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Abstract. This paper presents a feedforward technique to generate command inputs to reduce 
residual vibration after transient maneuvers in mechanical systems. Synthesized inputs base 
their vibration reduction in zero-frequency content at the system resonances and are obtained 
taking advantage of the convolution theorem of the Fourier transform (FT). The analyzed 
systems are those that can be modeled as discrete linear systems with n vibratory degrees-of-
freedom, and can be described with constant parameter motion equations. Although the 
complete cancellation of residual vibrations occurs for null damping ratios, the results obtained 
for low damped systems are quite acceptable. The method is particularized for rest-to-rest 
maneuvers and is compared to other literature methods. The new profiles present an optimal 
shape in terms of minimum acceleration fluctuation, which is useful to reduce the fatigue 
strength of the mechanical parts. By using a pulse as a base signal, the inputs obtained follow 
piecewise algebraic polynomial functions easily implementable through a B-spline scheme. The 
development includes a robust approach against the variation of the system parameters and a 
constraint determination aid for symmetric functions. Finally, some experimental results are 
presented using a two vibratory degrees-of-freedom test bed. 
 
Keywords: residual vibration, residual response, vibration control, command shaping, input 
shaping, forcing function. 
 
1. Introduction 

 
Residual vibration reduction has been developed mainly in motion control systems. In those 

devices, fatigue of mechanical parts can be a drawback if the acceleration profile of the input 
shows excessive fluctuation during the transient. The main objective of the current development 
is to provide input functions, which present an optimal condition in terms of acceleration peak-
valley counting compared to the standard literature methods. During the last 50 years a lot of 
work has been carried out within the methods based on feedforward techniques applied to 
discrete linear systems (Singhose [1]): some of them use time-domain approaches like signal 
generation by means of trigonometric series and command shaping through an impulse 
sequence; others use frequency-domain approaches, such as command conventional filtering 
and zero-placement. 

Within the time-domain approaches, Aspinwall [2] defined point-to-point acceleration 
profiles, including the start and stop slopes, based on finite Fourier series expression. Those 
series were selected avoiding the system natural frequencies, and were compared with the 
classic profiles as rectangular pulse, double versine, and shaped pulse. Meckl and Seering [3, 4] 
demonstrated that for an undamped linear system with one non-forced vibratory degree-of-
freedom, the spectral magnitude of the input at the system natural frequency is proportional to 
the amplitude of the residual vibration. They worked on forcing functions derived as a series 
expansion of ramped sinusoidal functions with coefficients chosen to minimize spectral 
magnitude at the system resonances, and proposed a method to provide robustness against 



 
687. RESIDUAL VIBRATION REDUCTION IN LOW DAMPING SYSTEMS. GENERATION OF REGULAR PIECEWISE ALGEBRAIC POLYNOMIAL INPUTS. 

J. M. VECIANA, S. CARDONA 
 
 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2011. VOLUME 13, ISSUE 4. ISSN 1392-8716 740

uncertainty of system modes. Chan and Stelson [5] compared some of the so-called s-curves 
such as raised cosine, piecewise parabolic and cubic input in different aspects, such as power, 
acceleration and jerk and developed a rescaling method to modify any fixed duration motion 
command to one of an arbitrary duration, while maintaining the property of having no residual 
vibration. Meckl et al. [6] proposed a method to select the ramp-up time in s-curves velocity 
profiles based on the frequency content of the forcing function, so that both the response time 
and the residual vibration amplitude are minimized. 

