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Abstract. Temperature variations can significantly change ttynamic characteristics of
macro-, micro- and nano-structures. In the preseatéicle we have studied the microbeams
and nanotubes under thermal effects. Microbeamsnandtubes will be very important in the
future in the fields of MEMS and NEMS. For the picgs explanation of vibrations of
nanotubes classical mechanics is valid with sommétditions. We have taken into account the
influence of thermal force, axial force in rotatiglgaft and also gyroscopic effect. The effect of
temperature-dependent material properties was dered primarily with respect to the
temperature variations. On the basis of our aratimodel it is possible to determine the
vibrational characteristics in a very wide rangeterhperatures. In the presented paper it is
shown for the first time in scientific literaturdnet combined influence of temperature,
gyroscopic effects and rotor speeds on shaft aathbébrations.

Keywords. vibrations of microbeams, vibrations of nanotubesytor vibration,
thermomechanics, nanomechanics.

Introduction - the difference between vibration of beams, rotors, microbeams and
nanotubes

The vibrations of beams and microbeams are of wipbrtance in mechanical engineering.
Machines very often operate under diverse thermadlitions. In internal combustion engines,
rocket systems, movement of the satellites, MEM& EMS the conditions are particularly
temperature-sensitive. Thermodynamic effects azgquiently ignored in research, which may
yield totally incorrect results. In [3] it is showhat even the slightest temperature change leads
to huge alteration of the clamped beam vibratiocopprties. Contrary as in papers [1-3], the
present paper does not neglect the change in tligmmamic properties, which have to be taken
into consideration at major temperature changeghd@ananotubes with respect to the chiral
angle can be classified into three types: armctmgzag and chiral. Numerous studies are
available on the physical properties of armchad aigzag carbon nanotube. However, only a
limited portion of the literature studied nanotubesdependence of temperature field. This
article develops a model that analyzes the frequesfcthe chiral single-walled carbon
nanotubes (SWCNTSs) subjected to a thermal vibratioy using Timoshenko beam model,
including the effect of rotary inertia and sheafodmation. The Timoshenko model was
compared with the Euler model.

Carbon nanotubes could be classified into singl# manotubes (SWNT) and multi wall
nanotubes (MWNT). On the basis of molecular simaotatmany researchers found that
modulus of elasticity is no more constant and ddpesn the diameter of a nanotube and its
thickness [4, 5, 13]. On the basis of moleculanatyics calculation we could express the
equations for surface Young’'s modulus and Poiss@tis for the armchair SWNT:

44K
Vo=t ®
\/g(ﬂ +3u)
where:
V= A- é:u (2)
A+Cu
638

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING DECEMBER2011.VOLUME 13,1SSUE4. ISSN1392-8716



675.THE VIBRATIONS OF MICROBEAMS AND NANOTUBES

J.AVSEC
_ 7-cog(z/n) 3)
34+ 2cos(x I n)
2
p=—0 ()
Kpr0

The above equations are obtained on the basis mincous mechanics and molecular
simulation [3, 4], where ¥ymeans surface Young’'s modulus [13] and Poisson’s ration. From
the Figs. 1-3 we observe that material propertiesemperature and also size dependent.
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Fig. 1. Young modulus of armchair nanotubes
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Fig. 2. Poisson number of armchair nanotubes

Surface shear modulus (GPanm)

155 //f/_—

150 |

us b

n

4 3 8 10

Fig. 3. Shear modulus of armchair nanotubes
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Young’s modulus of carbon nanotube is also depamiea temperature field. On the basis
of Prakash [6] molecular dynamics simulation weagbtthe next relation for modulus of
elasticity and linear expansion coefficienfor SWNT:

Y, =Y,(1-0.000075T ) (5)
1.d 10"T?-210"T +10"®
(6)

oA =—\—)=
I (dT) 10°T°-10"T?+10™T +3-1C"°

Euler-Bernoulli model for beams and rotors under thermal stresses

Let us assume that the support is homogenous, dhévérsame temperature over its entire
length. As a result of thermal expansion, an aolditi axial force Foccurs:
Fr = abEA (7

In equation (7). is the linear thermal extension coefficietis the temperature difference
between the actual and initial or reference tempesaThe equation by means of which we can
solve the problem using the axial force is as fefloaccording to Wear, Timoshenko and
Young [4]:

