
 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2011. VOLUME 13, ISSUE 4. ISSN 1392-8716 891

708. Simple friction model of the guiding device of a 
mechanical system: mass, spring and damper 
 
B. Janecek1, V. Kracik 2, J. Skliba3, Z. Herda4, M. Marek5, J. Buchta6 
Technical University of Liberec, Czech Republic 
E-mail: 1 bedrich.janecek@tul.cz, 2 vladimir.kracik@tul.cz, 3 jan.skliba@tul.cz, 
4 zdenek.herda@gmail.com, 5 martin.marek@email.cz, 6 jaroslav.buchta@tul.cz  
(Received 3 September 2011; accepted 4 December 2011) 
 

Abstract. The paper presents a simple friction model containing two parts: dry and viscous 
friction. Friction model is built inside the model of the guiding device of a mechanical system 
consisting of a mass, linear spring and damper. System is excited by the movement of the base. 
Main idea of the presented algorithm is to split up the solution into several parts, which follow 
one after another in time, and to combine their results subsequently.  
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Introduction 
 

A simple static friction model is considered in this paper. It consists of two components: dry 
and viscose friction. Dry friction is subdivided into static and kinetic one. Static friction is also 
called stiction [1]. The static friction is present in a guiding mechanism that is at rest, while the 
kinetic one - in case of moving mechanism. During movement of a guiding mechanism the 
relative stroke – distance ( ) ( )tztz 12 −  is changed (Fig. 1). 

 
System description 
 

A mechanical system including mass, damper and spring is considered. This system is 
complemented by the guide scissors mechanism (Fig. 1). The system is excited by moving the 
base, whose position is 

1z . 

 
Fig. 1. Mass, spring and damper with the scissors guide mechanism 

 
In the system we assume a linear spring and a linear damper. The variables 

1z  and 
2z  are 

used for the description of the system. Variable 
2z  is the deviation from the equilibrium 

position, which is determined by the size of mass m and stiffness of the spring. In initial 
position the variable 

1z  will be zero. The initial value of variable 
2z  can be, but must not be 

zero. Initial values of the first derivatives of these variables for the described model are assumed 
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to be zero. In the following text we will denote the spring force 
SF , which shall be the deviation 

of spring power from the equilibrium value. The real initial spring power is gm− , g  is the 

gravitational constant. 
As already mentioned, the system in Fig. 1 is excited by moving the base with position 

1z . It 

means that we know the time behavior of ( )tz1
, ( ) ( )

dt

tdz
tv 1

1 =  and ( )
( )

2

1
2

1 dt

tzd
ta =  for 0≥t . 

Let us designate ( ) ( ) ( )tztztzR 12 −=  , ( )
( ) ( ) ( )

dt

tdz

dt

tdz

dt

tdz
tv R

R
12

−== , where:  

( )tzR
 is the relative stroke, 

( )tvR
 is the speed of relative stroke, or the relative speed. 

We assume that the friction force in the mechanism is approximately determined by the 
function from Fig. 2. 

 

 
Fig. 2. Friction force as a function of relative velocity 

 
The forces between the mass and the scissors mechanism are drawn in Fig. 3.  

 

 
Fig. 3. Forces acting on the mass m  from Fig. 1 

 
The upward direction of forces and movement are considered as positive.  

( )
( )

2
2

2

dt

tzd
mtFINERTIA −= ,       ( )tFINERTIA

 is the inertial force,    (1) 

( ) ( )tzktF RSS −= ,                    ( )tFS
        is the force of the spring,   (2) 

( ) ( ) ( )tFtFtF VISDRYFRIC += ,      ( )tFFRIC
    is the friction force.    (3) 

In the case of movement of scissors mechanism, ( ) 0≠tvR
, 

( ) ( ) KINRDRY FtvsigntF )(−= ,   ( )tFDRY
     is the force of dry friction,   (4) 

 
( ) ( )tvktF RVISVIS −= ,                        (5) 



708. SIMPLE FRICTION MODEL OF THE GUIDING DEVICE OF A MECHANICAL SYSTEM: MASS, SPRING AND DAMPER. 
B. JANECEK V. KRACIK, J.  SKLIBA , Z. HERDA, M. MAREK, J. BUCHTA 

 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2011. VOLUME 13, ISSUE 4. ISSN 1392-8716 893

( )tFVIS
 is the viscous force of damper and guide mechanism. 

