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Abstract. The objective of this paper is to propose a novel exact equivalent function (EF) for 
preload nonlinearity. The nonlinear preloaded spring force, which is exerted on the cantilever 
beam has been rewritten with a definite force-displacement relationship using new EF. This 
approach permits us to overcome severe computational issues that are encountered in the 
analytical investigations of nonlinear problems. Highly nonlinear equation of beam vibration 
under the influence of preloaded spring at its end with cubic nonlinearity is considered and the 
related analytical solution is obtained through Parameter-expansion Method (PEM). Finally, the 
soundness of the introduced EF would be verified by comparison of the results with the 
obtained solutions using numerical method.  
 

Keywords: exact equivalent function, preload nonlinearity, nonlinear vibration of beam, 
parameter - expansion method. 

Introduction 

For many years, the nonlinear vibrations of straight beams have been studied by several 
investigators [1-6]. The source of nonlinearity of vibration systems are generally considered as 
due to the following aspects: (1) the physical nonlinearity, (2) the geometric nonlinearity and, 
(3) the nonlinearity of boundary conditions. In the case of discontinuous nonlinear boundary 
condition, the analytical solution of such problems becomes very complex. Preload 
nonlinearity, as a discontinuous nonlinear boundary condition, due to its inherent difficulty, has 
not been modeled exactly by researchers, till present.  

Preloaded spring elements are encountered in many practical mechanical and structural 
systems either due to intentional pre-compression, unintended manufacturing or heat treatment 
process. However, approximation of this nonlinear condition in order to obtain the analytical 
solution of mentioned systems behavior has been always the major difficulty of engineering 
computations. Rogers et al. [7] studied the joystick dynamics where the preload stiffness (as a 
stiff spring) was based on measured force-displacement profile.  Aktiirk et al. [8] performed an 
approximated theoretical investigation about the effect of varying preload on the vibration 
characteristics of a shaft bearing system. Dynamics of a mechanical oscillator with preload 
nonlinearity was investigated by Chengwu and Rajendra [9]. They smoothen the preload 
nonlinearity with arctan function. A rotary piezoelectric motor design using a preloaded beam 
stator was investigated by Wajchman et al. [10]. They approximated the preload nonlinearity 
empirically, in order to achieve the optimum efficiency of the motor performance. 

Recently, considerable attention has been directed towards analytical solutions for nonlinear 
equations without small parameters. There have been several classical approaches employed to 
solve the governing nonlinear differential equations to study the nonlinear vibrations including 
perturbation methods [11], frequency amplitude formulation [12], Artificial Parameter 
Lindstedt-Poincaré Method [13], Min-Max method [5, 14], Multiple Scales method [15], 
Variational Iteration Method [16], HAM [17-19], Semi-analytical finite element [20] and 
Homotopy Perturbation Method (HPM) [21] are used to solve nonlinear problems.  

Parameter-expansion Method (PEM) is one of the most effective methods for analytical 
solution of nonlinear differential equations. PEM has been shown to effectively, easily and 
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accurately solve large nonlinear problems with components that converge rapidly to accurate 
solutions. Sweilam and Al-Bar [22] implemented the Parameter-expansion Method to the 
coupled Van der Pol oscillators. Shin et al. [23] applied PEM to approximate the solution of the 
coupled nonlinear self-excited oscillators and achieved the frequency of mentioned systems. 
The nonlinear vibrations analysis of inextensible beams investigated by Kimiaeifar et al. [24] 
using PEM. They also studied the influence of different parameters on the system response 
stability. Sweilam and Khader [25] investigated the application of PEM to the coupled system 
of nonlinear partial differential equation and showed the solution accuracy by focusing on 
Manakov systems. 

The presence of preload nonlinearity in dynamical systems gives rise to an appreciable 
complexity in the analytical solution procedure. This is the main reason that no exact analytical 
definition has been proposed in the earlier research works. As mentioned above, this 
nonlinearity has been approximated by trigonometric functions or has been solved numerically. 
Moreover, the PEM has not been developed in the field of beam dynamical behavior, until now. 
The objective of this paper is to introduce the innovative exact EF for preload nonlinearity as a 
boundary condition and to implement the PEM in the nonlinear beam vibrations.     

