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Abstract. The paper concerns the problem of vibrations obism in rotational transportation.
The beam is the supported-clamped one. The bedixet on a rotational disk. The disk is
treated as the rigid one. The method of dynamiealHility is used for the dynamic analysis of
the system. The beam is considered in terms ofl leitmations transferred to the global
reference frame where the interaction between dbal Idisplacement and the transportation
movement is taken into consideration. The analgestem can be treated as the model of many
technical systems such as blades of pumps, rotordNewadays such a type systems are very
rarely considered with taking into account the albed transportation effect. The analyzed case
is the particular one, where the special boundangitions are applied.

Keywords: dynamic analysis, vibrations, beamlike systemsjspartation effect, supported-
clamped system, forms of vibrations.

Introduction

The problem of supported-clamped vibrating beaooissidered in this work. The paper is a
part of series works concerning problems of vibmatbeams in transportation. The paper
concerns the well-known problem in the literatute9d], but the presented model is the specific
case of the beam fixed in a rotational disk. Insidered model the local vibrations of the beam
are in relation with the main motion. There are yngethnical applications where the beams
fixed on the rotation disk are implemented. Fotanse the systems can be put into practice in
many types of turbines, pumps or rotors. This aislgan be also used for an analysis of
complex systems where one of the components of suwimplex system is an analyzed beam.
In this paper the method used for dynamic analgdise dynamic flexibility one. This method is
the one of the very popular ways of analyzing dyicamf systems. The dynamic flexibility is
used for the analysis of the beam systems in owtaltimotion and gives an opportunity to
specify the stability or instability zones. Thesmes are very important to control such a type of
systems, taking into account the optimizing for siake of the minimal amplitude of local and
global vibrations criterion. In this way it is alpmssible to derive the modes of vibrations and
zeros of the dynamic characteristics. Many pubibicestin the literature concern the subject area
of vibrating systems in motion as distinguishedrfrthe ones concerning stationary systems.
These aspects are the reasons for widening ofythengic analysis [1-9]. As a starting point of
the dynamic flexibility, derivation algorithm of éhmathematical model is assumed in the form
of equations of motion. Considerations are don¢hbyGalerkin's method. There are beamlike
systems in rotational motion considered, treatedhia paper as the main working motion.
Considered motion is limited to the plane one. Tyeamic characteristics in the form of
dynamic flexibility as function of frequency and the@matical models are presented in this
work.
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Modelling of the vibratory beam on a rotational disk

A model of the supported-clamped homogeneous besamnisidered in this section (Fig. 1).
The beam is supported at one end and clamped aetttnd one. The beam is fixed on a
rotational disk with the support as a point of mingnto the disk. The rigid disk rotates with the
angular velocityw. The system is described in the two referencedsamhe local vibrations are
transferred to the global reference frame. The bleasthe well-defined geometric parameters:
the symmetric cross-section, the given externakdsions, the given geometric momentum and
material parameters such as a material type, thad's modulus, a mass density. It is assumed
that the beam is supported at one endxfer0) and clamped at the second end Xferl) (Fig.

1). The analyzed cross-section of the beam is bdnlea harmonic force with the unitary
amplitude in the direction perpendicular to thetoedine of the beam. The forces and the
moments of forces at the ends of the beam are assamequal zero and also the displacements
are equal zero.

ZA
- Fsin(Qt)v

Fig. 1. Analyzed system, wherg» — mass-densityA(x) — cross-sectionl, — length of the beanx —
location of the analyzed cross-sectian— angular velocityQ — frequency,Q — rotation matrix,S —
position vectorw — vector of displacemerf,— harmonic excitation forc& — Young modulus

In Fig. 1 the analyzed beam model — the supportated one is presented.

Forms of vibrations

For deriving the forms of vibrations the boundaopdition for the beam should be written
as follows:

(oY) _ow(LY)
W(0.1)=0,Bl — === 0w(l £)= 07— == O, (1)

%{EI %}+2;{F@(X—O,H)W(t)dx= 0, se(0l),
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in every time moment> 0. After solving the boundary problem there candeeived the
eigenfunction of displacement in the form:

. . sinkl . . col
X (x) = sinkx— sinhkx——— = sirkx— sinfix——— (2
sinhkl cosltkl
where: k = an+1 , 3)
where:n is a mode of vibrations of the supported-clampeahin.
Table 1.Forms of vibrations of the supported-clamped beam
Exact calculated Elgen\(alues .
. approximated Rounded relative S
n eigenvalues . The form of vibrations
K with the formulae error
3)
Amplitude
1.0
0.8
1 3,92660231 3,92699082 -0,01% 06
0.4
0.2
0.2 0.4 0.6 038 1.0 Him)
Amplitude
1.0
0.5
2 7,06858275 7,06858347 0,00% (m)
0.2 0.4 0.6 0.8 1.0
-05
-1.0
Amplitude
1.0
0.5
3 10,2101761 10,2101761 0,00% L)
0.2 0.4 0/6 0.8 1.0
-0.5
-1.0

In Table 1 the three modes of vibrations for thepsuted-clamped beam are presented. The
estimated relative error between the calculatedctexdgenvalues and the approximated
eigenvalues is very small and can be neglectedrthdr calculations. The charts of forms of

vibrations for two presented eigenfunctions of ispment are concurrent.

