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Abstract. The objective of this paper is to develop a family of wavelet-based finite elements for 
structural response analysis. First, independent wavelet bases are used to approximate 
displacement functions, unknown coefficients are determined through imposing the continuity, 
linear independence, completeness, and essential boundary conditions. A family of Daubechies 
wavelet-based shape functions are then developed, which are hierarchical due to multiresolution 
property of wavelet. Secondly, to construct wavelet-based finite elements, derivation of the 
shape functions for a subdomain is employed. Thus, the wavelet-based finite elements being 
presented are embodied with properties in adaptivity as well as locality. By wavelet 
preconditioning technology, the two difficulties involving imposition of boundary conditions 
and compatibility with the traditional finite element methods, which are gathered in the 
experiments of wavelet-Galerkin context, are well overcome. Numerical examples are used to 
illustrate the characteristics of the current elements and to assess their accuracy and efficiency. 

Keywords: Daubechies wavelets, multiresolution, shape functions, wavelet-based finite 
elements. 
 
1. Introduction 
 

The finite element method (FEM) is a piecewise application of a variational method [1, 2]. It 
can be classified into two groups, namely narrow FEM, and a generalized FEM in terms of 
approximate spaces being adopted. The narrow FEM uses the low order polynomials as 
approximation functions, while the generalized FEM employs many other trial functions. 
Usually, the development of FEM is deeply related to the extension of approximation spaces. 
Wavelet-based finite element (WFM) is a vivid example of this development. 

Since independent wavelet bases have the ability to accurately represent fairly general 
functions with a small number of wavelet coefficients, as well as to characterize the smoothness 
of such functions from the numerical behavior of these coefficients [3], wavelet theory provides 
a powerful mathematical tool for function approximation and multiresolution analysis. Typical 
applications of wavelet analysis include data compression, signal and image de-noising, data 
communication, and function approximation. A wavelet-based approach can also be used for the 
numerical solution of partial differential equations (PDEs). Dahmen [4] has reviewed the recent 
developments of wavelet-based schemes for PDEs. Here, a few of the notable results are briefly 
reviewed. 

Jaffard [5] introduced wavelet scheme to the numerical solution of PDE with Dirichlet 
boundary condition. The certain key features of the wavelet-based method can be found in the 
work of Jaffard [5]. Amaratunga, Williams, Qian, and Weiss [6] represented wavelet-Galerkin 
solution for the one-dimensional Helmholtz boundary value problem with periodic boundary 
condition, and reported that their approach was superior to the finite difference method. Dumont 
and Lebon [7] presented a wavelet-Galerkin formulation for periodic composite elastic 
materials. The distribution of the different material properties is assumed to be periodic. Their 
work showed the usefulness of localization property of wavelet analysis in effectively modeling 
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the local variation in material properties. Using a similar approach, Dumont and Lebon [8] 
developed the wavelet representation of plane elastostatic operators by means of the orthogonal 
Daubechies wavelet system. Ko, Kurdila, and Dilamt [9] proposed the concept of fictitious 
domain and the numerical boundary measure technique to handle general boundary conditions. 

Although the wavelet transform with its space-scale localization is an attractive technique to 
apply to the solution of problems with localized structures, traditional, biorthogonal wavelet 
transforms have difficulties dealing with boundaries [10]. In order to cope with this problem, 
the idea of the combination of wavelet-Galerkin method and piecewise variation in FEM 
context has been presented. Chen and Wu [11, 12] constructed spline wavelets elements, and 
successfully solved the problems of frame structures vibration and membrane vibration 
respectively. Castro and Freitas [13] applied wavelet analysis in the implementation of stress 
model of the hybrid-mixed FEM. The two-dimensional wavelet-based hybrid-mixed stress 
elements were adopted to solve the displacement and stress field of square plate and thick 
cylinder under particular load. In the view of numerical integration with respect to wavelet 
terms, Newton-Lotes quadrature rules were applied in [13] because the wavelet are defined only 
at dyadic points. However, the irregularity of the wavelet functions required the use of a large 
number of control points, in addition, realization of these integrals are difficult since they are 
highly oscillatory. Using the two-scale relation of wavelet, Ma and Xue et al. [14], and Li and 
Chen et al. [15] employed a more efficient integral method, which was based on the fact that an 
integral problem can be transformed to solution of linear scaling equations [16]. The beam 
bending problem was solved successfully in [14, 15]. To end of satisfying interelement 
continuity conditions, the transform matrix that realizes the transform between wavelet spaces 
and physical spaces was constructed in [14, 15]. However, ill-condition of the transform matrix 
for higher order wavelet or higher resolution space is the price paid to ensure interelement 
continuity condition. Due to the lack of shape functions in WFE, another difficulty in [11-16] is 
the compatibility between the WFE and the traditional finite elements. 