In this work, based on the Galerkin theory, nonlinear ordinary differential equation of beam 
vibration is extracted from partial differential equation with first mode approximation. Then 
preload nonlinear boundary condition of beam is modeled using new introduced EF. The results 
presented in this paper demonstrate that the proposed EF is very effective and convenient for 
nonlinear oscillators where the preload nonlinear boundary condition exists. The exact 
analytical solution of mentioned system is obtained using PEM and demonstrates that one term 
in series expansions is sufficient to result in a highly accurate solution of the problem. 

Governing equation 

Consider the system that is shown in figure 1, where the cantilever beam is subjected to 
preloaded spring at its end. Neglecting the shearing deformations and out-of-plane motion of 
the beam, governing partial differential equation for the nonlinear flexural vibration of the beam 
is, as follows [26]: 
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Fig. 1. Cantilever beam with preload nonlinear boundary condition 
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Here x  is the axial coordinate, which is measured from the origin,v  denotes the lateral 
vibration in y  direction, m  is the mass per unit length of the beam, E  is Young's modulus and 

I is the area moment of inertia. The boundary conditions for the beam of length L  are: 

( ) ( ) ( ) ( ) ( )
2 3

2 3
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where ( ),plF L t  is boundary condition at its end and is described by the following nonlinear 

preload formula with cubic nonlinearity: 
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where K  is the constant of nonlinear spring. Assuming ( ) ( ) ( ),v x t q t xϕ= , where ( )xϕ  is the 

first eigenmode of the clamped-free beam and can be expressed as: 
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where 1.875λ =  is the root of the characteristic equation for first eigenmode. Applying the 
weighted residual Bubnov-Galerkin method yields: 
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to implement the end nonlinear boundary condition, applying integration by part on equation 
(5), it is converted to the following: 
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In the above equation the boundary condition term ( ),EIv L t′′′  is replaced by ( ),plF L t . So, 

we can obtain the nonlinear equation in terms of the time-dependent variables as: 

( )3 2 2
1 2 4 5 , 0plq q q qq q q F L tβ β β β+ + + + + =&& & &&  (8) 

where: 

4 6 2
1 2 4 512.3624 , 40.44 16 , 4.6EI mL EI mL K mL Lβ β β β= = + = =  (9) 
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To solve nonlinear ordinary equation (8) analytically, the preload conditionplF , must be 

formulated, properly. We introduce suitable and novel exact equivalent function for this 
nonlinearity as: 
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u u
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   
= + + + − − +   
   

 (10) 

Figure 2 shows the equivalent function for plF  graphically. Using this new definition of 

plF , equation (9) is written as follows: 

3 2 2
1 2 3 4 51. 0q q q q q qq q qβ β β β β + + + + + = && & &&  (11) 

where: 

3 02F mLβ =  (12) 

 
Fig. 2. Plot of EF preload nonlinearity 

 
Analytical solution procedure 
 

Consider the equation (11) for the vibration of a cantilever Euler-Bernoulli beam with the 
following general initial conditions: 

( ) ( )0 , 0 0q A q= =&  (13) 

The limit-cycles of oscillating systems are periodic motions with the period 2T π ω= , and 

thus ( )q t  can be expressed by such a set of base functions: 

( )cos , 1,2,3,...m t mω =  (14) 

We denote the angular frequency of oscillation by ω  and note that one of our major tasks is 

to determine ( )Aω , i.e., the functional behavior of ω  as a function of the initial amplitude A . 

In the PEM, an artificial perturbation equation is constructed by embedding an artificial 
parameter [ ]0,1p∈  which is used as an expanding parameter. 

