703. A semi-analytical approach for the response of
nonlinear conservative systems

A. Kimiaeifar ? A. Barari®, M. Foolad(, E. Rokni°, O. Zainali®

#Department of Mechanical and Manufacturing EngiimegrAalborg University
Pontoppidanstraede 101, DK-9220 Aalborg East, Dekkma

®Department of Civil Engineering, Aalborg University

Sohngardsholmsvej 57, 9000 Aalborg, Denmark

‘Department of Mechanical Engineering, Shahid Bahbtimiversity of Kerman , Kerman, Iran
YDepartment of Mechanical Engineering, Islamic Akadversity Khoy, Iran

E-mail: akf@m-tech.aau.dk

(Received 25 October 2011; accepted 4 December 2011)

Abstract. This work applies Parameter expanding method (PEM) powerful analytical
technique in order to obtain the exact solutiomaflinear problems in the classical dynamics.
Lagrange method is employed to derive the govermiggations. The nonlinear governing
equations are solved analytically by means of Heaameter expanding method. It is
demonstrated that one term in series expansionfiicient to generate a highly accurate
solution, which is valid for the whole domain o&tkolution and system response. Comparison
of the obtained solutions with the numerical ometidates that this method is an effective and
convenient tool for solving these types of problems
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I. Introduction

A series of research works have appeared withititérature in recent years discussing the
steady forced oscillations of mechanical systemth wdifferent degrees of freedom. The
stability of linear and nonlinear nonautonomousgkrdegree-of-freedom (SDOF) systems
loaded with nonconservative forces is analyzed lgbiSz [1]. In his simulations for linear
case, analytical expressions were generated fobdoedaries of the stability regions. Later,
Morison suggested SDOF techniques for dynamic niogledf reinforced concrete flexural
elements under blast as well as ground-shock Igadi2]. Morison concluded that the
equivalent SDOF approach is an appropriate altenagolution, but the most published
parameters for two-way spanning members are inatelry up to 50% for several parameters
[2]. Yamgoue and Kofane [3] also generalized a HWgped perturbation method for
conservative SDOF systems subjected to the danfpings. They reported explicit solution as
a function of amplitude, frequency and phase ofllation by merging the classical Krylov-
Bogoliubov-Mitropolsky method and a modified Lineldt-Poincare method.

The analysis of nonconservative systems has atttattie attention of many workers
recently. The main concern within their researchrksois the stability of nonconservative
autonomous systems under static loads dependerminignthe state of displacement. The
representative works in the field of analysis ohocanservative systems are those by Ziegler
[4], Bolotin [5], Prasad and Herrmann [6], ZyckowpK and Kounadis [8].

Also, most common problems in the oscillation systeare inherently nonlinear. Except a
limited number of these problems, most of them dbtrave analytical solutions. Therefore,
these nonlinear equations should be analyzed ustegnative solutions such as numerical
techniques and perturbation methods [9]. In the erical methods, stability and convergence
criteria should be considered to avoid divergencénappropriate results. In the perturbation
methods, a small parameter is inserted in the emuatherefore, finding the small parameter
and inserting it into the equation are deficiencethese methods.
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Recently, considerable attention has been dirdotwdrds analytical solutions for nonlinear
equations without small parameters. Many new teples have appeared in the literature, for
example, the homotopy perturbation method [10-hdnotopy analysis method [15-18], the
variational iteration method [19-21], and the egdyglance method [22-24].

He's Parameter expanding method (PEM) is the mifstteve and convenient method to
solve nonlinear differential equations analyticallyis shown that HPEM is another efficient
method which is able to solve a large class ofdlirend nonlinear problems with components
that converge rapidly to accurate solutions eamilg accurately. HPEM was first proposed by
He and then has been successfully applied to v@gagineering problems [25-28].

There are a few works on using Parameter expanditpod in the literature. He in [25]
proposed modified Lindstedt—Poincare method for es@tmongly nonlinear oscillations. Liu
[26] studied approximate period of nonlinear ostdls with discontinuities by modified
Lindstedt—Poincare method. Xu [27] suggested Hamumeter-expanding method for strongly
nonlinear oscillators, while Tao [28], proposedqgfiency-amplitude relationship of nonlinear
oscillators using He’'s Parameter expanding method.

