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Abstract. This paper proposes a time-varying approach used for identification of time-varying 
systems and presents a simulation example of a simple vibration system with time-varying mass, 
stiffness and damping characteristics, which is a five-storey shear-beam building model. Free 
decay acceleration response signals are analyzed to reveal time-varying nature of the system. 
Wavelet analysis is used for system identification. The method is based on a recently developed 
direct identification algorithm. Numerical results confirm that the proposed method is accurate 
and effective in identification of the time-varying system. 

Keyword: time-varying, parameter identification, continuous wavelet, free decay response 
signals, instantaneous frequencies. 
 
1. Introduction 
 

Linear Time-Invariant (LTI) models are usually appropriate and commonly used to describe 
the dynamic behavior of most structural systems. Since the identification of dynamic 
parameters is of prime importance in vibration analysis, a number of different time and 
frequency domain methods have been developed for vibration analysis of LTI systems. 
However, many engineering structures and systems exhibit time-varying dynamic properties. 
This includes aerospace, automotive and civil structures. Therefore major research effort has 
been put recently to develop modeling and system identification techniques for Linear 
Time-Varying (LTV) systems. Various time-varying system identification methods - based on 
different signal processing techniques - have been proposed, such as: state-space identification 
algorithms [1-2], Continuous Wavelet Transform (CWT) techniques [3-6], Empirical Mode 
Decomposition (EMD) and Hilbert Transform (HT) based methods [7-9], adaptive tracking 
methods [10-11], and Functional Series Time-dependent Auto-Regressive Moving Average 
(FS-TARMA) methods [12-13].  

More recently a new identification algorithm for time-invariant systems has been proposed 
[14]. The method is based on continuous wavelet analysis. The CWT can be used for functional 
integration to obtain velocities and displacements from acceleration responses. Then vibration 
differential equations of motion are transformed to linear algebraic equations with wavelet 
expressions. Finally, time-invariant system parameters (that is mass, stiffness and damping) and 
frequency response functions (FRF) are estimated directly by solving these algebraic equations 
for each moment of time.  

The current paper implements and applies the method to time-varying systems to reveal 
time-varying systemic natures (time-dependent stiffness and damping parameters, and 
instantaneous frequencies). A simple model of a five-storey shear-beam building is simulated. 
The work presented illustrates the performance of the method with respect to noise 
contamination. The results are compared with analytical solutions to demonstrate the ability of 
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the method for time-varying system identification. 
 
2. Continuous wavelet transform 
 

The continuous wavelet transform of a function of time )(ty can be defined as following: 

∫
∞

∞−

−

= dt
a

bt
ty

a
bayW )()(

1
),}({ ψ

ψ
          (1) 

where a  is a scale parameter, typically a positive real number;b  is a shift parameter, 

indicating locality of transformation; )(tψ  is a mother wavelet function, and the overbar 

indicates complex conjugate. The notation ),}({ bayW
ψ

 indicates that the function )(ty  is 

mapped to the ),( ba  plane by the wavelet transform with the mother wavelet function )(tψ . 
In this work, we assume that the mother wavelet function )(tψ  satisfies the two following 

conditions: 
1) the mother wavelet function has at least two vanishing moments, i.e.  

1,0,0)( ==∫
∞

∞−

idttt i
ψ             (2) 

2) the mother wavelet has the first and second integrals )(1 tΨ and )(2 tΨ  decaying fast and 

vanishing at infinity, i.e.  
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3. Continuous wavelet transform algorithm for functional integration 
 

Assuming that the first integral )(1 tY  of the function )(ty  exists, the wavelet transform 
of this integral is defined as  
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where 0y  is a constant. Partial integration of the right-hand side of equation (4) leads to the 

following result 
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When conditions given by equations (2) and (3) are fulfilled, the first and third terms of the 

right-hand side in equation (5) are equal to zero. Therefore the CWT algorithm for functional 

integration can be used by applying the wavelet transform to the function )(ty  with )(1 tΨ  
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used as the mother wavelet  
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By analogy, double functional integration can be performed using the same approach, i.e. 

the CWT is applied to )(ty  and )(2 tΨ  is used as the mother wavelet 
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where )(2 tY  is the doubled integral of )(ty ; 1y  and 2y  are arbitrary constants. 
The algorithm presented in this section has been originally proposed by Sone et al. [14] and 

used for identifying the dynamic parameters and Frequency Response Function of linear 
time-invariant systems. In this study, the algorithm is implemented and used for identification 
of time-varying systems; the CWT and acceleration response data are needed to achieve that.  

