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Abstract. The objective of this paper is to develop a familyvavelet-based finite elements for
structural response analysis. First, independenveled bases are used to approximate
displacement functions, unknown coefficients areedrined through imposing the continuity,
linear independence, completeness, and essentiatlhoy conditions. A family of Daubechies
wavelet-based shape functions are then develogadhware hierarchical due to multiresolution
property of wavelet. Secondly, to construct wavblsed finite elements, derivation of the
shape functions for a subdomain is employed. Tthes,wavelet-based finite elements being
presented are embodied with properties in adaptigis well as locality. By wavelet
preconditioning technology, the two difficultiesvmlving imposition of boundary conditions
and compatibility with the traditional finite elemte methods, which are gathered in the
experiments of wavelet-Galerkin context, are wekreome. Numerical examples are used to
illustrate the characteristics of the current eleta@nd to assess their accuracy and efficiency.

Keywords: Daubechies wavelets, multiresolution, shape funstiowavelet-based finite
elements.

1. Introduction

The finite element method (FEM) is a piecewise @ppibn of a variational method [2]. It
can be classified into two groups, namely narrowMFEBENnd a generalized FEM in terms of
approximate spaces being adopted. The narrow FE&4% tise low order polynomials as
approximation functions, while the generalized FEvhploys many other trial functions.
Usually, the development of FEM is deeply relatedhte extension of approximation spaces.
Wavelet-based finite element (WFM) is a vivid exdenpf this development.

Since independent wavelet bases have the abilityctrurately represent fairly general
functions with a small number of wavelet coeffidgras well as to characterize the smoothness
of such functions from the numerical behavior @&fsth coefficients [3], wavelet theory provides
a powerful mathematical tool for function approxtina and multiresolution analysis. Typical
applications of wavelet analysis include data cassion, signal and image de-noising, data
communication, and function approximation. A watddased approach can also be used for the
numerical solution of partial differential equatso(PDESs). Dahmen [4] has reviewed the recent
developments of wavelet-based schemes for PDEg, lddew of the notable results are briefly
reviewed.

Jaffard [5] introduced wavelet scheme to the nucaérsolution of PDE with Dirichlet
boundary condition. The certain key features ofula@elet-based method can be found in the
work of Jaffard [5]. Amaratunga, Williams, Qian,dakiVeiss [6] represented wavelet-Galerkin
solution for the one-dimensional Helmholtz boundaayue problem with periodic boundary
condition, and reported that their approach wagsapto the finite difference method. Dumont
and Lebon [7] presented a wavelet-Galerkin formaoatfor periodic composite elastic
materials. The distribution of the different maaémroperties is assumed to be periodic. Their
work showed the usefulness of localization propeftwavelet analysis in effectively modeling
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the local variation in material properties. Usingsiailar approach, Dumont and Lebon [8]
developed the wavelet representation of planeadtatic operators by means of the orthogonal
Daubechies wavelet system. Ko, Kurdila, and Dild&jt proposed the concept of fictitious
domain and the numerical boundary measure techmigbandle general boundary conditions.

Although the wavelet transform with its space-sdatalization is an attractive technique to
apply to the solution of problems with localizedustures, traditional, biorthogonal wavelet
transforms have difficulties dealing with boundar[@0]. In order to cope with this problem,
the idea of the combination of wavelet-Galerkin Inoet and piecewise variation in FEM
context has been presented. Chen and Wu [11, ¥#&tremted spline wavelets elements, and
successfully solved the problems of frame strustuvébration and membrane vibration
respectively. Castro and Freitas [13] applied wetvahalysis in the implementation of stress
model of the hybrid-mixed FEM. The two-dimensionahvelet-based hybrid-mixed stress
elements were adopted to solve the displacementsaads field of square plate and thick
cylinder under particular load. In the view of numal integration with respect to wavelet
terms, Newton-Lotes quadrature rules were appligd3] because the wavelet are defined only
at dyadic points. However, the irregularity of thavelet functions required the use of a large
number of control points, in addition, realizatiohthese integrals are difficult since they are
highly oscillatory. Using the two-scale relationwévelet, Ma and Xue et dlL4], and Li and
Chen et al. [15] employed a more efficient integr@thod, which was based on the fact that an
integral problem can be transformed to solutionliméar scaling equations [16]. The beam
bending problem was solved successfully in [14,. T} end of satisfying interelement
continuity conditions, the transform matrix thahlizes the transform between wavelet spaces
and physical spaces was constructed in [14, 15}veder, ill-condition of the transform matrix
for higher order wavelet or higher resolution sp&ehe price paid to ensure interelement
continuity condition. Due to the lack of shape fiilmes in WFE, another difficulty in [11-16] is
the compatibility between the WFE and the tradaidimite elements.