In this study He's Parameter expanding method Bdu® investigate the behavior of
nonlinear problems in dynamics. To show the acguear applicability of this method some
examples are studied and compared with numericahads. To obtain the governing
equations, Lagrange method is utilized. Some reatdekvirtues of the methods are studied,
and their applications to obtain the higher-ordgpraximate periodic solutions are illustrated.
By using simultaneously Lagrange and PEM methodgeéms very easy to study the behavior
of dynamical systems and also calculate the nattggqliency and limit cycle.

2. Lagrange equation:

A differential equations of motion expressed inrtsrof generalized coordinates is called
Lagrange equation [9]. Lagrange equation includiogconservative forces is:
d, or, or oau :
— (- i=12..N (1)
dt '0g," oq Oq

3. He's Parameter expanding method

In case no parameter exists in an equation, HPEMbeaused. As a general example, it can
be considered the following equation:

mx”’ +a)§x+77 f (x,x,x")=0, X(0) = A, X' (0)=0 (2)
According to the bookkeeping parameter methodsthetion is expanded into a seriespof
in the form:

X(t) = Uo(t) + le(t) + p2X2 (t) +... (3)
Hereby the parametprdoes not require being smak p <o .

The coefficientsn and a)g are expanded in a similar way:

m=1+pm + p’m, +... (4
ol =0®+ po,+ pPo, +... (5)
n=pe+pic, .. (6)

w is assumed to be the frequency of the studiedimean oscillator, the values fon and a)g

can be any positive, zero or negative real value
Here, we are going to solve some problems by udiig parameter expanding method.
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4. Case 1:
4. 1. Motion of a particle on a rotating parabola

An example of a SDOF conservative system has beasidered that is described by an
equation as follows. The motion of a ring of massliding freely on the wire described by the
parabolaz = rx?, which rotates with a constant angular velodity about thez-axis as shown
in Fig. 1. It is convenient to write the equatiohmotion of the ring by using a Lagrange
formulation. For a conservative, Holonomic systéme, kinetic and potential energigé&sandV
can be expressed in terms of so-called generatipeddinateq, whereq is a vector whose
elements are the independent coordinate needesstwible the system under consideration. For
the present problem the kinetic and potential ererare:

T =%m(x'2(t) + Q) +2(1)?) o
V = mgz(t) v
3

m

5 X

Fig. 1. The geometry of example (1)

Using the concentrate = rx*, the above equations can be rewritten as:

T= % m(L+ 4r 22 0))x 2 (t) + Q3 (t)) 9)

V = mgrx3(t) (10)
SubstitutingT andV from Eqs. (9) and (10) into Lagrange equationdgel

L= % m[(L+ 4r 22 (1)) X2 (t) + Q2X(t)] — mgrx2(t) (11)
Finally the equation of motion becomes:

@+ 4r 22 (1) X2 (t) + AX(t) + 4r 2rxX2(t)x(t) = O, (12)

whereA is:

A=2gr-Q? (13)

4. 2. Application of HPEM

According to the PEM, Eq. (12) can be rewritten as:

2
1% + AX(t) - 4r [ E)X" (1) + X2(t) x(1))] =0 (14)
with the following initial conditions:
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x(0) = 4, X' (0) =0. (15)
The form of solution and the constant one in E4) ¢an be expanded as:

X(t) = %o (1) + pxq(t) + p2Xp(t) +... (16)

1=1+ pay + pay, +... a7

A=w?+ pb + pb, +... (18)

4r? = pc, + Py + ... (19)

Substituting Egs. (16) through (19) into Eq. (1d)d applying the standard perturbation
method, we have:

Xg (1) + %% (1) = 0, X (0) = 4, X5 (0)=0 (20)
d?x(t)

2
#1100 +bxp® =0, %O =0 KO=0 (1)

dt?
The solution of Eq. (5) is:
Xy(t) = Acos@t) (22)
Substitutingx(t) from Eq. (22) into Eq. (21) results in:
2
%— c %02 cos’ (ot) + ¢ %m? cosEt)sin2(wt) + w?x (t) + A cos@t) = 0, (23)
But from Egs. (17-18) and just with considering tive first terms:
A-o0?
by = (24)
p
and
o= (25)
p

After settingp =1, eliminating the secular term needs to satisfyftflewing equation:
b4 —gclz%z =0 (26)
Two roots of this particular equation can be ol#dias:

AL
O=———>3 27
V2-10r223 (27)

Replacingw from Eq. (27) into Eqg. (22) yields:

/ AL
X(t) = X0 (t) = ACO{ m t} (28)

5. Case 2
5. 1. The rotating rigid frame under force

The rigid frame is forced to rotate at the fixeter& . While the frame rotates, the simple
pendulum oscillates (Fig. 2). By using Lagrangehudtthe governing equation can be easily
obtained as follows:

% + (L— Acos((t)))sin(x(t)) =0 (29)
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=

) o

Fig. 2. The geometry of rotating rigid frame under force

Here, by using the Taylor’s series expansiondos(t)) and sin(x(t)) the above equation
reduces to:
ddi‘(t) +U-AXO-(G x3(t) += Axs(t) Ax5(t)) 0 (30)
With the following boundary condmons.
x(@©) =4, x'(0) =0, (31)
2
whereA is QT .
g

5. 2. Applicationof HPEM

According to the HPEM, Eg. (30) can be rewritten as

1 dx‘t’ - AXO -1 R0 + 2 ACR -2 ACD) =0 (32)

and the initial cond|t|0ns are as foIIows.

X, (0) = 4, x;(0) = 0. (33)

The form of solution and the constant one in Eg) (&an be expanded as:

X(t) = Xo(t) + Py () + P (t) +.. (34)
1=1+ pay + pa, +... (35)
1- A=w?+ pb + pb, +... (36)
1= pc, + pc, +... (37)

Substituting Eqgs. (34), through (37) into Eq. (32nd processing as the standard
perturbation method, governing equations can baesmras:

X5 (1) + 0%y (1) =0, X0 (0) = 4, x5 (0)=0 (38)
A% (M) e M), L, s 2, .
o HE O - S A+ S ACD o' (0 + 0

X/ ()= 0%(0) = 0.(0) =0
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The solution of Eq. (38) is:
% (t) = Acos@t) (40)
Substitutingxy(t) from the Eq. (40) into Eq. (39) results in:

$+%f cos (wt)b A cospt) +§A/13 cos (o) + 0, (t) -

1 (41)
_EMS cos (wt) = 0.
However from Egs. (36-37):
1- A-0?
b =—"r (42)
p
and
1
p
Based on trigonometric functions properties we have
cos (wt) = 1/4cosBwt) + 3/ 4cost) (44)
cos (wt) = 1/6cosbwt) —5cosBut) + 20cost)] (45)
After p=1 and eliminating the secular term, is obtained as follows:
w:i\/3/12+3A,14-1A/12+1-A (46)
8 18 2
Replacingw from Eq. (46) into Eq. (40) yields:
1 5 1
X(t) = %, (t) = Acos ,[= 2 + — AL —= AL +1- At 47
(1) =x,(1) {Jg * 18 Z A+ J (47)

6. Numerical results

The usefulness of the presented parameter expantitigpd is investigated by considering
two nonlinear dynamic problems explained in presigactions. To validate the HPEM results,
convergence studies are carried out and the reardtscompared with those obtained using
numerical results. Figs. 3 and 4 demonstrate tfeetsfof constant parameters on position and
velocity profiles versus time, respectively. ltolsserved that upon application of only one term
in series expansion, accurate and reliable solsitican be obtained with validity within the
whole solution domain.

7. Conclusions

In this study, analytical solutions for nonlineaolplems in dynamics are investigated using
hybrid Lagrange and HPEM method as well as anotiesv technique referred to as He's
parameter expanding method. Some remarkable adyemtnd drawbacks of the methods are
discussed in more details. Applications of thes¢hos to calculate higher-order approximate
periodic solutions to the nonlinear problems arealestrated. Although HPEM is simple to
understand and implement, it is demonstrated thatterm in series expansions is sufficient to
obtain a highly accurate solutions, which are vétidthe whole solution domain. In addition,
the ability of the proposed method to predict thgponse and stability of a dynamical system is
shown. The obtained analytical results are in gegdeement with those obtained using
numerical method. It is observed that the method momising tool to solve these types of
nonlinear problems with many engineering applicgio
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Fig. 3. The effects of constant parameters on positionvelatity, examplgl), @ A=2,1=014r =05,
(b) A=51=015r = 025, (c) A=10,4=01Lr =05, (d) A=51=015r = 025
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Fig. 4. The effects of constant parameters on position aratitgl example (1), (A= 0541=02,
(b) A= 0154 =015, (c) A= 0054 = 015, (d) A=051=05
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