Smith [7] was the first to propose the zero vibration (ZV) shaper: an input signal is shaped 
by convolving it with two impulses, properly located in time and with the appropriate 
amplitude. The vibration generated with the first one is suppressed with the vibration generated 
with the second one. This property remains invariable when any command signal is convolved 
with this impulse sequence. Singer and Seering [8] added a third impulse to individual 
sequences to provide robustness against possible variations of the system parameters – zero 
vibration and derivative (ZVD) shaper. Hyde and Seering [9] extended this method to multiple-
mode systems. For n vibratory degree-of-freedom system, n impulse sequences are defined, 
each designed for each individual mode. The final impulse sequence used to shape the 
command signal is obtained by convolving all individual sequences in the time domain. 
Singhose et al. [10, 11] described a phasorial approach for the method described. For a three-
impulse sequence, a method to adjust the relative angles between phasors – equivalent to the 
relative time delay between impulses – and their amplitudes was developed to reduce sensitivity 
to errors or variation of the system parameters. This approach is called the extra-insensitive 
shaper (EI). Singhose et al. [12] also reduced the transient time by adding negative impulses to 
the input sequence. Singh and Heppler [13] developed a variation of this method by designing 
an impulse sequence of two impulses in a non-robust case, or an impulse sequence of three 
impulses, in a more robust case, which cancels a so-called pseudo-mode with lower frequency 
than any of the system component modes. The resultant designed impulse train cancels all the 
higher frequency component modes and eliminates the vibration from the system. 

Frequency-domain techniques have also been used to reduce the residual response. Singhose 
et al. [14] compared the input shapers with several types of conventional filters, properly 
designed to eliminate the system natural frequencies from the input signal. The analysis was 
carried out with FIR low-pass filters (Hamming, Parks-McClellan), IIR low-pass filters 
(Butterworth, Chebyshev, and elliptic), and notch filters derived from them. The results 
demonstrate that conventionally designed frequency-domain filters are less effective for 
command shaping than input shapers, which offer better performance in time response and 
lower levels of residual vibration. 

Bhat and Miu [15] and Singh and Vadali [16] studied control strategies to accomplish 
precise point-to-point positioning of flexible structures, and demonstrated that the necessary and 
sufficient condition for zero residual vibration is that the Laplace Transform of the time-
bounded control input should have zero contribution at the system poles. Murphy and Watanabe 
[17] and Tuttle and Seering [18] extended this zero-placement technique to the discrete domain, 
by constructing the impulse sequences in the z-plane for systems with any number of flexible 
modes. 

In this paper, a Fourier transform based feedforward method is developed. Synthesized 
signals base their residual vibration reduction in a zero-frequency content at the system 
resonances. Although this is an analytically proven ZV method only for undamped systems, the 
results obtained for low damping systems are quite acceptable from a practical point of view. 
The method is particularized for rest-to-rest motion profiles with signals that follow simple 
piecewise low-order algebraic polynomial functions, which can be implemented easily through 
a B-spline scheme. The development includes a robust approach against the variation of the 
system parameters and a constraint determination aid for symmetric functions. Finally, some 
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experimental results are shown by using a two vibratory degrees-of-freedom test bed and the 
benefits of this development are validated. 

 
2. Input design method 
 

Meckl and Seering [4] demonstrated in the frequency domain that for an undamped linear 
system with one non-forced degree-of-freedom with vibratory behavior, the spectral magnitude 
of a transient input u(t) at the system natural frequency f0 is proportional to the amplitude of the 
residual vibration. Hence, for a null spectral magnitude, there is no residual vibration. Most of 
the symmetric functions (odd and even) present zero content at some determined frequencies, 
which is useful to use them for this purpose. The FT of a real even function u(t) is also real and 
even, and its frequency spectrum is given by 

 

( ) FT[ ( )] ( )cos(2 ) df u t u t f t t
∞

∞

= = π∫
+

-
U       (1) 

In the case of a non-symmetric function, the magnitude of the frequency content can be 
described by 

 

( )( ) ( ) cos(2π ) j sin(2π ) df u t f t f t t
+∞

−∞

= −∫U      (2) 

The magnitude of the frequency spectrum of a non-symmetric function is null when the real 
and the imaginary terms of (2) are zero at the same time, which is a more restricting condition 
than to cancel the magnitude of the former case (1). Practical examples show that almost all 
classical symmetric functions have zero-crossing points within their frequency spectra. 
Therefore, the use of such functions is recommended. 