This paper aims at solving above difficulties bynswucting shape functions, which are
similar to those in traditional finite element cexit except for the point of employing wavelet
bases as approximate functions. When the scalingtiitns with higher order or in higher
resolution space are used, wavelet preconditiobasgd on column and row balance theory of
matrix presented can greatly decrease the conditionber of transform matrix. The relation
between the order of the approximation functiondu$er dependent variablél and the
number of nodes in the wavelet element is derividte family of WFM with locality and
hierarchical property are built.

The outline of this paper is sketched as followlse properties of multiresolution analysis
and Daubechies wavelet are briefly reviewed in iBac2. In Section 3 we describe how to
construct a class of wavelet-based shape funciindgyive element stiffness matrixes and load
vectors. Numerical examples are given in Section 4.

2. Multiresolution analysis and Daubechies wavelets
2.1. Multiresolution analysis

In this section, a brief review of multiresolutianalysis is given. More details can be found
in [17].
Let LZ(R) denotes the vector space of measurable, squagratle one-dimensional real
numbersA multiresolution analysis dIZ(R) is defined as a sequence of closed subspates
with the following properties:
1.V eV,

j+1?
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2. f(x)eV, o f(2)eV,,,and f(x)eV, o f(x+1)eV,,

1
3. UV, isdensein L3(R); nv,= {o},
4. A scaling function ¢(x)e V, exists such that the setj(x—k)| ke Z} is a Riesz basis of
v,.
Consequently, a sequencp, € /*(Z) exists, ¢*(Z) denotes the integer space of all
square-summable bi-infinite sequences, such that dtaling function ¢(X) satisfies a
refinement equation

#(x)=: pg(2x—k), keZ. (1)
i
The set of functions{¢i‘k(x)| keZ} with ¢j‘k(x)= 22¢(2‘x—k) is a Riesz basis oV, .
Let W, denote a subspace complementing the subspacen V _, ie., V,, =V, &W,.
Each element ofV,, can be uniquely written as the orthogonal sumnoél@ment inV, and

jH?

an element inW, that contains the details needed to pass fromparoaimation at level j
to an approximation at levelj +1. A function z//(x) is a mother wavelet if the set of
functions {1//(X—k)| keZ} is a Riesz basis ofV,. Since the mother wavelet is also an

element of V,, a sequencey, € /%(Z) exists such that the wavelet functign(x) satisfies
y(x)=zq4(2x-k), keZ. 2)

The set of wavelet functiongy,, (x)| ke Z}, with v, (x)= 2%1//(2‘ x—k), is now a Riesz
basis of L2(R).

All wavelet bases are associated with multiresofutinalysis, which is a framework in
which function f(x)e L*(R) can be considered as a limit of successive appations
f@:@gﬂ@,mz, (3)
where the differentP f(x) corresponds to smooth versions 6fx) with a “smoothing
out action radius” of the resolution a2’ .

2.2. Daubechies wavelets

As an example of multiresolution analysis, a fanaifyorthogonal Daubechies wavelets with
compactly supported property have been construayedaubechies in [18)ith the following
properties.