 

4. Time-varying parameters identification 
 
4. 1 Free vibration differential equations of linear time-varying system 
 

The free vibration differential equations of motion for a p  degrees-of-freedom (DOF) 
linear time-varying system can be defined as: 

 
0)()()()()()( =++ tttttt xKxExM ɺɺɺ           (8) 

 
where )(tM , )(tE  and )(tK  are ( pp× ) time-varying mass, damping and stiffness 
matrices respectively; )(tx  is ( 1×p ) displacement vectors. The velocity vector )(txɺ  and 
the displacement vector )(tx  can be obtained using functional integration of )(txɺɺ  
acceleration data  

0
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where )0(x , )0(xɺ  and )0(xɺɺ  are constant vectors determined by initial conditions. 
 
4. 2 Time-varying parameters identification method 
 

When the mother wavelet function )(tψ  is selected to satisfy both conditions given by 
equations (2) and (3), equations (9) and (10) can be substituted into the equation of motion 
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given by Equation (8). Without loss of generality, assuming that system mass coefficients 
( )(tM  matrix) are time invariant or their time-varying rules are known experimentally. 
Assuming the system )(tE  and )(tK  matrices are approximately constant in a very short 
time, then applying the CWT to the response signals of equation (8), and using equations (6) 
and (7), the following equation can be obtained 
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Rewriting the above equation leads to 
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or in a matrix form: 
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Equation (12) or (13) represents a set of linear algebraic equations given for different time 
instants. Under the assumption that system mass properties are known in advance, and by 
considering a sliding time window of proper length (in order to compromise parameter tracking 
with achievable accuracy), an over-determined set of equations may be set up and solved in a 
linear least squares in order to obtain estimates of the system parameters (stiffness and damping) 
corresponding to the central time instant of the sliding time window. Instantaneous frequency 
estimates may be subsequently obtained by solving the eigenvalue problem. 

 
5. Numerical simulations 
 

Numerical simulations are performed to validate the identification algorithm presented in 

Section 4 and to demonstrate the capability of the method for time-varying system identification. 

A five-storey shear-beam building model is shown in Figure 1. The mass coefficients are 

assumed as m1 = m2 = m3 = m4 = m5 = 5 kg, the stiffness coefficients and damper coefficients are 

K1 = K2 = K3 = K4 = K5 = 80000 N/m and E1 = E2 = E3 = E4 = E5 = 3 N·s/m respectively. The first 

five natural frequencies of the system are 5.7 Hz, 16.7 Hz, 26.4 Hz, 33.9 Hz and 38.6 Hz. Free 

vibration responses data are calculated using Newmark-beta method. All initial displacements 

and velocities condition are set to zeros but the initial values of accelerations are assumed as 

5000 m/s2. The free decay acceleration signals are sampled at 1000=sf  Hz and the duration 

of the signals is two seconds (T = 2s). 
The Mexican hat mother wavelet function is used in the wavelet-based identification 

algorithm. The Mexican hat wavelet function can be defined as 
 

25.024 )36()( tettt −

−+−=ψ             (14) 

 

It is easy to check that this function satisfies equations (2) and (3) needed for the performed 

analysis. The identification algorithm utilizes the following values of wavelet scale and shift 

parameter 0.012 ,ja ⋅

=  0.012 (16 8),jb k⋅

= +  where 680−=j and 0 : 0.001:12.999.k =  To 
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estimate the time-varying system physical parameters and instantaneous frequency, the 

acceleration response signals of all five masses are needed. In this example 1000 samples are 

used for setting up the linear least squares problem. 
 