The demonstration stated by Meckl and Seering [4] can be described in the time domain: 
consider the generic system of the Fig. 1. Its motion equation is given by 

 

1 2 2( ) ( )m m x c x k x m y t+ + + = −ɺɺ ɺ ɺɺ        (3) 

This expression can be rewritten as 
 

2 2
0 0

1 2

2 (2π ) (2π ) ( )
m

x f x f x y t
m m

ζ+ + = −

+

ɺɺ ɺ ɺɺ       (4) 

where 0 1 2/( ) /(2π)f k m m= + is the system natural frequency and 1 2/(2 ( ) )c m m kζ = + is 

the damping ratio. 
 

 
Fig. 1. Generic single-mode system 
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Consider that the impulse response of the system describes, for example, the velocity output 
xɺ  for a unitary acceleration impulse ( ) ( )y t tδ=ɺɺ , and is given by the form 

 
02π

d( ) e cos(2π )f th t C f tζ
ψ

−

= +        (5) 

where C, fd and ψ are respectively 
 

2

1 2

1

cos

m
C

m m ψ
= −

+

        (6) 

 
2

d 0 1f f ζ= −          (7) 

 

( )2arctan / 1ψ ζ ζ= −         (8) 

When c=0 (undamped case), the indicated impulse response is given by 

0( ) cos(2π )h t C f t= . For a generic transient acceleration input( ) ( )u t y t= ɺɺ defined between t0 and 

tf, the velocity output xɺ  at tf using the convolution integral is given by  
 

f

0
f 0 f( ) ( ) cos(2π ( ))d

t

t
x t u C f tτ τ τ= −∫ɺ       (9) 

and the displacement is given by 
 

f

0
f 0 f

0

1
( ) ( ) sin(2π ( ))d

2π

t

t
x t u C f t

f
τ τ τ= −∫       (10) 

By developing f( )x tɺ , it can be obtained 

 
f f

0 0
f 0 f 0 0 f 0( ) cos(2π ) ( )cos(2π )d sin(2π ) ( )sin(2π )d

t t

t t
x t C f t u f f t u fτ τ τ τ τ τ

 = +
  ∫ ∫ɺ   (11) 

By introducing the FT[u(t)] at f0 described in (2), the expression (11) yields 

[ ] [ ]f 0 f 0 0 f 0( ) cos(2π )Re ( ) sin(2π ) Im ( )x t C f t f C f t f= −ɺ U U     (12) 

If the frequency content of the input u(t) is null at f0, both addends of expression (12) are 
null. The same can be obtained by developingf( )x t . Therefore, if the state-variables xɺ  and x  

are zero at tf, and the input ( )y tɺɺ is null at tf, following the expression (4) the acceleration xɺɺ  is 

also zero, and hence, the system stops moving at the end of the transient excitation and remains 
stopped.  
 
2. 1. Single-mode systems 
 

The convolution theorem of the FT states that under suitable conditions, the convolution of 
two signals in one domain (e.g., time domain) is equivalent to the product in the other domain 
(e.g., frequency domain), i.e., 1 2 1 2TF[ ( ) ( )] ( ) ( )u t u t f f⊗ = ⋅U U . The design method developed 

in this study consists of deriving input functions by means of convolving several transient 
signals in the time domain, which have the appropriate zero-crossing points in the frequency 
domain. For single-mode systems, only one of these signals is required to have a zero-crossing 
point at the natural frequency f0. In this case, the rectangular pulse is chosen as the base signal. 
As shown in Fig. 2, a first pulse u1(t) is defined with an arbitrary amplitude A1 and a duration 
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t1=1/f0. The magnitude of the frequency spectrum is given by the expression (13) and is 
presented in the figure as well. 

0
1 1

sin(π / )
( )

π

f f
f A

f
=U         (13) 

 

 
Fig. 2. Rectangular pulse and its magnitude in the frequency domain 

 
In a general case, the profiles obtained should handle some functional requirements or 

constraints, like velocity increment or total displacement. The duration of the pulse is 
determined with the natural frequency of the system; therefore, only one constraint can be fixed, 
by modifying the amplitude A1 of the pulse. To fix another constraint, the input u(t) is obtained 
by convolving u1(t) with another rectangular pulse u2(t), with a duration t2 and an arbitrary 
amplitude. The resultant function has a trapezoidal shape with a total duration of 1/f0+t2, and 
amplitude A (Fig. 3). Thus, it is possible to accomplish both requirements, fixing the values A 
and t2. The frequency spectrum U(f), which is given by the product of both frequency spectra 
U1(f) and U2(f), remains null at f0. If a null integral profile is desired, then u(t) can be obtained 
by convolving the first rectangular pulse u1(t) with an odd transient signal u2(t) (Fig. 4). It can 
be noted that those points where the frequency content is null remain invariant with the 
integrals or derivatives of the function, provided that they exist. 