This paper aims at solving above difficulties by constructing shape functions, which are 
similar to those in traditional finite element context except for the point of employing wavelet 
bases as approximate functions. When the scaling functions with higher order or in higher 
resolution space are used, wavelet preconditioning based on column and row balance theory of 
matrix presented can greatly decrease the condition number of transform matrix. The relation 
between the order of the approximation function used for dependent variable u  and the 
number of nodes in the wavelet element is derived. The family of WFM with locality and 
hierarchical property are built.  

The outline of this paper is sketched as follows. The properties of multiresolution analysis 
and Daubechies wavelet are briefly reviewed in Section 2. In Section 3 we describe how to 
construct a class of wavelet-based shape functions and give element stiffness matrixes and load 
vectors. Numerical examples are given in Section 4. 

 
2. Multiresolution analysis and Daubechies wavelets 
 
2.1. Multiresolution analysis  
 

In this section, a brief review of multiresolution analysis is given. More details can be found 
in [17]. 
Let ( )RL2  denotes the vector space of measurable, square-integrable one-dimensional real 

numbersA multiresolution analysis of ( )RL2  is defined as a sequence of closed subspaces jV  

with the following properties: 
1. 1+⊂ jj VV , 
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2. ( ) ( ) 1jj VV
+

∈⇔∈ 2xfxf , and ( ) ( ) 00 V1V ∈+⇔∈ xfxf , 

3. j
j

V
Z∈
U  is dense in ( )RL2 ; { }0V

Z
=

∈

j
j
I , 

4. A scaling function ( ) 0V∈xφ  exists such that the set ( ){ }Z   ∈− kkxφ  is a Riesz basis of 

0V . 

Consequently, a sequence ( )Z2
l∈kp  exists, ( )Z2

l  denotes the integer space of all 

square-summable bi-infinite sequences, such that the scaling function ( )xφ  satisfies a 

refinement equation 
( ) ( )∑ −=

k k kxpx 2φφ , Z∈k .            (1) 

The set of functions ( ){ }Z  x , ∈kkjφ  with ( ) ( )kxx j
j

kj −= 222
, φφ  is a Riesz basis of jV . 

Let jW  denote a subspace complementing the subspace jV  in 1+jV , i.e., jjj WVV 1 ⊕=
+

.  

Each element of 1+jV  can be uniquely written as the orthogonal sum of an element in jV  and 

an element in jW  that contains the details needed to pass from an approximation at level j  

to an approximation at level 1+j .  A function ( )xψ  is a mother wavelet if the set of 

functions ( ){ }Z   ∈− kkxψ  is a Riesz basis of 0W .  Since the mother wavelet is also an 

element of 1V , a sequence ( )Z2
l∈lq  exists such that the wavelet function ( )xψ  satisfies 

( ) ( )kxqx
k k −= ∑ 2φψ , Z∈k .            (2) 

The set of wavelet functions ( ){ }Z   , ∈kxkjψ , with ( ) ( )kxx j
j

kj −= 222
, ψψ , is now a Riesz 

basis of ( )R2L .  

All wavelet bases are associated with multiresolution analysis, which is a framework in 
which function ( ) ( )RL2

∈xf  can be considered as a limit of successive approximations 

( ) ( )xfxf jj
P

∞→

= lim , Z∈j ,            (3) 

where the different ( )xfjP  corresponds to smooth versions of ( )xf  with a “smoothing 

out action radius” of the resolution of j2 . 
 