The force ( )tFVIS
 consists of two elements: viscous friction of guide mechanism and viscous 

force of  the damper. 

Vector ( )tFINERTIA
 in Fig. 3 is drawn for the case ( ) 02

>

dt

tdv  , vector ( )tFS
 for ( ) 0<tzR

 and  

vector ( )tFFRIC
 for ( ) 0>tvR

. 

( )tFFRIC
 is the sum of two forces (see (3)). 

 

 
Fig. 4. Dry friction force as a function of relative velocity 

 

 
Fig. 5. Viscous friction force as a function of relative velocity 

 
The characteristic of the dry friction is nonlinear. The discussed system in the model 

calculation passes between “basic states” with non–zero time duration. In one of the basic states 
the relative speed is zero, ( ) 0=tvR

, system is stuck – locked and in the second state the speed is 

nonzero ( ) 0≠tvR
 and ( )( )tvsign R

 does not change, system is released. 

Movement of the system in the released state when ( ) 0≠tvR
 is described with the equations: 

( ) ( ) ( ) ( ) 0=+++ tFtFtFtF VISDRYSINERTIA
,       (6) 

( )
( ) ( ) ( ) 0)(

2
2

2

=+++ tvkFtvsigntzk
dt

tzd
m RVISKINRRS

 .    (7) 

In equation (7), describing the dynamics of the system of Fig. 1, the dynamics of the scissors 
mechanism is neglected. Inertial moments of the arms of the scissors mechanism in the 
mathematical model are considered to be zero. They could be neglected because the loading 
mass  m  is much greater than the mass of the arms of the scissors mechanism (ten times greater 
in the case of the investigated nonlinear system with the air–spring). 

In “basic locked state” when ( ) 0=tvR
 movement of the system is also described with (6), 

but:    
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( ) ( )
dt

tdz

dt

tdz 12
=              (8) 

and 
( ) ( )

2

1

2

2

2

2

dt

tzd

dt

tzd
= ,          (9) 

( )tF S  is constant, ( ) constFtF SS = ,    

( ) 0=tFVIS
,      

( ) ( )tFtF DRYFRIC = ,         (10) 

( )
( ) ( )

2
2

2

2
1

2

dt

tzd
m

dt

tzd
mtFINERTIA −=−= . 

We can rewrite (6):  
( ) ( )

( ) ( ) constFtFtF

tFconstFtF

SINERTIADRY

DRYSINERTIA

−−=

=++ 0
 .      (11) 

The development of ( )tz2
 is calculated by integration of known ( )

dt

tdz1 , with initial value, 

which is equal to the final value ( )tz2
 from the previous “basic state”. 

First testing of the friction simulating algorithm was performed by the program that used 
harmonic excitation signal ( )tz1

 with constant amplitude A   and linearly increasing frequency 

(chirp signal),  ( ) tkt
ω

ω =     for    max,0 Tt∈ , maxmax Tk
ω

ω =  . 

( ) ( )2

1 sin tkAtz
ω

= ,         (12) 

( ) ( )21 cos2 tktkA
dt

tdz
ωω

= ,        (13) 

( ) ( ) ( )( )222

2
1

2

sin2cos2 tktktkkA
dt

tzd
ωωωω

−= .      (14) 

Let us discus the case of chirp excitation signal with zero initial conditions, ( ) 001 =z  and 

( )
0

01
=

dt

dz . The initial acceleration of ( )tz1
 is ( )

ω
kA

dt

zd
2

0
2

1

2

= . Let the next initial condition of 

system be ( ) 002 =z  and ( )
0

02
=

dt

dz . The initial value of the spring force is, in this case, 

( ) 00 =SF . Let us consider, that 
ω

k  was chosen in such a way as to have 
STATF

dt

zd
mabs <








2

1
2 )0( , 

i.e. relative movement of the system at the beginning is zero, ( ) 00 =Rv . In this case, when the 

frequency of the excitation signal increases, system passes through the discussed two “basic 
states” several times, relative movement is several times stuck – locked and then released. 
When the frequency increases the system comes to the states, where signs of ( )tvR

 changes and 

the system is still released. System no longer comes to the “locked basic state”. 
Let us describe the system movement with the text structure which will be close to the 

structure of the program. We designate the beginning time 
1t . The presented friction model 

starts from initial conditions ( ) 011 =tz , ( )
011
=

dt

tdz  and ( )
012
=

dt

tdz . It means that ( ) 01 =tvR
. The 

initial condition ( )12 tz  and parameters of the model (i.e.  m  , 
Sk   , VISk   , STATF   , KINF   , A  , 

