)
for the motor bearing elements. At each aging ¢ytble motor is run at no load for 30 minutes
with externally applied shaft current of 27 A at 80AC. The EDM aging is followed by
thermal and chemical aging in order to accelera¢eaing process [20]. After each cycle of
accelerated aging, the test motor is put on a mmoiormance test platform and data with a
sampling frequency of 12 kHz is acquired for thetonccurrents and voltages, rotor speed,
torque and six vibration measurements. Duringtéss procedure, there are eight measurement
sets so that one healthy (initial) and seven agsgsare obtained. In this study, we consider
only one vibration measurement represented by seét®sas indicated in Figure 3.

Induction Motor

(5 HP) :l—%
]

30 Vac
Power

Fig. 2. Schematic of the electrical motor bearing EDM petu
Vibration measurements, which come from the ser¥sa@n be shown by the Figure 4.
4. APPLICATION TO VIBRATION SPECTRA FOR FAULT DETECTION

In this section, the vibration signal, which isidefl for the healthy case is represented by 4
blocks and hence, power spectral density (PSD)tiiume of these blocks are computed and

632

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING DECEMBER2011.VOLUME 13,1SSUE4. ISSN1392-8716



NEURO-DETECTOR BASED ON THE CYBERNETIC CONCEPTS FOR FAUDETECTION IN ELECTRIC MOTORS
SERHAT, SEKER, EMEL, ONAL TAYFUN KAYNAS, TAHIR CETIN AKINCI

their amplitudes are used to train the associatéweal network by a pattern set. In this manner,
the input-output (target) patterns are identicaach other. The PSD variations of the vibration
blocks are shown as below in Fig. 5.

3-Phase
Supply

i NeYo

i MOTOR i

! AT oac
NC) i

.
l__\—> Signal Conditioner |:> PC
(a)

(©

Fig. 3. Motor load testing and data acquisition systemEg)erimental set-up configuration; b) Cross
section (A-A") at short end; c) Cross-section (Bd'pulley end
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Fig. 4. Vibration signals for healthy and faulty bearirases
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Fig. 5. PSDs of the blocks in the vibration signal defif@dthe healthy case
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The PSD calculation is realized at 128 points drahtthe number of input nodes of the
neural network becomes 128. Hence the neural nkttepology is constructed by size of 128 x
60 x 128. Here the number of the hidden nodes .iCébsequently, these PSD amplitudes are

taught to neural topology, pattern by pattern, asimput-output pairs. This application is
represented by Figure 6.

Vibration
Measurement
& DBoectra
4 Traning
/
> AAI;LN
/’
Inpt = Cutpntt s

Fig. 6. Training of the AANN

For this procedure, the learning rate is selecse@. 2 and target error value is als6*1The
learning variation is represented as indicatedguie 7.

, Performance is 9.68173e-005, Goal is 0.0001

Training-Blue Goal-Black

0 5 10 15 20 25 30 35

37 Epochs
Fig. 7. Training procedure and variation of the error fiorc

After the training procedure, the neural networkdarces training error variation defined
between the vibration spectrum in the healthy @ the actual output of the neural net as
indicated in Figure 8.

Training & Recalling Errors

Training Spectrum(1)
Target Spectrum(2) |
Training Error(3)

Amplitude [g]
o
N

1000 2000 3000 4000 5000 6000
Frequency [Hz)

Fig. 8. Training spectra and their error variation
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This variation of the training error is at approzgi® zero value. At the second stage, the
vibration spectrum of the faulty case is appliedhe neural topology as recalling procedure
and then it produces huge error variation at itpwatunodes. Therefore, these huge amplitudes
of the error variation can be interpreted as arcatin of the faulty case as shown in Figure 9.

Training & Recalling Errors

+  Training eror(1)
Recalling error(2)

Amplitude [g]
-
o

Al

0 1000 2000 3000 4000 5000 6000
Frequency [Hz]

Fig. 9. Determination of the faulty case from the recallerror variation

0

As a result of this application, it can be saic tihe faulty case is represented by the huge
amplitudes generated between 2 and 4 kHz, compwithg-igure 8.

5. CONCLUSIONS AND DISCUSSIONS

In this research, vibrations measurements, whiehta¢en from an induction motor of 5 HP
under the accelerated aging studies, are considerethe healthy and faulty motor cases.
Hence vibration spectra are calculated and thewised for the training and recalling processes
of an associative neural network. In this manneplaude values of the spectrum that defines
the healthy case are thought to the network togo&sgan input-target pairs. Hence the neural
net learns the normal case. After that, the faoittunknown case is applied to this topology in
order to get huge error variation. Consequently énror variation is connected with the faulty
case in spectral domain and the faulty case relatdge bearing damage is characterized by
these huge amplitudes induced in the range of Bz k

Under the general system theory approach, usingefirition of the finite state machines,
this neural network approach applied in this stadya fault-detector is interpreted as a finite
automaton and hence, it is based upon the cyberoeticepts as well as classical usage of the
neural nets [21]. Hence it can be called asNeuro-Detector” or “Neuro-Cybernetic
Detector”, which will be used for condition monitoring.

In terms of the general interpretations of the cyb#c concepts, the following figure can
be given (see Fig. 10).

According to the Figure 10, cybernetic systemsugpsrted by the peripheral units like
natural systems and artificial information procegiearning systems, from this point of view,
it can be said that the neuro-detector definedhis study will be evaluated under the
classification of nature inspired algorithm foe thlectrical machinery application.

As a future work, the concept of theéuro-Cybernetic Detectowill be developed.
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Fig. 10. Man, machine and cybernetic system interaction
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