 
Fig. 1. A five-storey shear-beam building model 

 
The identification algorithm, presented in Section 4, is applied to reveal the time-varying 

nature of the system. Three time-varying cases, i.e., the abruptly, smoothly and periodically 
varying scenarios, are studied to verify the ability and robustness of the identification algorithm. 

The estimated physical parameters and instantaneous frequencies are shown in the 
following figures extracted for the LTV building model. The results demonstrate that all 
physical parameters and natural frequencies can be tracked relatively well using the acceleration 
responses.  

Case 1: A linear time-varying system with abruptly varying damping and stiffness. 

ttm 2.05)(5 −=  known in advance. 
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)()( 42 , the other mass, stiffness 

and damping coefficients are assumed as constant at their initial values. 

Figures 2 - 3 illustrate the identification of abruptly varying stiffness and damping (dotted 
lines), which are compared with analytical solutions (solid lines). The estimated instantaneous 
frequencies are shown in Figure 4 and 5. Results indicate that the proposed identification 
algorithm has a good capability of tracking parametric abrupt changes of the LTV system. 

It is easy to see the abrupt jump in the physical parameters and instantaneous frequencies of 
the system can be tracked using the proposed identification algorithm using free vibration 
acceleration response data. The estimated results with the dotted line shown in Figure 3 reveal 
an abrupt change in the stiffness from 80000 to 50000 N/m, which matches with the 
corresponding true changes denoted with the solid line at st 1.1= . However, it is noted that 
there exists larger identification error at the time instance when the system stiffness has an 
abrupt change. This indicates that the proposed method has poor capability in tracking abrupt 
variations due to the assumption that the system exhibits the same time-varying properties 
during the time intervals in the development of the parameter identification equations in   
Section 4. 

Case 2: A linear time-varying system with smoothly varying damping and stiffness. 

ttm 2.05)(5 −=  known in advance; ttE 5.03)(2 += ; ttK 2000080000)(5 −= , the other 
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mass, stiffness and damping coefficients are assumed as constant at their initial values. 
Figures 6 and 7 provide the identification of smoothly varying damping E2 and stiffness K5 

(dotted lines), which are compared with analytical solutions (solid lines). The estimated 
instantaneous frequencies are shown in Figure 8 and 9. Results demonstrate that the proposed 
identification algorithm has a good capability of tracking the parametric smooth changes of the 
LTV system.  

Case 3: A linear time-varying system with periodically varying damping and stiffness. 

ttE π−= cos5.03)(2 ; ttK π−= cos3000080000)(4 , the other mass, stiffness and damping 

coefficients are assumed as constant at their initial values. 
Figures 10 - 11 show the identified results for the periodically time-varying damping 

coefficient E2 and stiffness coefficients K4 respectively. It can be observed that the dotted lines 
(the identification values) are found varying around the solid lines (the true values) very well. 
The proposed method is shown to be capable of tracking the periodical change of stiffness 
during the whole time duration. It is noted that there is a little phase shift between the estimated 
result and the corresponding true value in Figure 10. This phase shift is due to some time 
instants used for calculation at each discrete time instant. It is noted that the instantaneous 
frequencies cannot be correctly identified for the beginning and end of the analyzed time 
records in Figure 12 and 13. The proposed algorithm has no capability of tracking the system 
parameter variations there due to the edge effects related to the CWT calculations. 
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Fig. 2. Comparison of true value and the identified damping coefficient E3 for the abruptly time-varying 
structure 
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Fig. 3. Comparison of true value and the identified stiffness coefficient K2 for the abruptly time-varying 
structure 
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Fig. 4. Comparison of true value and the identified instantaneous frequencies for the abruptly time-varying 
structure 
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Fig. 5. Comparison of true value and the identified instantaneous frequencies for the abruptly time-varying 
structure 
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Fig. 6. Comparison of true value and the identified damping coefficient E2 for the smoothly time-varying 
structure 
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Fig. 7. Comparison of true value and the identified stiffness coefficient K5 for the smoothly time-varying 
structure 
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Fig. 8. Comparison of true value and the identified instantaneous frequencies for the smoothly 
time-varying structure 
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Fig. 9. Comparison of true value and the identified instantaneous frequencies for the smoothly 
time-varying structure 
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Fig. 10. Comparison of true value and the identified damping coefficient E2 for the periodically 
time-varying structure 
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Fig. 11. Comparison of true value and the identified stiffness coefficient K4 for the periodically 
time-varying structure 
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Fig. 12. Comparison of true value and the identified instantaneous frequencies for the periodically 
time-varying structure 
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Fig. 13. Comparison of true value and the identified instantaneous frequencies for the periodically 
time-varying structure 