 

 
Fig. 3. Convolution of two rectangular pulses, u1(t) and u2(t) 

 

 
Fig. 4. u(t) with a null integral profile 
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2. 2. Constraint determination aid for symmetric functions 
 
In some cases, an iterative integration of the profile is needed to fix the desired constraints. 

In this context, it is presented in this subsection an easy way to calculate them by taking 
advantage of the functions symmetry. It is proven below that two transient acceleration profiles 
defined between t0 and tf, with even symmetry relative to the ordinate axis (t0+tf)/2, and with the 
same initial and final velocities, cover the same distance during the transient. Consider that 

p( )y tɺɺ and q ( )y tɺɺ satisfy the indicated requirements (Fig. 5). 

 

 
Fig. 5. Displacement equivalence between two acceleration profiles, p( )y tɺɺ  and q( )y tɺɺ , with even 

symmetry 
 

Assume that the initial conditions of the motion are p 0 q 0 0( ) ( )y t y t y= =ɺ ɺ ɺ  and 

p 0 q 0 0( ) ( )y t y t y= = . The velocity profiles can be described by 

 

0 0
p 0 p q 0 q( ) ( )d ; ( ) ( )d

t t

t t
y t y y t t y t y y t t= + = +∫ ∫ɺ ɺ ɺɺ ɺ ɺ ɺɺ      (14) 

The distances covered during the transient are given by 
 

f

0 0

f

0 0

p f 0 0 p

q f 0 0 q

( ) ( )d d

( ) ( )d d

t t

t t

t t

t t

y t y y y t t t

y t y y y t t t

 − = +
  

 − = +
  

∫ ∫

∫ ∫

ɺ ɺɺ

ɺ ɺɺ

      (15) 

Therefore, the difference between the two distances covered is  
 

( )f

0 0
p f q f p q( ) ( ) ( ) ( ) d d

t t

t t
y t y t y t y t t t − = −

  ∫ ∫ ɺɺ ɺɺ      (16) 

By introducing the time coordinate of the symmetry axis, (t0+tf)/2, this expression yields 
 

( ) ( )0 f f

0 0 0 f 0

( ) / 2

p f q f p q p q( ) / 2
( ) ( ) ( ) ( ) d d ( ) ( ) d d

t t t t t

t t t t t
y t y t y t y t t t y t y t t t

+

+

   − = − + −
      ∫ ∫ ∫ ∫ɺɺ ɺɺ ɺɺ ɺɺ  (17) 

Even symmetry condition relative to the ordinate (t0+tf)/2 can be described by 
 

p p 0 f q q 0 f( ) ( ), ( ) ( )y t y t t t y t y t t t= + − = + −ɺɺ ɺɺ ɺɺ ɺɺ      (18) 
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By introducing it and changing the variable 0 ft t tτ = + − , the second term of expression 

(17) yields 
 

( )

( ) ( )

0

0 f f

0 0

0 f f 0

p q( ) / 2

p q p q( ) / 2

( ) ( ) d d

( ) ( ) d ( ) ( ) d d

t

t t t

t t

t t t t

y y

y y y y

τ

τ

τ τ τ τ

τ τ τ τ τ τ τ

+

+

 − =
  

 − + −
  

∫ ∫

∫ ∫ ∫

ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ

    (19) 

As shown in Fig. 5, if the velocity at the end of the transient fyɺ  is the same for both 

maneuvers, therefore their difference is null  
 

( )f

0
p f q f p q( ) ( ) ( ) ( ) d 0

t

t
y t y t y t y t t− = − =∫ɺ ɺ ɺɺ ɺɺ       (20) 

and, hence, the expression (19) can be rewritten as 
 

( ) ( )0 0 f

0 f 0 0 0

( ) / 2

p q p q( ) / 2
( ) ( ) d d ( ) ( ) d d

t t t

t t t t t
y y y y

τ τ

τ τ τ τ τ τ τ τ

+

+

   − = − −
      ∫ ∫ ∫ ∫ɺɺ ɺɺ ɺɺ ɺɺ   (21) 

