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Abstract. Temperature variations can significantly change the dynamic characteristics of 
macro-, micro- and nano-structures. In the presented article we have studied the microbeams 
and nanotubes under thermal effects. Microbeams and nanotubes will be very important in the 
future in the fields of MEMS and NEMS. For the physical explanation of vibrations of 
nanotubes classical mechanics is valid with some limitations. We have taken into account the 
influence of thermal force, axial force in rotating shaft and also gyroscopic effect. The effect of 
temperature-dependent material properties was considered primarily with respect to the 
temperature variations. On the basis of our analytical model it is possible to determine the 
vibrational characteristics in a very wide range of temperatures. In the presented paper it is 
shown for the first time in scientific literature the combined influence of temperature, 
gyroscopic effects and rotor speeds on shaft and beam vibrations.  
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Introduction - the difference between vibration of beams, rotors, microbeams and 
nanotubes 
 

The vibrations of beams and microbeams are of vital importance in mechanical engineering. 
Machines very often operate under diverse thermal conditions. In internal combustion engines, 
rocket systems, movement of the satellites, MEMS and NEMS the conditions are particularly 
temperature-sensitive. Thermodynamic effects are frequently ignored in research, which may 
yield totally incorrect results. In [3] it is shown that even the slightest temperature change leads 
to huge alteration of the clamped beam vibration properties. Contrary as in papers [1-3], the 
present paper does not neglect the change in thermodynamic properties, which have to be taken 
into consideration at major temperature changes. Carbon nanotubes with respect to the chiral 
angle can be classified into three types: armchair, zigzag and chiral. Numerous studies are 
available on the physical properties of armchair and zigzag carbon nanotube. However, only a 
limited portion of the literature studied nanotubes in dependence of temperature field. This 
article develops a model that analyzes the frequency of the chiral single-walled carbon 
nanotubes (SWCNTs) subjected to a thermal vibrations by using Timoshenko beam model, 
including the effect of rotary inertia and shear deformation. The Timoshenko model was 
compared with the Euler model. 

Carbon nanotubes could be classified into single wall nanotubes (SWNT) and multi wall 
nanotubes (MWNT). On the basis of molecular simulation many researchers found that 
modulus of elasticity is no more constant and depends on the diameter of a nanotube and its 
thickness [4, 5, 13].  On the basis of molecular dynamics calculation we could express the 
equations for surface Young’s modulus and Poisson’s ratio for the armchair SWNT: 
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The above equations are obtained on the basis of continuous mechanics and molecular 

simulation [3, 4], where Ys means surface Young’s modulus [13] and ν – Poisson’s ration. From 
the Figs. 1-3 we observe that material properties are temperature and also size dependent. 
 

 
Fig. 1. Young modulus of armchair nanotubes 

 

 
Fig. 2. Poisson number of armchair nanotubes 

 

 
Fig. 3. Shear modulus of armchair nanotubes 
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Young’s modulus of carbon nanotube is also dependent on a temperature field. On the basis 
of Prakash [6] molecular dynamics simulation we obtain the next relation for modulus of 
elasticity and linear expansion coefficient α for SWNT: 

)T000075.01(YY ss −=             (5) 

813215318

1315218

103101010

1010210
)(

1
−−−−

−−−

⋅++−

+⋅−

==

TTT

TT

dT

dl

l
α      (6) 

 
Euler-Bernoulli model for beams and rotors under thermal stresses 

 
Let us assume that the support is homogenous, having the same temperature over its entire 

length. As a result of thermal expansion, an additional axial force FT occurs: 
EAFT αθ=          (7)   

In equation (7) α is the linear thermal extension coefficient, θ is the temperature difference 
between the actual and initial or reference temperature. The equation by means of which we can 
solve the problem using the axial force is as follows according to Wear, Timoshenko and 
Young [4]: 
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where E means Young’s modulus, I - area moment of inertia, A - area, ρ - density of material, t - 
time and w - displacement. Using the method of separation of variables ( ) ( ) ( )txXtxw Ω=,  and 

introducing the new functions, Equation (8) can be written down in a slightly less complicated 
way: 
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where the partial derivatives have been replaced with the total derivatives. 
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In Equation (11), the new symbols represent the following functional relations: 
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Thus, a general solution to Equations (4) and (5) are ( 24 γβλ += ) [1-4]: 

( ) ( ) ( ) ( )xCxCxCxCxX γλγλγλγλ −+++−++= sinhsincoshcos)( 4321   
(13) 

( ) ( )tcosBtsinA)t( ωωΩ +=        (14)   

In the equation (7) the value of λ (where the influence of angular frequency ω is hidden) and 
three of four constants of integration C1, C2, C3 and C4 are determined from the boundary 
conditions. The fourth constant is possible to find in the combination with the constants A and B 
in Equation (8). For a given beam at defined temperature the values by λ depend upon the 
boundary conditions [5-9]. Using boundary conditions, the following solutions can be 

analytically computed ( λγ 22 , LL =Λ=Γ ): 

For the supported-simply supported beam we obtain the next equation: 
( ) 0sin =+ ΓΛ         (15) 

With the known angular frequencies ωn of individual modes of vibration it is possibly to 
calculate Xn and Ωn of individual modes of vibration. To determine the solution for the 
displacement we have to solve the equation [5-9]: 
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where the modal shapes can be shown to be orthogonal: 
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The model presented in our paper is fully analytical, but if compared with the measured 
results it points to a large deviation from reality [1, 2]. The biggest problem of this model is that 
the clamped wall can fully withstand the beam for the beam to have a constant length all the 
time. The above assumption is not realistic. As a result, a new model was designed to reduce to 
some extent the huge differences between the analytical results and the measured values. 