ω
k   

and  stop – final time 
maxT ) can be set to arbitrary values in the program. 
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The second derivation of 
1z  of chirp signal at time 0=t  is non zero, ( )

ω
kA

dt

zd
2

0
2

1

2

= .    

For  0>t    is   ( )
2

1

2

dt

tzd   smooth – continuous function.  The same property has to valid for any 

other excitation function, which can bee built in the discussed model of the system with friction.  

The friction model which can work with excitation signal with discontinuous ( )
2

1

2

dt

tzd  will be 

worked out as well. 
For simplicity of explanation, the program behavior is described only with a simpler model 

that is specified as follows. The movement of the system is solved for ( ) 002 =z  and 
ω

k  is 

chosen so that  
STATF

dt

zd
mabs <








2

1
2 )0(  . The system at the beginning time 01 =t  is stuck – 

locked. 

1) We set initial values ( ) 011 =tz , ( )
011
=

dt

tdz  , ( ) 012 =tz , ( )
012
=

dt

tdz . The variables ( )
2

11

2

dt

tzd  and 

( )
2

12

2

dt

tzd  must be known for model computation. Their values at time 
1t  are  

( ) ( )
ω

kA
dt

tzd

dt

tzd
2

2

12

2

2

11

2

== , see (9) and (14), 

2) if ( )
( ) STATRS Ftzk

dt

tzd
mabs <








+ 12

11
2

      (15) 

Then starts the solution of movement of the system, which is in “locked basic state” i.e. 
( ) 0=tvR

, ( )tzR
 is constant. The solution of the locked system will be performed until time 

2t , 

when the condition   
( ) ( ) STATRS Ftzk

dt

tzd
mabs =








+ 22

21
2

,       (16) 

is fulfilled. 
After finishing the solution of   “locked basic state” we will compute the variable 

( )
( ) KINRSKINLAST Ftzk

dt

tzd
msignF 








+= 22

22

2

,      (17) 

which will be used in part 3) of the program, we set 
21 tt = , otherwise the system does not come 

in “locked basic state”. 
For the use in 3) we will compute  

( )
( ) KINRSKINLAST Ftzk

dt

tzd
msignF 








+−= 12

12

2

,      (18) 

and 
3) the system comes in “basic released state” ( ) 0≠tvR

 and  during this  “basic state” the sign of 

( )tvR
 does not change, ( )tFDRY

 is constant,      

( ) KINLASTDRY FtF = .           (19) 

Eq. (4) for computing of ( )tFDRY
 cannot be used. Therefore ( ) 01 =tvR

 at the beginning of 

“released state”. Explanation of (17) and (18) will be made in the following text. Movement of 
the system is described with the equation   

( )
( ) ( ) 0

2
2

2

=+++ tvkFtzk
dt

tzd
m RVISKINLASTRS

.      (20) 

Basic state ( ) 0≠tvR
 will be solved until time 

3t , when speed comes to zero, 
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( ) 03 =tvR
,          (21)  

put 
31 tt =  and go to 2). 

The algorithm will terminate at the specified final time maxT . 

Conditions (16) and (21) are tested in Simulink procedures with the use of “Hit Crossing” 
blocks. If they are satisfied, the simulation is stopped using “Stop Simulation” blocks. For 
proper function of these procedures we can not use “Derivative” blocks. “Hit Crossing” block 
uses iterative procedure to find an exact instant of time when the condition is satisfied. If we 
would like to excite the system with external data, the time interpolation in external data must 
be made in Matlab after finishing the Simulink procedure. 

In the previous description of the program, the use of condition (15) in case of ( ) 01 =tvR
 is 

physically obvious. Depending on whether this condition is fulfilled or not, the system comes to 
“locked state” or “released state”. 