By introducing this term, the expression (17) yields 
 

( ) ( )0 f 0 f

0 0 0 0

( ) / 2 ( ) / 2

p f q f p q p q( ) ( ) ( ) ( ) d d ( ) ( ) d d
t t t t t

t t t t
y t y t y t y t t t y y

τ

τ τ τ τ

+ +   − = − − −
      ∫ ∫ ∫ ∫ɺɺ ɺɺ ɺɺ ɺɺ  (22) 

 
Both addends of expression (22) are the same and, hence, p f q f( ) ( ) 0y t y t− = which means 

that the distances covered by those profiles are the same. This conclusion can be graphically 
described by the equivalence of the areas a1 and a2 in Fig. 5. Therefore, the calculation of the 
functional requirements or constraints of a symmetric input can be easily done by making the 
equivalence to a simple symmetric profile, for example, to a rectangular pulse. 

 
2. 3. Robustness 

 
The frequency content of u(t) in Fig. 3 grows quickly around the target frequency f0. The 

command input so defined could loose effectiveness owing to variations of the system 
parameters, which result in a displacement of its natural frequency f0. To provide robustness 
against these possible variations, it is proposed to reduce the magnitude of the frequency 
spectrum around f0, obtaining u1(t) by the convolution of two auxiliary pulses with the 
respective durations 1/f0 and p/f0 (p=1,2, ..), and arbitrary amplitudes. The magnitude of the 
frequency spectrum of the resultant signal is tangent with the abscises axis at the frequencies f0, 
2f0, 3f0,…and is given by 

 

0 0
1 1 2

sin(π / )sin( π / )
( ) 1,2,...

(π )

f f p f f
f A p

f
= =U     (23) 

 
To reduce the command duration, p=1 is recommended. Therefore, the shape of the signal 

becomes triangular (Fig. 6). As in the previous case, to include a second constraint, u1(t) is 
convolved with a rectangular pulse u2(t) with a duration t2 and an arbitrary amplitude. The 
resultant signal u(t) has a duration of 2/f0+t2 (Fig. 7) and an amplitude A (both requirements can 
be accomplished by fixing t2 and A) and is formed by five piecewise second-order (or less) 
algebraic polynomials (junction points marked with crosses in Fig. 7). 
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Fig. 6. Reduction in the frequency content around f0, by using a triangular signal u1(t) 

 
Fig. 7. Convolution of a triangular signal with various auxiliary rectangular pulses 

 
To increase the bandwidth around f0, where the magnitude of the frequency spectrum is 

below a desired threshold g, it is possible to convolve more than two equal rectangular pulses. 
However, this implies longer command signals. To avoid this issue, it is proposed to slightly 
modify the durations of the two pulses used to obtain u1(t), changing 1/f0 by 1/(f0+∆f) and 1/(f0–
∆f), with a small value of ∆f . The resultant signal has a trapezium shape and, as shown in Fig. 
8, the frequency bandwidth increases from a to b, in a similar way as in the method described 
by Singhose et al. [10, 11]. 
 

 
Fig. 8. Increment of useful bandwidth, by convolving to pulses with 1/(f0+∆f) and 1/(f0-∆f) durations 

 
2. 4. Multiple-mode systems 
 

For a generic n-mode vibratory system (Fig. 9), according to the modal decomposition 
theory and by using the velocity as the input and the acceleration as the output, the oscillatory 
term of an impulse response hoi(t) for the i-th coordinate xi can be described by the form 
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02π
o d

1

( ) e cos(2π )k k

n
f t

i ik k ik
k

h t C f tζ
ψ

−

=

= +∑       (24) 

where Cik and ψik are constants that depend on the system parameters, and f0k, fdk and ζk are, 
respectively, the natural frequency, the oscillation frequency and the damping ratio of the k-th 
mode. The oscillatory term of the impulse response for the undamped case is given by 

o 0
1

( ) cos(2π )
n

i ik k
k

h t C f t
=

=∑        (25) 