1) Compact support
A family of Daubechies wavelets are generated hlimg function ¢,(x) and wavelet

function y (x) . Both of them have nonzero values over a smaligroof the domain. Note
that DNj denotes the Daubechies wavelet with order in the resolution spacg, the
supports for ¢, (x) and y,(x) are given below.

suppg, = [0,2N -1] , 4)

suppy,, =[1-N, N]. (5)
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2) Cancellation property
Since DNj is orthogonal to polynomials up ttN -1 order, the scaling functiom, (x)

and wavelet functiony (X) have N -1 order of vanishing moments
[” X¢,(x)dx=0, k=01,--,N-1, (6)
|7 Xy (¥)dx=0, k=01,--,N-1. 7

3) Orthogonal property
The scaling functiong, (x) and wavelet functiony, (x) of DNj satisfy the following

orthogonal conditions:

[7.6(x= )¢ (x—-m)dx =5, ., (8)
I 4y (9w, (x-m)dx=0 meZ, ©)
{1 j=m
where §. = . .
0 j#m

In addition to above three main properties, thelisgafunction @ (X) satisfies the
normalized condition
[Z.4(X)dx=1. (10)

When scaling functions are employed as approxinfatections in the procedure of
construction of WFE, the first property proves t® imore effective in application of using
minimum degrees of freedom over an element to aqpate displacement functions.
Moreover, sparseness of the matrix is a resulhefscaling functions, which have compactly
supported property. Property 2 allows one to pésfénterpolate polynomials of degree up to
N -1 by the scaling function with ordeN . The experiments gathered in wavelet-Galerkin
context indicate that property 3 satisfies thatrtferix is sparse as well as banded if the global
nodes are numbered sequentially.

3. Derivation of element equations

The basic idea of wavelet-based finite element oethvhich is similar to the traditional
FEM, is to discretize a body into an assemble s¢mite finite elements that are interconnected
at nodal points on element boundary. The displacefiedd is approximated over each WFE in
terms of the nodal displacements. The procedutkeoflerivation of element equations is given
below.

3.1. Construction of shape function

Consider the problem of finding the functiam(x) that satisfies the differential equation
—i(AEﬂ)—fzo, O<x<L, (11)
dx dx
and the boundary conditions

u(@)=0, (AEE) =P, (12)
ax’| .
where f = f(X), the cross-section areé, Young's modulus and P are the date of the
problem.
The domain Q= (0,L) of the problem is divided into a set of WFEs. Aital element
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Q°f =(x,,X%;) is isolated from the mesh (Fig. 1). Assume tha thsplacementu(x) is
approximated by

2l v .
u= i=ZZZNC|+2N—1¢N (21‘5—') ’ (13)
in matrix form yields
u=gc, (14)

where ¢ is the unknown coefficient vector, anfl is the local coordinate. The transformation
between the global coordinate systexnto the local coordinate syste, which has the
origin at the left end node of the element, is eehd by the linear ‘stretch’ transformation
given by

X=X,

&= o (15)

e

where x, is the global coordinate of the left end nodeled elementQ°® and L, denotes
the element length (see Fig. 1). Obviously, theiwadf £ is always between 0 and 1. The

element number ofc is 2' —2+2N with respect to equations (4, 5).

According to the basic idea in the traditional FBbbk [2], shape functions require to satisfy
the continuity, linear independence, completenasd,essential boundary conditions [2]. Here,
taking D30 as an example, the continuity is obviously satsfithe scaling functiong,(&)

are linear independent and complete. To satisfyréneaining requirement, we requine to
satisfy the essential boundary conditions of tieeneint

u =Rc, (16)
where U’ is the node displacement vectdR stands for the transform matrix, and its explicit
form is

6@ 4@ 4@ A0 40
A 46+ AR+ 0+D 4O
R=|4@+2) 4G+2) 4@+ 0+3) 4C)|. 7)
el o M el 8
—_
—

()

XA
Xa &

®)
Fig. 1. WFE discretization of a one-dimensional domaieafiation (11)
(a) Physical problem; (b) A typical wavelet fineeement for D30

Solving for ¢ interms of u", we have
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c=Tu, (18)
where T=R™, and ‘-1’ denotes the inverse. Substituting equiafil8) for ¢ in equation (14),
and collecting the coefficients ofi” , we get
u=Nu", (19)
where N =¢T, is shape function collection. Since the shapectfans are derived from
equation (19) in such a way that is equal tou” at node. In addition to satisfy the property
that N,(£) =0 outside the elemenf2?, they have the following properties:

1. Ni(gj):é‘ij’

2. g’lNi(g):l.