4 2 2
£ 2 W(f’t)+ F 2 W(;(’t)+pAa W(;(’t)=o, 8)
OX OX ot

whereE means Young’s moduluk; area moment of inertid, - areap - density of material, -
time andw - displacement. Using the method of separatiovadifiblesw(x,t)= X (x)(t) and

introducing the new functions, Equation (8) canasiéten down in a slightly less complicated
way:

C2X (X)+2}/X (X)_‘Q(t)za)Z’ (9)

X (x) X(x) @
where the partial derivatives have been replacéd the total derivatives.
Qt) + 0?0ft) =0 (10)
X""(X) +29X"(X) — B*X(X) =0 (11)

In Equation (11), the new symbols represent tHeviohg functional relations:

2 @O 2 El FT

=—, CcC = —_—, = —_— 12

g c PA T (12)

Thus, a general solution to Equations (4) and (é)(a=,/,b’4 +72 ) [1-4]:

X(x)=Clcoe{wl/‘t+;/x)+Czcosl‘(\//‘t—7x)+C35in(1//‘t+7x)+C4sinI'(1//‘t—yx) (13)
Q(t) = Asin(wt)+ Bcos(at) (14)

In the equation (7) the value #f(where the influence of angular frequeneys hidden) and
three of four constants of integrati@, C,, C; and C, are determined from the boundary
conditions. The fourth constant is possible to fiméhe combination with the constatsandB
in Equation (8). For a given beam at defined teajpee the values bj depend upon the
boundary conditions [5-9]. Using boundary conditiprthe following solutions can be

analytically computedI{ = LZ;/,A =122 ):

For the supported-simply supported beam we obk@mext equation:
sin(A+7")=0 (15)
With the known angular frequencies, of individual modes of vibration it is possibly to

calculate X,, and £, of individual modes of vibration. To determine tkelution for the
displacement we have to solve the equation [5-9]:
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w(xt) = Y (A, sin(ogt) + By cos(, )X (). (16)
i=1
where the modal shapes can be shown to be orthbgona

|
IXn(x)Xm(x)dx =0 forn=m (17)
0

The model presented in our paper is fully analytibat if compared with the measured
results it points to a large deviation from rea]ity 2]. The biggest problem of this model is that
the clamped wall can fully withstand the beam fog beam to have a constant length all the
time. The above assumption is not realistic. Assault, a new model was designed to reduce to
some extent the huge differences between the gallyesults and the measured values.

The dynamic model for beams under thermal stresses

Fig. 3 and 4 illustrate a new rheological model hoe clamped and the simply supported
beam. To this end, a spring is added with the gpronstant K. The model slightly differs from
the model presented in paper [1], where the authtanigjues and Inman integrated additional
torsion springs into the rheological model.
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Fig. 4. New model of simply supported beam

In this case, forcesfcan be computed in the following way [3]:

o
SEA = aOEA- Ko, Ko =EN a0-2 |, 5= L2 (18)
L KL + EA
The reaction force computation can be as follows:
Fr =Ko = EAL o6 , (19)
EA
L+—
K

where the modulus of elasticity E and linear expansoefficienta are temperature dependent
functions. By means of the boundary conditions, &igqus (5) and (6) also apply now.
An aluminum beam with the dimensions indicated @bl€ 1 was used for the computation.

Table 1. Parameters of the considered aluminum beam

| Beam
Length (m) 6.35-16
Width (m) 2.04.1¢
Thickness (m) 1.62.10
Young modulus (N/f) 6.9-10°
Volume expansion coefficient (1/K) 2496
Spring constant (N/m) 1.55390
Density (kg/m) 2780
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Vibration of cylindrical shaftsunder thermal effects

In the case of rotor vibration we have used theldgical model as it was presented for
beams (Figure 9 and 10):

) o,

Fig. 5. Vibration of cylindrical shaft

- i

Fig. 6. New rheological model of cylindrical shaft

If we consider cylindrical shafts, the existenceagial force changes the equation of lateral
vibration. The equation of lateral vibration of EuBernoulli beam in the presence of axial
force P together with the temperature effects can beevriets [10, 11]:

4 2

El O('jxi( +(F - P)O('jx)z( - pA®?X =0 (20)
Upper equation we can express also with the ngxtession:
X""(x)+ 29X "(x) - B*X(x) =0 (21)
In Equation (10), the new symbols represent theviehg functional relations:
ﬂzzﬁ,czzﬂ’ _ Fe-P

c PA 2El (22)
If we use 3-D linear elasticity relations we obtain
P=upl ,2° (23)
Supported-simply supported beam:
sin(A+7)=0 (24)

wherel, is the polar moment of inertia, presents Poisson’s ratio afdis the rotational speed
of a rotating shaft.