 
Fig. 9. Generic multiple-mode discrete linear system 

 
Consider a generic transient acceleration input ( ) ( )u t y t= ɺɺ  defined between t0 and tf. The 

velocity output ixɺ at tf is given by 

( )

( )

f f

0 0

f

0

f o 0
1

0
1

( ) ( ) ( )d ( ) cos 2π ( ) d

( )cos 2π ( ) d

nt t

i i ik kt t
k

n t

ik kt
k

x t u h t u C f t

C u f t

τ τ τ τ τ τ

τ τ τ

=

=

 
= − = − = 

 

−

∑∫ ∫

∑ ∫

ɺ

   (26) 

and the displacement xi is given by 

( )

( )

f

0

f

0

f 0
01

0
01

1
( ) ( ) sin 2π ( ) d

2π

( )sin 2π ( ) d
2π

nt

i ik kt
kk

n tik
kt

kk

x t u C f t
f

C
u f t

f

τ τ τ

τ τ τ

=

=

 
= − = 

 

= −

∑∫

∑ ∫

     (27) 

If the frequency content of the input u(t) is null at f01, f02,..., f0n, then the real and imaginary 
parts of expression (2) are zero at these frequencies, which indicates that the expressions (26) 
and (27) are null, following an analog development such as for single-mode systems. Therefore, 
the residual response is null because the state-variables x andxɺ are zero at tf. 

To generate the signal u1(t) that contains zero-crossing points at all the required system 
natural frequencies f0i, it is proposed to convolve n rectangular pulses, each one with a duration 
of 1/f0i, and arbitrary amplitude. Consider that a system can be modeled with three vibratory 
modes with natural frequencies f01, f02, and f03. The frequency spectrum of the resultant signal 
has zero-crossing points at those frequencies (Fig. 10). In the same way as for single-mode 
systems, to fix two constraints, the command input u(t) is the result of the convolution of u1(t) 
with an auxiliary rectangular pulse u2(t). To provide robustness against system parameters 
variation, the techniques explained earlier can be used. However, the frequency content of this 
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type of signal diminishes significantly after the first natural frequency, and hence, generally it is 
adequate to use the non-robust approach. 

The zero-crossing points of the signals obtained are located following a periodic basis of the 
inverse of the duration of the pulses involved. Sometimes, to reduce the duration of a multiple-
mode input, it is worth using this property to obtain an approximation of a frequency fcmd – the 
common maximum denominator of all the natural frequencies – or several of them, and use it to 
generate one auxiliary pulse replacing those for which the frequencies have been used to 
generate it. For the three-mode system of Fig. 10, the fcmd should accomplish 

01 cmd

02 cmd

03 cmd

f a f

f b f

f c f

≈

≈

≈

         (28) 

This approximation could be useful when the total duration of the signal using fcmd is smaller 
than the duration of the signal using individual pulses, i.e., when 1/ 1/ 1/ 1a b c+ + > .  
 

 
Fig. 10. Generation of u1(t) for a three-mode system 

 
2. 5. B-spline scheme 

 
A signal obtained by the convolution of m rectangular pulses is formed by piecewise m-1 or 

less order algebraic polynomials with a minimum guaranteed continuity degree of 2mC − within 
its definition range. These signals can be easily implemented through a non-parametric and non-
rational B-spline scheme by the so-called node vector and control polygon, following the 
nomenclature detailed in Farin [21]. Fig. 11 illustrates an example of a motion profile generated 
for a single-mode system for the robust case. This curve was generated by the convolution of 
three pulses (m=3) and is formed by 5 different polynomials linked at the indicated crosses. 
Expressions (29) and (30) correspond respectively to the node vector u (expression (29)) and 
the control polygon ordinates di (expression (30)) that define entirely that curve. Other 
examples are illustrated in Veciana [19]. 