The dynamic model for beams under thermal stresses 

Fig. 3 and 4 illustrate a new rheological model for the clamped and the simply supported 
beam. To this end, a spring is added with the spring constant K. The model slightly differs from 
the model presented in paper [1], where the authors Marques and Inman integrated additional 
torsion springs into the rheological model. 

 
Q

K

L

 
Fig. 4. New model of simply supported beam 

 
In this case, force FT can be computed in the following way [3]: 
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The reaction force computation can be as follows: 
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where the modulus of elasticity E and linear expansion coefficient α are temperature dependent 
functions. By means of the boundary conditions, Equations (5) and (6) also apply now.  

An aluminum beam with the dimensions indicated in Table 1 was used for the computation. 
 

Table 1: Parameters of the considered aluminum beam 

 Beam 
Length (m) 6.35·10-2 

Width (m) 2.04·10-2 

Thickness (m) 1.62·10-3 

Young modulus (N/m2) 6.9·1010 

Volume expansion coefficient (1/K) 24·10-6 K-1 

Spring constant (N/m) 1.553·105 

Density (kg/m3) 2780 
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Vibration of cylindrical shafts under thermal effects 
 

In the case of rotor vibration we have used the rheological model as it was presented for 
beams (Figure 9 and 10): 

 

Ω

 
Fig. 5. Vibration of cylindrical shaft 

 

Ω
K

 
Fig. 6. New rheological model of cylindrical shaft 

 
If we consider cylindrical shafts, the existence of axial force changes the equation of lateral 

vibration. The equation of lateral vibration of Euler-Bernoulli beam in the presence of axial 
force P together with the temperature effects can be written as [10, 11]: 
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Upper equation we can express also with the next expression: 
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If we use 3-D linear elasticity relations we obtain: 

2
pIP Ωυρ=          (23) 

Supported-simply supported beam: 
( ) 0sin =+ ΓΛ          (24) 

where Ip is the polar moment of inertia, υ presents Poisson’s ratio and Ω is the rotational speed 
of a rotating shaft. 

Influence of the gyroscopic effect in combination with the temperature effect [10, 11]: 
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Timoshenko beam model  
 

Timoshenko beam model [4] includes the effect of rotary inertia and shear deformation. The 
Timoshenko vibrational beam model gives the next expression: 
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In the Eq. (26) I - dynamic moment of inertia of the beam, nanotube, K - is the shear coefficient 
of nanotube, µ - is the Poisson′s ratio. Ft presents additional thermal force: 

TEAFt α=          (28) 

The solution of Eq. (26) could be expressed as: 
tie)x(y)t,x(Y ω−

=         (29) 

In the Eq. (29) we call ω angular frequency. On the above approximations the following 
dimensionless forms can be expressed as: 
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where δ represents the effect of thermal vibration on the frequency of the SWCNT. The general 
solution of Eq. (30) could be expressed as: 

 
   (33) 

 
When the solution is integrated with the boundary condition for supported-simply supported 

nanotube model we obtain: 
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For the case of Euler-Bernoulli beam ( 0== βα ) we obtain the next equation: 

2)n(n πδπΓ +−=         (36) 

Results and discussion 

The presented mathematical model was used to calculate thermodynamic properties for the 
case of pure aluminum microbeam. Table 1 contains the main important data of the beam. The 
aluminum beam is very interesting, particularly due to relatively high expansion coefficients. In 
the presented section we have calculated vibrational characteristics for supported-simply 
supported systems. For carbon nanotubes we have used data for Young’s modulus and linear 
expansion coefficient shown in Prakash thesis [7]. Figures 7 and 8 indicate that when we have 
relatively long nanotube (L/D>10) the results for Timoshenko and Euler-Bernoulli model give 
similar results, contrary when we have short nanotubes the Timoshenko model gives much 
better results. Figure 9 provides the results of oscillation frequency for clamped-free and 
clamped-simply supported beam. The detailed analysis demonstrates that small changes in 
temperature cause significant changes in natural frequencies for beams and with the presented 
models it is possible to perform the research of the microbeams. Figure 10 shows the influence 
of temperature, rotor speed and gyroscopic effect on angular frequencies up to the sixth mode. 
The analysis indicates that we have to take into account at high rotor speeds also the 
temperature effects and the gyroscopic effect, when we need very accurate dynamic 
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calculations. The influence of temperature effects on vibrational characteristics depends on the 
boundary conditions and also the results are very sensitive on the structure of beam or rotor 
material. The detailed analysis shows that small changes of temperature cause significant 
changes in natural frequencies for beams. Figure 11 indicates the temperature variation of 
fundamental frequency up to the 3rd mode obtained with the Timoshenko model. The detailed 
analysis demonstrates that the temperature variations have significant impact on vibrational 
characteristics of the carbon nanotubes. 
 

 
Fig. 7. Fundamental frequency for nanotube with L/D=4 with Timoshenko and Euler - Bernoulli model 

 

 
Fig. 8. Fundamental frequency for nanotube with L/D=40 with Timoshenko and Euler - Bernoulli model 

 

 
Fig. 9. Aluminum clamped - simply supported beam 
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Fig. 10. Vibration of rotor in dependence of rotor speed and gyroscopic effect (Ѳ=330 K) 

 

 
Fig. 11. Fundamental frequency in dependence of temperature for nanotubes for 1st, 2nd and 3rd mode 

 
Conclusions 
 

In the presented paper we have developed a model for vibration of nanotubes, microbeams 
and minirotors. The thermophysical properties of state, such as modulus of elasticity and linear 
expansion coefficient, are regarded as constants. The analysis indicates that a minor change in 
temperature results in a considerable alteration in vibrational behavior of the considered 
structures. 
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