According to PEM the solution of equation (11) is expanded into a series of p  in the form: 

( ) ( ) ( ) ( )2
0 1 2 ...q t q t pq t p q t= + + +  (15) 

The coefficients 1 and 1β ′  in the equation (11) are expanded in a similar way: 
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where , ,i i ia b c  ( )1,2,3,...i = are to be determined. When 0p = , equation (11) becomes a linear 

differential equation for which an exact solution can be calculated for 1p = . Substituting 

equations (15) and (16) into equation (11): 
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where: 

( )plf q q q=  (18) 

in equation (18) we have taken into account the following expression: 
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therefore: 
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Collecting the terms of the same power of p  in equation (17), we obtain a series of linear 

equations of which the first equation is: 
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with the solution: 

( ) ( )0 cos ,q t A tω=  (22) 

substitution of this result into the right-hand side of second equation gives: 
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In the above equation, the possible following Fourier series expansion has been 
accomplished: 
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and the functions plf  are substituted from equations (18) and (20). The first terms of the 

expansion in equations (25) are given by: 
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Solution of equation (23) should not contain the so-called secular term ( )cos tω . To ensure 

so, the right-hand side of this equation should not contain the terms cos, i.e. the coefficients of 
cos must be zero: 

3 3 2 3 2 2
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8 3 3 1
0

4 4 4
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π
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equation (16) for one term approximation of series respect to p and for 1p =  yields: 

2
1 1 1 10, , 1a b cω β= = − =  (28) 

From equations (27) and (28) we can easily find that the solution ω  is: 
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Replacing ω  from equation (29) into equation (22) yields: 
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Results and discussion 

To show the soundness of the obtained analytical solution, the authors also calculate the 
variation of non-dimensional amplitude /A L  versus normalized time tτ ω= , numerically. As 

can be observed in the figure 3, the first order approximation of ( )q t , which is obtained 

through PEM and new EF, has an excellent agreement with numerical results using fourth-order 
Runge–Kutta method. 

To indicate the effect of preload force on the response of beam vibration, the 
nondimentional preload parameter 0F KAg =  is introduced. As depicted in figure 4, for the 
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same normalized amplitude, the frequency of beam vibration increases, when the preload 
parameter gets larger. Also, the phase plane of the problem that is obtained from PEM has been 
shown in figure 5. It is evident that the solution converges rapidly and is valid for a wide range 
of preload parameter and initial conditions. 

 

 
 Fig. 3. Comparison of the approximated first order periodic solution (continuous line) with the numerical 
results (stars) 
 

 
Fig. 4. The influence of preload parameter on the vibrational response  

 

 
Fig. 5. The effect of preload parameter on the beam vibration phase plane 

 

The variation of frequency versus normalized amplitude and preload forces is represented in 
figure 6. As can be observed, the more the preloaded force, the larger the limit cycle frequency. 
Regardless the preload force value, when the normalized amplitude increases, the frequency 
decreases. From figure 7, as the vibration amplitude shifts upwards, at first, the frequency 
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reduces until reaches a minimum value and then increases continuously. In addition, decreasing 
the beam length leads to increasing in the response frequency. Typical amplitude of cantilever 
beam vibration with normalized amplitude/ 0.2A L = along its length is illustrated in figure 8. 

 

 
Fig. 6. Comparison of frequency vs. normalized amplitude corresponding to various preload values 

 

 
Fig. 7. Comparison of frequency vs. normalized amplitude corresponding to various beam length values 

 

 
Fig. 8. Typical vibration amplitude along beam length with/ 0.2A L =  

Conclusion 

Novel EF for discontinuous preload nonlinearity has been employed to predict analytical 
response of nonlinear cantilever beam vibration in the time domain. The preload nonlinearity, 
as a boundary condition of cantilever beam, redefined exactly using the continuous functions. 
This new EF is implemented in nonlinear vibration of cantilever beam and an excellent first-
order analytical approximate solution by PEM was obtained. It appears from the present work 
that the introduced EF can make the analytical investigation of the nonlinear problems fairly 
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easy. The authors believe that the introduced procedure has a special potential to be applied to 
other strong nonlinearities such as preload, deadzone and saturation discontinuities. 
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