Node vector 

f f f f
0 0 0 0

1 2 2 1
0,0, , , , , ,t t t t

f f f f

 
= − − 
 

u       (29) 

Control polygon ordinates 
{ }0,0, , , ,0,0d A A A=         (30) 
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Fig. 11. B-spline scheme of a motion profile generated by the time-convolution of three pulses 

 
3. Simulation results 
 
3. 1. Acceleration fluctuation 

 
The excessive oscillation in the acceleration profiles can result in a premature fatigue of the 

parts involved in the transmission of the system to be moved. To illustrate the benefits of the 
proposed technique to reduce the fatigue damage, some velocity profiles for rest-to-rest 
maneuvers were generated with a unitary displacement and assuming null initial conditions. 
The non-robust and robust cases were simulated: 

1- Non robust case: The proposed technique defined by means of a pulse convolved with a 
trapezium was compared to the ZV shaper, considering an undamped single-mode system with 
a natural frequency of f0=1 Hz. To obtain an overall input with the same maximum polynomial 
order and continuity (order 2 and continuity C1 in this case) the unshaped function chosen for 
the ZV shaper was a smoothed-trapezium with the rising and falling sections defined by linked 
second order algebraic polynomials. The duration of these sections was defined to limit the 
acceleration to similar values than the proposed method and the duration of the overall input 
was fixed to four values between 1, 4 and 4 seconds. Fig. 12 shows the input velocities( )y tɺ for 
the ZV shaper (a) and the proposed method (b), as well as the input accelerations( )y tɺɺ  – where 
the acceleration fluctuation can be observed – and the system responses x(t) where the residual 
vibration cancellation is shown.  

2- Robust case: The proposed technique, defined now by a triangle convolved with a pulse, 
was compared to the ZVD shaper. The system and the unshaped function for the ZVD shaper 
follow the same criteria stated above. The duration of the overall input was fixed to four values 
between 2, 4 and 4 seconds (Fig. 13). 

The acceleration profiles of the indicated figures show, in both cases, the benefits of using 
the proposed method regarding the fatigue damage cycle counting. While the maximum 
acceleration is approximately the same, the fatigue damage (number of acceleration peak-valley 
counts) is half in the proposed technique.  

 
3. 2. Robustness comparison 

 
A robustness comparison in percentage of residual vibration (PRV introduced by Singer and 

Seering [8], and Kozak et al. [20]) was performed by simulation. Standard methods such as ZV, 
ZVD and EI shapers with a 5% threshold were included and compared to the technique 
explained above. For the robust trapezium of the Fig. 8, a 5% threshold was used as well. The 
results are presented in Fig. 14. As it is shown in this figure, the robustness of a pulse is 
comparable to the ZV, and the triangle and the robust trapezium improves the results of the 
ZVD and EI, respectively. 
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Fig. 12. Input velocity ( )y tɺ , input acceleration( )y tɺɺ and system response x(t) for the non-robust case: a) 
ZV shaper and b) proposed method 
 

 
 

Fig. 13. Input velocity ( )y tɺ , input acceleration( )y tɺɺ and system response x(t) for the robust case: a) ZV 
shaper and b) proposed method 
 
3. 3. Residual vibration in damped systems 

 
Although the analytical cancellation of residual vibrations is stated for null damping ratios, 

the results obtained for low damped systems are usually acceptable. The percentage of residual 
vibration was analyzed for damped systems with damping ratios ζ of 0.1, 0.2 and 0.3. Fig. 15 
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shows this percentage versus the total input duration tf when a trapezium was used (non-robust 
cancellation). Fig. 16 provides the robust case when a triangle was convolved with a pulse. In 
the former case, a 5% of residual vibration is not overcome for damping ratios 0,1ζ ≤ and for 
durations over 1,4·f0 . For the robust case, less than 0,7% of residual vibration is expected for 
damping ratios 0,3ζ ≤ .  