 

In order to assess the capability of the method for system identification under noisy 
conditions, the response signals are contaminated with the zero-mean Gaussian white noise. The 
signal-to-noise ratio (SNR) is defined as: 

SnSrs=SNR                (15) 

where Srs  is the “pseudo” (aggregate over the time duration) standard deviation of the 
original response signal and Sn  the “pseudo” standard deviation of the added noise. The 
simulated responses are calculated and their Srs  levels estimated. The level of Sn  is then 
determined from a given value of SNR. A standard Gaussian white noise with zero mean and a 
unit standard deviation is then generated, multiplied with the valueSn  and added the response 
data in order to produce contaminated responses. The analyzed SNR values are equal to 100, 90, 
80, 50 and 30. 

Tables 1 and 2 compare the true (analytical) and identified instantaneous frequencies for 
different noise levels. The Mean Absolute Percentage Error (MAPE) defined as: 

∑

=
×

−

=
N

i
i

ii

P

PP

N 1
%100

ˆ
1

MAPE             (16) 

is used to assess the performance of the method. iP , iP̂  designate the true and identified 
natural frequency, respectively, at the thi −  time instant and N  the total number of time 
instants. The results in Tables 1 and 2 demonstrate good performance of the method with 
respect to the considered noise levels. All five instantaneous natural frequencies are identified 
correctly; the estimated MAPE error in all the cases is smaller than 4.5%. 
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Table 1. Errors of identification (MAPE) using noisy data (different SNR values) with smoothly varying 
parameters 

SNR f1 (%)   f2 (%) f3 (%)  f4 (%) f5 (%) 

Without noise 0.066 0.840 1.139 0.788 0.585 

100 0.791 0.838 1.141 0.792 0.605 

90 0.974 0.840 1.138 0.786 0.615 

80 4.249 2.057 1.139 0.784 0.622 

50 4.440 1.832 1.139 0.791 0.642 

30 4.497 1.591 1.136 0.808 0.747 

 

Table 2. Errors of identification (MAPE) using noisy data (different SNR values) with periodically 
varying parameters 

SNR f1 (%)   f2 (%) f3 (%)   f4 (%) f5 (%) 

Without noise 0.873 2.072 0.244 1.219 1.588 

100 1.314 2.075 0.243 1.223 1.598 

90 1.329 2.069 0.245 1.228 1.601 

80 1.414 2.068 0.246 1.218 1.585 

50 2.963 2.451 0.246 1.229 1.620 

30 3.626 2.116 0.248 1.240 1.687 

 
6. Conclusions 
 

A linear time-varying system identification algorithm was postulated using a CWT-based 
integration procedure that transforms the differential equations of motion into linear algebraic 
equations. Under the assumption of the systemic mass properties are know in advance, varying 
system parameters (stiffness and damping) are extracted by solving the linear algebraic 
equations via a Linear Least Squares procedure within a sliding time window and the 
instantaneous frequencies are subsequently identified by solving the eigenvalue problem. 

The performance of the method was illustrated using a simulated LTV five-storey 
shear-beam building model. The results demonstrated good performance of the identification 
method. Time-varying stiffness and damper parameters and instantaneous frequencies were 
established correctly for various noise levels.  
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