2.2. Daubechies wavelets 
 

As an example of multiresolution analysis, a family of orthogonal Daubechies wavelets with 
compactly supported property have been constructed by Daubechies in [18] with the following 
properties. 
1) Compact support 

A family of Daubechies wavelets are generated by scaling function )(xNφ  and wavelet 

function )(xNψ . Both of them have nonzero values over a small portion of the domain. Note 

that NjD denotes the Daubechies wavelet with order N  in the resolution spacej , the 

supports for )(xNφ  and )(xNψ  are given below. 

]12 ,0[supp −= NNφ ,             (4) 

] ,1[supp NNN −=ψ .             (5) 
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2) Cancellation property 
Since NjD  is orthogonal to polynomials up to 1−N  order, the scaling function )(xNφ  

and wavelet function )(xNψ  have 1−N  order of vanishing moments 

∫ −==
∞

∞−

 

 1,1, ,0  , 0)( Nkdxxx N

k
Lφ ,          (6) 

∫ −==
∞

∞−

 

 1,1, ,0   , 0)( Nkdxxx N

k
Lψ .          (7) 

3) Orthogonal property 
The scaling function )(xNφ  and wavelet function )(xNψ  of NjD  satisfy the following 

orthogonal conditions: 

∫ =−−
∞

∞−

 

 ,)()( mjNN dxmxjx δφφ ,           (8) 

∫ ∈=−
∞

∞−

 

 Z    0)()( mdxmxx NN ψφ ,           (9) 

where 




≠

=
=

mj

mj
mj 0

1
,δ . 

In addition to above three main properties, the scaling function )(xNφ  satisfies the 

normalized condition 

1)( 

 =∫
∞

∞−
dxxNφ .              (10) 

When scaling functions are employed as approximate functions in the procedure of 
construction of WFE, the first property proves to be more effective in application of using 
minimum degrees of freedom over an element to approximate displacement functions. 
Moreover, sparseness of the matrix is a result of the scaling functions, which have compactly 
supported property. Property 2 allows one to perfectly interpolate polynomials of degree up to 

1−N  by the scaling function with order N . The experiments gathered in wavelet-Galerkin 
context indicate that property 3 satisfies that the matrix is sparse as well as banded if the global 
nodes are numbered sequentially. 

 
3. Derivation of element equations 
 

The basic idea of wavelet-based finite element method, which is similar to the traditional 
FEM, is to discretize a body into an assemble of discrete finite elements that are interconnected 
at nodal points on element boundary. The displacement field is approximated over each WFE in 
terms of the nodal displacements. The procedure of the derivation of element equations is given 
below. 

 
3.1. Construction of shape function 
 
 Consider the problem of finding the function )(xu  that satisfies the differential equation 

0)( =−− f
dx

du
AE

dx

d
, Lx <<0 ,           (11) 

and the boundary conditions  

0)0( =u , P
dx

du
AE

Lx

=

=

)( ,            (12) 

where )(xff = , the cross-section area A , Young’s modulus E  and P  are the date of the 

problem. 
The domain ),0( L≡Ω  of the problem is divided into a set of WFEs. A typical element 
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),( BA xxe
=Ω  is isolated from the mesh (Fig. 1). Assume that the displacement )(xu  is 

approximated by 

)2(
12

22
12 icu j

j

Ni
NNi −∑=

−

−=

−+
ξφ ,             (13) 

in matrix form yields 
φcu = ,                (14) 

where c  is the unknown coefficient vector, and ξ  is the local coordinate. The transformation 

between the global coordinate system x  to the local coordinate system ξ , which has the 

origin at the left end node of the element, is achieved by the linear ‘stretch’ transformation 
given by 

eL

xx A−
=ξ ,               (15) 

where Ax  is the global coordinate of the left end node of the element e
Ω  and eL  denotes 

the element length (see Fig. 1). Obviously, the value of ξ  is always between 0 and 1. The 

element number of c  is Nj 222 +−  with respect to equations (4, 5). 
According to the basic idea in the traditional FEM book [2], shape functions require to satisfy 

the continuity, linear independence, completeness, and essential boundary conditions [2]. Here, 
taking 30D  as an example, the continuity is obviously satisfied, the scaling functions )(3 ξφ  

are linear independent and complete. To satisfy the remaining requirement, we require u  to 
satisfy the essential boundary conditions of the element 