 

 
Fig. 14. Robustness comparison: ZV (dashed black), pulse (solid black), ZVD (dashed blue), triangle 
(solid blue), EI (dashed red) and robust trapezium (solid red) 
 

 
Fig. 15. Residual vibration versus the total input duration tf for the indicated damping ratios when a 
trapezium is used (non-robust cancellation) 
 

 
Fig. 16. Residual vibration versus the total input duration tf for the indicated damping ratios when a 
smoothed trapezium is used (robust cancellation) 
 
4. Experimental results 

 
A test bed with three rotary degrees of freedom was built to check the adequacy of the 

method proposed. As shown in Fig. 17, it is made up by three coaxial rotary inertias. Two of 
them, I1 and I2, have vibratory behavior owing to two rotational springs: one (k2) assembled 
between inertias and the other (k1) between the bottom inertia and the jig. The third inertia, I3, 
corresponds to the rotor of a direct current motor and its angular coordinate relative to I2 is 
represented by φrel. 

The motor follows a command input driven with a PI control and an incremental encoder. 
The absolute angular coordinates of the inertias I1 and I2 are φ1 and φ2, respectively. Tangential 
accelerations of those inertias are measured by means of the two accelerometers shown in the 
figure. With respect to the damping ratios, as additional damping was not included, it can be 
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inferred that c1 and c2 are caused just by the internal frictions, and therefore, are expected to be 
low. 

 
Fig. 17. Test bed with three rotary degrees of freedom and its equivalent discrete linear model 

 
The test-bed setup gives two modes with natural frequencies at f01=1.2 Hz and f02=3.4 Hz, 

and with damping ratios ζ01=0.012 and ζ02=0.013. The bandwidths of the motor and the 
electronics should cover adequate margin of the system natural frequencies to avoid the filtering 
effect on the command input. The motor used in this application gives a frequency bandwidth of 
9.1 Hz, and the electronic gives a frequency bandwidth of 2.5 kHz, thus both devices have 
values far enough from the system resonances. 

The following is an example of several sets of velocity command inputs, relϕɺ , that were 

tested, with all of them showing quite similar results. In each, three command inputs were 
designed: the first one is a single rectangular pulse that excites both modes with sufficient 
energy. The design of the second motion law is intended to reduce the residual vibrations from 
the higher mode, with the robust approach. The last one was designed to reduce the residual 
vibrations of both modes, with the non-robust methodology. In this example, an angular 
displacement of 680 radians and a transient duration of 1.9 s were fixed as the functional 
requirements. The output1( )tϕɺ is presented in Fig. 18 (output 2( )tϕɺ is quite similar and hence, 

has been omitted): when the command input is a rectangular pulse, both modes can be observed 
in the residual vibration (output a). However, the higher mode component is reduced in the 
second case (output b). In the third case, almost no residual vibration is observed (output c). 
Quantifying this result, the first excitation gives a percentage of residual vibration (PRV) of 9.5 
% and 2.2 % for the low and high modes, respectively. The PRV for the second input are 7.7 % 
and 0.2 % and 0.7 % and 0.05 % for the last one. 

 
5. Conclusions 

 
A feedforward method to design command inputs to reduce the residual vibration was 

developed in this paper. Linear motion equations with constant parameters were used to model 
the n degree-of-freedom vibratory systems. The motion profiles, generated by convolving 
symmetric transient functions in the time domain, base their residual vibration reduction on the 
cancellation of the frequency content at the system resonances. These frequency-domain zero-
crossing points can be properly located by adjusting the duration of one of the functions 
convolved. By using a pulse as a base signal, the inputs obtained follow piecewise algebraic 
polynomial functions, easily implementable through a B-spline scheme. The development 
included a robust approach against the variation of the system parameters with results 
comparable to the ZVD and EI approaches, as well as a constraint determination aid for 
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symmetric functions. The new profiles presented an optimal shape in terms of minimum 
acceleration fluctuation compared to other literature methods, which is useful to reduce the 
fatigue strength of the mechanical parts. Although the development is a zero-vibration method 
analytically proven for undamped systems, an acceptable vibration reduction is obtained for 
damping ratios below 0.1 for the non-robust case and 0.3 for the robust one, assuming a 5% of 
PRV. 

 
Fig. 18. Sample test outputs 1( )tϕɺ for the following inputs rel( )tϕɺ : a) rectangular pulse, b) reduction of the 

residual vibration from the higher mode (robust) and c) all-mode residual vibration reduction (non-robust) 
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