When wavelet bases are used as approximation @uns;tian obvious advantage over
polynomial interpolation is that two alternatiyerefinement strategies, in which the shape
function order of all (some) elements is increasedrder to improve the solution accuracy,
may be adopted. The first consists in always udheg same degree of refinemeit, or
resolution level, while increasing the wavelet ord8dl , associated with the selected basis
functions. In the second alternative, the wavedetify used in the analysis is always the same
while the degree of refinement is successivelyaased.

The family of WFE of DNj is developed and listed in Table 1.

Note that the number of node, over an element should match the number of unknow
coefficients ¢, in order to ensure the transform matrix to be sguaatrix. The relation
between the wavelet ordeN , the degree of refinemeni, and the number of nod& is
derived below
s=2"-2+2N. (20)

3.2. Wavelet preconditioning

Due to the compactly supported property of wavélases, the transform matrix being
constructed by the scaling functions is almostspaiWhen the wavelet ordel or the degree
of refinement | is lifted, the condition numbex of the transform matrixR is grown
exponentially. The ill-conditioned matrix alwaysatks to the numerical instability during the
procedure of matrix inverse. For the purpose ofrowmg the condition number, a diagonal
preconditioning in the wavelet bases is presentd,hwhich is based on the column and row
balance preconditioning of matrix.

Assume r,; is theith row andjth column element of the transform matrik , which is

nxn square matrix, the row pivoly and column pivotg, are respectively calculated by

h=maxr|. o, =maf|. @D
Then we obtain the diagonal preconditiondrsand P
.11 1 11 1
h=diag— — - —), g=diag— — -+ —), (22)
h h h, 9 9 9,

where ‘diag’ produces a diagonal matrix. The diajgreconditioner arises naturally from the
wavelet bases and leads to well-conditioned maRix(R =hRg) and efficient numerical
implementations

Ri=gR". (23)
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Table 1.0ne-dimensional wavelet-based finite elements
(ti’j is theith row andjth column element ofT )

Serial  Element

o o Configuration Shape functions
b
‘f a
- My= D tpas (- k).
=  — 1 i 2 Tees
1 D30 F—F—F—1 s
™3 4 5 2 i=1,2..5, ieZ
(0.m (LW
i
o e i i Ni= 2l d(26-%).,
4 D3l I I o
1 3 4 5 6 1 i=12...6, ieZ
0.m (Lm
7
T ) s e ) A | c My = "i‘rms ek,
3 D32 D Y D O T =
1345 67 8 1 i=12...8, ie Z
0.m (Lm
7
5 T I rI—CT-r1 Ny = 3t —k),
i N S O ) o ) | k—10
13456 78 10112 i=12...11, ic Z
0.m (LM

3.3. Evaluation of element stiffness matrix and load vector

After constructing wavelet-based shape functiohs, procedure of derivation of element
equations can be achieved as done in the traditieia®. For DNj, the stiffness matrix and

load vector are given below

K, =E—Arﬁ : (24)
Le

P.=Leig, (2'E-i)F(£)dE, (25)

where,

I =34 2’5~y (2'&-K)d¢, (26)

are the connection coefficients described by Mal.dtL4].
4. Numerical examples

To demonstrate the characteristics of the curréarhents and to assess its accuracy and
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efficiency, two straight bar structures with unifodoad, a fixed-fixed and a fixed-free, are
considered respectively.

4.1. Fixed-fixed bar

Fig. 2 shows a fixed-fixed straight bar with unifofoad. The rectangular cross-section area
A, the length L, Young's modulusE, and uniform load f(x)=1 are the data of the

problem.