Rcu =* ,                (16) 

where *u  is the node displacement vector, R  stands for the transform matrix, and its explicit 
form is  


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
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Le 

 x,ξ  
xA 

xB 

(a) 

(b)  
Fig. 1. WFE discretization of a one-dimensional domain of equation (11) 

(a) Physical problem; (b) A typical wavelet finite element for D30 
 

Solving for c  in terms of *u , we have 
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*Tuc = ,               (18) 

where 1−
= RT , and ‘-1’ denotes the inverse. Substituting equation (18) for c  in equation (14), 

and collecting the coefficients of *u , we get 
*Nuu = ,                (19) 

where φTN = , is shape function collection. Since the shape functions are derived from 

equation (19) in such a way that u  is equal to *u  at node. In addition to satisfy the property 

that 0)( =ξiN  outside the element e
Ω , they have the following properties: 

1. jijiN  )( δξ = , 

2. 1)(
5

1
=∑

=

ξ
i

iN . 

When wavelet bases are used as approximation functions, an obvious advantage over 
polynomial interpolation is that two alternative p-refinement strategies, in which the shape 
function order of all (some) elements is increased in order to improve the solution accuracy, 
may be adopted. The first consists in always using the same degree of refinement j , or 

resolution level, while increasing the wavelet order, N , associated with the selected basis 
functions. In the second alternative, the wavelet family used in the analysis is always the same 
while the degree of refinement is successively increased.  

The family of WFE of NjD  is developed and listed in Table 1. 

Note that the number of node s , over an element should match the number of unknown 
coefficients ic  in order to ensure the transform matrix to be square matrix. The relation 

between the wavelet order N , the degree of refinement j , and the number of node s  is 

derived below 
Ns j 222 +−= .              (20) 

 
3.2. Wavelet preconditioning 
 

Due to the compactly supported property of wavelet bases, the transform matrix being 
constructed by the scaling functions is almost sparse. When the wavelet order N  or the degree 
of refinement j  is lifted, the condition number κ  of the transform matrix R  is grown 

exponentially. The ill-conditioned matrix always leads to the numerical instability during the 
procedure of matrix inverse. For the purpose of improving the condition number, a diagonal 
preconditioning in the wavelet bases is presented here, which is based on the column and row 
balance preconditioning of matrix.  

Assume jir  is the ith row and jth column element of the transform matrix R , which is 

nn×  square matrix, the row pivot ih  and column pivot jg  are respectively calculated by 

jinji rh  1
max

≤≤

= , jinij rg  1
max

≤≤

= .            (21) 

Then we obtain the diagonal preconditioners h  and P  

)
111

(diag
21 nhhh
L=h , )

111
(diag

21 nggg
L=g ,      (22) 

where ‘diag’ produces a diagonal matrix. The diagonal preconditioner arises naturally from the 

wavelet bases and leads to well-conditioned matrix R
)

 ( hRgR =
)

) and efficient numerical 

implementations 

hRgR 11 −−

=

)

.               (23) 
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Table 1.One-dimensional wavelet-based finite elements  

( jit  ,  is the ith row and jth column element of T ) 

 
 
3.3. Evaluation of element stiffness matrix and load vector 
 

After constructing wavelet-based shape functions, the procedure of derivation of element 
equations can be achieved as done in the traditional FEM. For NjD , the stiffness matrix and 

load vector are given below 

1 1
 ji

Le

EA
ΓK e = ,               (24) 

ξξξφ dfiLe j

N )()2(1 
0 −= ∫

eP ,            (25) 

where, 
ξξφξφ dki j

N

j

Nji )2()2(1 
0 

11

 −′−′= ∫Γ ,           (26) 

are the connection coefficients described by Ma et al. [14]. 
 
4. Numerical examples 
 

To demonstrate the characteristics of the current elements and to assess its accuracy and 
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efficiency, two straight bar structures with uniform load, a fixed-fixed and a fixed-free, are 
considered respectively. 