Mathematical model — equations of motion

The kinetic energy in accordance with the Koenitfigy defined by the generalized
coordinates and the generalized velocities is:
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T = MQ[&x(5+ )] [@x(S+ )|+ ZMQi -
:%M () +—;|v| (i) :—;Mr'; +—;Mr'f,

wherei, j k are versors in the global reference frame.

The equations of motion of the non-damped bearaimsportation are derived in the matrix
form. This system of equations of motion is therfowrder partial differential equations and in

each point of the rang® :{(X,t),XE(O,l) > C} coincides with the boundary conditions and

(4)

the initial conditions. It can be expressed asfod:

0
cosp — Sinp co® - Ssip o’s
. o*w . )
pA| sing cosp = —-pA| sip  cos O°W |+
0 0 1 0 0 il O
0
] ow
cosp — sSinp @ ot co® — Sip —OW (5)
—2pA| sinp  cosp 0 |+pAl sip cas oS |=
. 0 0 1) O 0 0 0
_ ) 0
co —si
.S(p v o'w
=—El|sinp cosp o
| 0 0 1 0

Every periodic motion can be expressed as completom compound from series of
harmonic motions. The description of displaceméanthe global reference frame is as follows:

15x = Wy =iA><X(X! n)ejmv (6)
n=1

S =W, =3 AX(xn)e, 7
n=1

where Ay and Ay are the searched amplitud&gx) is the eigenfunction for displacemef,is
the frequency angl is the imaginary unitn for displacement{2 is the frequency anfis the
imaginary unit.

In accordance to the definition, the mathematioainfof the modulus of dynamic flexibility
of the considered systems can be obtained as:

X (1) X (x
M-—ar3 X | ©
P na pA}/f\/a4k8+(a)2—Qz) —2a%k 4(a) o) 2)
If the angular velocity of the rotational disk etpuzero then the dynamic flexibility is:
X (1) X (x
2 S X0X0)
PAY, 3 ak’ -
Where the norm equals:

vl=
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yh= JX (x)dx = (10)

K -3sin(2d)+ 6co8(K) tanfkl)+K[ tadfkd)- cpsd) ségk)]
- 4k

The derived (9) dynamic flexibility is the sameths dynamic flexibility of the stationary
beams.

Numerical examples

Numerical examples in the form of dynamic charasties are presented. In Figures 2-3 the
samples of dynamic flexibilities are presented e tchart form. Figure 2 presents the
attenuation-frequency characteristic, the dynaméxilfility both in the function of the
frequency and the angular velocity (the transpimmatelocity) is presented.

8000

o)

4000

o)

Fig. 2. Dynamic characteristic of dynamic flexibility oheé beam in relation to angular velocity and
frequency

Presented characteristics make also possible énalfythe influence of the angular velocity
treated as the transportation velocity on the mdaiescation process. In figure 3 the bottom
view of the characteristic from figure 2 is presehtin figure 3 the top of the characteristic (Fig.
2) is presented. After assuming the angular acatider equals zero the relation between angular
velocity and the modes of the dynamic flexibiligythe linear function.

Conclusions

This paper is the consideration of the vibratiookpem of beams fixed on a rotational rigid
disk. The beam was located onto the rotational tiakrotates with a constant angular velocity.
The beam moves in terms of the plane motion andribgel presented here makes possible to
consider local and global vibrations, taking intmsideration the transportation effect (acting of
Coriolis and centrifugal forces). The way of moitejl of supported-clamped vibrating beam in
transportation was presented in this abstract.mbéel considers mutual relations between the
main motion treated as the transportation anddbal Idisplacements treated as vibrations. The
dynamic flexibility formula is presented as welldathe solution is proposed as the sum of the
eigenfunctions products. The presented model camseel for dynamic analysis of simple
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beamlike systems with the specific boundary cood#i The numerical examples are presented
in this work. The derived mathematical formulae if&8kes possible to determine the dynamic
flexibility for different working parameters. Intiure works the damping forces analysis will be

also provided and the analysis of systems with gtoal and physical nonlinearities.
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Fig. 3.a) Bottom view of the characteristic (Fig. 2).Rglation between angular velocity and modes of
dynamic flexibility
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