_—— —— _——

L )

[}

Fig. 2. A fixed-fixed straight bar

To calculate the displacement field of above pnobléaditional FEM at least adopts two
bar elements even if there is no point load oralde cross-section, while since WFE is placed
with certain number internal nodes, one WFE is ghow deal with this problem. Here, D30,
D31, D32, and D60 WFEs in Table 1 are used resgdgtiThe condition numberk and «

for the transform matrixR and R are given in Table .2The results for longitudinal
displacement are represented in Tébl&he results using analytical method and D60 WHE ar
shown in Fig. 3 respectively.

Table 2. Condition numbersk and & of the transform matrixesR andR .

Element name K K
D30 5.7e2 3.0el
D31 1.7e6 1.2e4
D32 2.5e5 1.4e3
D60 6.4e10 1.1e6

Table 3. The displacement of the center point of the E4YI(?)

Element name WFE Exact Error %
D30 0.124986561 0.011
D31 0.124990314 0125 0.008
D32 0.124994215 0.005
D60 0.124996428 0.003

- Exact
0.12 * D60

EAull?

0.06

0

0

05
x/L

Fig. 3. The displacement of the fixed-fixed straight bar
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4.2. Fixed-free bar

A fixed-free straight bar with uniform load is ayzéd, the input parameters, except for
boundary condition, are the same as the former pkarithe D30, D31, D32, and D60 WFEs
are also used in this problem respectively. Theltedor longitudinal stress are presented in
Table 4. The results of the displacement usingydical method and D60 WFE are shown in
Fig. 4 respectively.

Table 4. The stress of the center point of the bar

Element name WFE Exact Error %
D30 0.501004E 0.201
D31 0.500845 05E 0.169
D32 0.500537E 0.107
D60 0.500435E 0.009

From the experimental results and plots, the fdlhowassessments are made for the two
boundary cases.
1. Considering the variable boundary conditions,BAfas the high accuracy for the solution of
the displacement field and stress field. For Exaniplusing D60 WFE the error for the center
point displacement of the bar is 0.003%, while fomiEple 2, the stress error for the center
point is only 0.009%. Of cause, taking the traditlmar element, the results at nodes are also
enough accurate, however, the error for the intqroiamt of the element is high due to the linear
assumption made prior to the analysis. In the vidvetress analysis, Table 4 illustrates the
results of WFE are in good agreement with the esabitions. That is because the internal
strain of WFE is the weight sum of the derivatifescaling function, which is not constant but
variable to the displacement. While the traditiobhat element is characterized with constant
strain. Thus, its accuracy in stress and straityaisas lower than one in displacement analysis.
In order to get desirable accuracy, the refinedmigsequired. (See Tables 3, 4).
2. Table 2 illustrates that the diagonal precoodgr leads to well-conditioned matrix, which
can contribute to numerical implementation. (Seadd?2).

05

- Exact
*D60

0 05 1
x/L

Fig. 4. The displacement of the fixed-free straight bar

The solution is consistently refined either by easing the degree of refinemert, or the

wavelet order N . For a given finite element mesh, the two altéweaforms ofp-refinement
produce the same estimate for the displacemendtdiedl stress field (s@ables 3, 4).

5. Conclusions
A family of WFEs is developed by wavelet precoratitng technology. The Daubechies
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wavelets are used to approximate the displacenmetitd domain, unknown coefficients are
determined through imposing the essential boundandition. A family of shape functions
based on the wavelet bases is then constructeg¢hwihierarchical due to multiresolution
property of wavelet. To construct WFE, derivatidrttiese shape functions for a subdomain is
employed. Thus, the wavelet finite elements beires@nted are embodied with properties in
locality and adaptivity. Numerical examples illegt that the results of the displacement and
stress are in good agreement with the analyticaboh is believed that the current work not
only extends the library of finite elements, alsmyides a powerful tool for modeling
singularities in tension of crack, damage etc.
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