 
4.1. Fixed-fixed bar 
 

Fig. 2 shows a fixed-fixed straight bar with uniform load. The rectangular cross-section area 
A , the length L , Young’s modulus E , and uniform load 1)( =xf  are the data of the 

problem. 

L f(x) x, u 

 
Fig. 2. A fixed-fixed straight bar 

 
To calculate the displacement field of above problem, traditional FEM at least adopts two 

bar elements even if there is no point load or variable cross-section, while since WFE is placed 
with certain number internal nodes, one WFE is enough to deal with this problem. Here, D30, 
D31, D32, and D60 WFEs in Table 1 are used respectively. The condition numbers κ  and κ

)

 

for the transform matrix R  and R
)

 are given in Table 2. The results for longitudinal 
displacement are represented in Table 3. The results using analytical method and D60 WFE are 
shown in Fig. 3 respectively.  

 

Table 2. Condition numbers κ  and κ
)

 of the transform matrixes R andR
)

. 

Element name κ  κ

)

 
D30 5.7e2 3.0e1 
D31 1.7e6 1.2e4 
D32 2.5e5 1.4e3 
D60 6.4e10 1.1e6 

 
Table 3. The displacement of the center point of the bar (EA/L2) 

Element name WFE Exact Error % 

D30 0.124986561 0.011 
D31 0.124990314 0.008 
D32 0.124994215 0.005 

D60 0.124996428 

0.125 

0.003 

 

 
Fig. 3. The displacement of the fixed-fixed straight bar 
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4.2. Fixed-free bar 
 

A fixed-free straight bar with uniform load is analyzed, the input parameters, except for 
boundary condition, are the same as the former example. The D30, D31, D32, and D60 WFEs 
are also used in this problem respectively. The results for longitudinal stress are presented in 
Table 4. The results of the displacement using analytical method and D60 WFE are shown in 
Fig. 4 respectively.  

Table 4. The stress of the center point of the bar 
Element name WFE Exact Error % 

D30 0.501004E  0.201 

D31 0.500845E  0.169 

D32 0.500537E  0.107 

D60 0.500435E  

0.5E  

0.009 

 
From the experimental results and plots, the following assessments are made for the two 

boundary cases. 
1. Considering the variable boundary conditions, WFE has the high accuracy for the solution of 
the displacement field and stress field. For Example 1, using D60 WFE the error for the center 
point displacement of the bar is 0.003%, while for Example 2, the stress error for the center 
point is only 0.009%. Of cause, taking the tradition bar element, the results at nodes are also 
enough accurate, however, the error for the internal point of the element is high due to the linear 
assumption made prior to the analysis. In the view of stress analysis, Table 4 illustrates the 
results of WFE are in good agreement with the exact solutions. That is because the internal 
strain of WFE is the weight sum of the derivative of scaling function, which is not constant but 
variable to the displacement. While the traditional bar element is characterized with constant 
strain. Thus, its accuracy in stress and strain analysis is lower than one in displacement analysis. 
In order to get desirable accuracy, the refined mesh is required. (See Tables 3, 4). 
2. Table 2 illustrates that the diagonal preconditioner leads to well-conditioned matrix, which 
can contribute to numerical implementation. (See Table 2). 
 

 
Fig. 4. The displacement of the fixed-free straight bar 

The solution is consistently refined either by increasing the degree of refinement j , or the 

wavelet order N . For a given finite element mesh, the two alternative forms of p-refinement 
produce the same estimate for the displacement field and stress field (see Tables 3, 4). 

 
5. Conclusions 
 

A family of WFEs is developed by wavelet preconditioning technology. The Daubechies 
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wavelets are used to approximate the displacement in the domain, unknown coefficients are 
determined through imposing the essential boundary condition. A family of shape functions 
based on the wavelet bases is then constructed, which is hierarchical due to multiresolution 
property of wavelet. To construct WFE, derivation of these shape functions for a subdomain is 
employed. Thus, the wavelet finite elements being presented are embodied with properties in 
locality and adaptivity. Numerical examples illustrate that the results of the displacement and 
stress are in good agreement with the analytical ones. It is believed that the current work not 
only extends the library of finite elements, also provides a powerful tool for modeling 
singularities in tension of crack, damage etc. 
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