The computation of “released basic state” ( ) 0≠tvR
 of the system begins at time 

1t  , see part 

3) of program description. Let us consider that we use eq. (4) for computation of ( )1tFDRY
. At 

time 
1t , ( ) 01 =tvR

, ( ) 00 =sign . This results in ( ) 01 =tFDRY
, which is wrong. ( )1tFDRY

 must be 

computed from the end of the previous “basic state”. Previous “basic state” could be locked, or 
released. 
a)  At first let us discuss, that previous “basic state” was locked. In the case of “locked basic 
state” ( )tFDRY

 changes in interval  ( )STATSTAT FF ,− . In Fig. 4, ( )tFDRY
 moves only on vertical axis, 

eq. (11) holds. The time, when ( )tFDRY
 comes on borders of the mentioned interval was 

designated 
2t  in part 2) of program description. At time t2 either ( ) STATDRY FtF −=2

 or  

( ) STATDRY FtF =2
. In next time, 

2tt >  the system comes to “released basic state” and ( )tFDRY
  starts 

to be either ( ) KINDRY FtF −=  or  ( ) KINDRY FtF = . In the discussed time development, in time 2tt ≥ , 

the sign of ( )tFDRY
 does not change. For this reason ( )( )tFsign DRY

 in the “released basic state” is 

the same as ( )( )2tFsign DRY
 at the end of the previous “locked basic state”. This fact is expressed 

in eq. (17) and (19).  
b)  Let us discuss the second variant, when the system comes to the “released basic state” from 
the previous “released basic state”. If ( )tvR

 was positive in the previous “released basic state”, it 

becomes negative in the next “released basic state” and vice versa. The change of signs of 
( )tFDRY

 is expressed in eq. (18) and (19). 

 
Structure of Matlab – Simulink program 
 

It may seem from the previous text that the discussed algorithm can be implemented in 
Simulink as consisting of two subroutines. First subroutine for solving “basic locked state”  
when ( ) 0=tvR

 and the second subroutine for solving “basic released state” when  ( ) 0≠tvR
. But 

the problem is, that second subroutine ought to start and finish, see (21), with zero relative 
movement. For this reason it was necessary to divide this subroutine into two subroutines (but 
with very similar structure). For the solution of the discussed algorithm we worked out three 
subroutines in Simulink.   
 
Parameters for test of the system with chirp excitation signal 
 

The system with friction was tested by a program in MATLAB with parameters: 

kgm 100= ,  
m

Ns
kVIS 200= . 

Spring constant 
Sk  was chosen so that the natural frequency of the undamped system is: 
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Hzfn 5.1= , nn fπω 2= ,   
m

N
mk nS 88832

≈= ω  , NFSTAT 26= ,    NFKIN 18= . 

The calculation was finished at time sT 9.5max = . 

For excitation the amplitude of “chirp signal” was mA 05.0=  and maximal frequency 

Hzf 0.825max = .   

Coefficient 
ω

k  ought to be computed from equation: 

max

max

max

max

2 T

f

T
k

πω

ω
==   .        (22) 

For our test: 

0.2728
2 max

max

max

max
≈==

T

f

T
k

πω

ω

.    

 
Simulation results 
 
 Simulation results are presented in Fig. 6-9. 
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Fig. 6. System excited with „chirp“ signal, 

1z  is dashed black, 
2z  is full black, 

rz  is grey, circles are time 

borders between the basic states 
 
Conclusions 
 

The friction model proposed in this paper is a static model with stiction, dry and viscous 
frictions. This model was used as a part of simulation of a system that was otherwise linear. The 
excitation was executed with the smooth time function generated in Simulink. In the future we 
would like to use this friction model as part of a more complicated nonlinear model including 
an air–spring. This model will be excited with the measured data for the purpose of 
identification. 

We offer the software (in Matlab 2007) that was shortly described in this paper as a 
freeware. It can be sent to interested persons upon e-mail request. 
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Fig. 7. System excited with the „chirp“ signal, 

INERTIAF  is thick, 
FRICF  is thin, 

DRYF  is doted, 
SF  is dashed, 

force  
2
1

2

dt

zd
m−   is grey, circles are time borders between the basic states 
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Fig. 8. Time zoom of Fig. 7  
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Fig. 9. System excited with „chirp“ signal, 

DRYF  is doted, 
Rv  is grey, circles are time borders between the 

basic states 
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