Influence of the gyroscopic effect in combinatioithathe temperature effect [10, 11]:

d*X d?X

EIW+(FI—PG)dX2

- pA0*X =0
(25)
Ps = plo(22 - w)

Timoshenko beam model

Timoshenko beam model [4] includes the effect ¢tdnpinertia and shear deformation. The
Timoshenko vibrational beam model gives the nepression:

4 4 2 4 4
El 0% FTaY+a_2_|_(l+£\aZY2+|paY (26)
Aot pAoaxt a2 AT KG)ox2t?  AKG at
K - A1+u) 27)
4+ 3u
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In the Eq. (26) - dynamic moment of inertia of the beam, nanotibejs the shear coefficient
of nanotubey - is the Poissdn ratio.F, presents additional thermal force:

F, = oTEA (28)
The solution of Eq. (26) could be expressed as:
Y(xt)=y(x)e'* (29)

In the Eqg. (29) we callv angular frequency. On the above approximations ftflewing
dimensionless forms can be expressed as:

4
jg” e+ p)r +5]7 (- r2eap)ry (30)
X El
=X - 31
4 L AL2 p= KGAL? 1)
pAw2L4 FL?
I = =T (32)
El El

whered represents the effect of thermal vibration onftequency of the SWCNT. The general
solution of Eq. (30) could be expressed as:

n) =C, cos(,M - yg)+ C, cosl‘(,//‘t + ye)+ C, sin(ql/‘t - 7e)+ C, sinh(,//‘t + ;/e) (33)

When the solution is integrated with the boundamydition for supported-simply supported
nanotube model we obtain:

sn(1-y)=0 (34)
2(a+ﬂ) 2 2
F4 _ 1+(n77ﬂ) ]—2 + n 2 (_ n27l'2 +5)=0 (35)
Q Q

For the case of Euler-Bernoulli beams € # =0) we obtain the next equation:
I =nzy-6 +(nx)? (36)

Results and discussion

The presented mathematical model was used to etécthermodynamic properties for the
case of pure aluminum microbeam. Table 1 contdiasain important data of the beam. The
aluminum beam is very interesting, particularly doeelatively high expansion coefficients. In
the presented section we have calculated vibrdtiocharacteristics for supported-simply
supported systems. For carbon nanotubes we hadedadga for Young's modulus and linear
expansion coefficient shown in Prakash thesisfifJures 7 and 8 indicate that when we have
relatively long nanotubel(D>10) the results for Timoshenko and Euler-Bernomitidel give
similar results, contrary when we have short nameguthe Timoshenko model gives much
better results. Figure 9 provides the results dfillation frequency for clamped-free and
clamped-simply supported beam. The detailed arsmlgismonstrates that small changes in
temperature cause significant changes in natuegugncies for beams and with the presented
models it is possible to perform the research efrtticrobeams. Figure 10 shows the influence
of temperature, rotor speed and gyroscopic effacarmgular frequencies up to the sixth mode.
The analysis indicates that we have to take intooaat at high rotor speeds also the
temperature effects and the gyroscopic effect, when need very accurate dynamic
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calculations. The influence of temperature effertsvibrational characteristics depends on the
boundary conditions and also the results are vengitve on the structure of beam or rotor
material. The detailed analysis shows that smadingks of temperature cause significant
changes in natural frequencies for beams. Figurendliicates the temperature variation of
fundamental frequency up to th& ghode obtained with the Timoshenko model. The teetai
analysis demonstrates that the temperature var@atimve significant impact on vibrational
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characteristics of the carbon nanotubes.
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Fig. 7. Fundamental frequency for nanotube witb=4 with Timoshenko and Euler - Bernoulli model
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Fig. 8. Fundamental frequency for nanotube witB=40 with Timoshenko and Euler - Bernoulli model

Aluminum fixed-simply supported beam
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Fig. 9. Aluminum clamped - simply supported beam
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Fig. 11. Fundamental frequency in dependence of temperfiurenotubes for*i 2 and 3* mode
Conclusions

In the presented paper we have developed a modellfi@ation of nanotubes, microbeams
and minirotors. The thermophysical properties afestsuch as modulus of elasticity and linear
expansion coefficient, are regarded as constahis.ahalysis indicates that a minor change in
temperature results in a considerable alteratiorvibrational behavior of the considered
structures.
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