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Abstract. This paper proposes a time-varying approach usetlémtification of time-varying
systems and presents a simulation example of desivitration system with time-varying mass,
stiffness and damping characteristics, which isva-$torey shear-beam building model. Free
decay acceleration response signals are analyzesvéal time-varying nature of the system.
Wavelet analysis is used for system identificatibime method is based on a recently developed
direct identification algorithm. Numerical resuttsnfirm that the proposed method is accurate
and effective in identification of the time-varyisgstem.

Keyword: time-varying, parameter identification, continuowswelet, free decay response
signals, instantaneous frequencies.

1. Introduction

Linear Time-Invariant (LTI) models are usually appriate and commonly used to describe
the dynamic behavior of most structural systemaic&ithe identification of dynamic
parameters is of prime importance in vibration gsigl a number of different time and
frequency domain methods have been developed foration analysis of LTI systems.
However, many engineering structures and systerhibiéxime-varying dynamic properties.
This includes aerospace, automotive and civil stimes. Therefore major research effort has
been put recently to develop modeling and systeemtification techniques for Linear
Time-Varying (LTV) systems. Various time-varyingssgm identification methods - based on
different signal processing techniques - have lpreposed, such as: state-space identification
algorithms [1-2], Continuous Wavelet Transform (CYMEchniques [3-6], Empirical Mode
Decomposition (EMD) and Hilbert Transform (HT) bdseethods [7-9], adaptive tracking
methods [10-11], and Functional Series Time-dependeito-Regressive Moving Average
(FS-TARMA) methods [12-13].

More recently a new identification algorithm fomg-invariant systems has been proposed
[14]. The method is based on continuous waveleltyaisa The CWT can be used for functional
integration to obtain velocities and displacemdras acceleration responses. Then vibration
differential equations of motion are transformedliteear algebraic equations with wavelet
expressions. Finally, time-invariant system paramgefthat is mass, stiffness and damping) and
frequency response functions (FRF) are estimatextttly by solving these algebraic equations
for each moment of time.

The current paper implements and applies the methdéne-varying systems to reveal
time-varying systemic natures (time-dependent rg#6 and damping parameters, and
instantaneous frequencies). A simple model of a-§torey shear-beam building is simulated.
The work presented illustrates the performance h# tnethod with respect to noise
contamination. The results are compared with aitalysolutions to demonstrate the ability of
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the method for time-varying system identification.
2. Continuous wavelet transform

The continuous wavelet transform of a functionimfety(t) can be defined as following:
1 t—b
W y}(a,b)=— t)y (—)dt 1
{W, yX( )££y<)w(a) (1)

where a is a scale parameter, typically a positive reainber;b is a shift parameter,
indicating locality of transformationj/(t) is a mother wavelet function, and the overbar
indicates complex conjugate. The notatifW/, y}(a,b) indicates that the functiory(t) is

mapped to the(a,b) plane by the wavelet transform with the mother elat/function y/(t) .
In this work, we assume that the mother wavelettion i/(t) satisfies the two following

conditions:

1) the mother wavelet function has at least twasking moments, i.e.

Eot‘(//(t)dt =0, i=01 @)

2) the mother wavelet has the first and secondgiats'¥, (t) and'¥,(t) decaying fast and
vanishing at infinity, i.e.

y ($o0) = W) (£o0) = W, (4e0) = 0 ®)

3. Continuous wavelet transform algorithm for functional integration

Assuming that the first integra¥,(t) of the function y(t) exists, the wavelet transform
of this integral is defined as

W, ([y®dni(ab) =% [+ v} -w(%)dt (@)

where Y, is a constant. Partial integration of the rightdhaside of equation (4) leads to the
following result

t—b . a t-b| a t—b
[;{Yl(t) + yo}l//(T)dt “Ta '|:Y1(t)lPl(T):|_x Y [; y(t)lPl(T)dt

a

1 t—b
— ——)dt
* [ yor2) (5)

When conditions given by equations (2) and (3)falféled, the first and third terms of the
right-hand side in equation (5) are equal to z&terefore the CWT algorithm for functional
integration can be used by applying the waveletsfiam to the functiony(t) with P (t)
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used as the mother wavelet

W [YOK @0 =OWO0) + YD) == [y (et

= —a{W, y}(a.b) ®)

By analogy, double functional integration can befgrened using the same approach, i.e.
the CWT is applied toy(t) and P,(t) is used as the mother wavelet

W, (Jfy@®dtdt}(ab) ={W(Y, 1)+ vt + y.)}(ab) =% [ y(t)‘I’z(%)dt

= a*{W,, y}(a,b) (7)

where Y,(t) is the doubled integral ofy(t); y, and y, are arbitrary constants.

The algorithm presented in this section has bemynally proposed by Sone et al. [14] and
used for identifying the dynamic parameters andq&eacy Response Function of linear
time-invariant systems. In this study, the algaritis implemented and used for identification
of time-varying systems; the CWT and acceleratesponse data are needed to achieve that.

4. Time-varying parameter sidentification
4.1 Freevibration differential equations of linear time-varying system

The free vibration differential equations of motifor a p degrees-of-freedom (DOF)
linear time-varying system can be defined as:

M (£)X(t) + E@)X(t) + K ()x(t) = 0 ®)

where M(t), E(t) and K(t) are (px p) time-varying mass, damping and stiffness
matrices respectivelyx(t) is (px1) displacement vectors. The velocity vectift) and
the displacement vectorx(t) can be obtained using functional integration &ft)
acceleration data

X(t) = ]X(t)dt +%(0) 9)

t

X(t) = j x(t)dt + x(0) (10)
0

where X(0), X(0) and X(0) are constant vectors determined by initial condai

4. 2 Time-varying parameter sidentification method

When the mother wavelet functiow (t) is selected to satisfy both conditions given by
equations (2) and (3), equations (9) and (10) carsubstituted into the equation of motion
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given by Equation (8). Without loss of generaliaggsuming that system mass coefficients
(M () matrix) are time invariant or their time-varyingles are known experimentally.
Assuming the systenE(t) and K (t) matrices are approximately constant in a very tshor
time, then applying the CWT to the response sigoélequation (8), and using equations (6)
and (7), the following equation can be obtained

M(b)}{W, X}(a,b) - aE( b){W,, 3(a,b) + a’K(b){W,, X}(a,b) = 0 (11)
Rewriting the above equation leads to

—aB(b}{W, X}(a,b) +a*K(b){W,, %} a,b) =-M(b}{W,x}(a,b) (12)
or in a matrix form;

- a{W\}fl X}

[E® K(b)]-[az{w%.x.}}=—M(b>{wm( a,b) (13)

Equation (12) or (13) represents a set of linegeladaic equations given for different time
instants. Under the assumption that system magsepies are known in advance, and by
considering a sliding time window of proper lengjtih order to compromise parameter tracking
with achievable accuracy), an over-determined §efgoations may be set up and solved in a
linear least squares in order to obtain estimaftéseosystem parameters (stiffness and damping)
corresponding to the central time instant of thdirsl) time window. Instantaneous frequency
estimates may be subsequently obtained by solhmgigenvalue problem.

5. Numerical smulations

Numerical simulations are performed to validate ithentification algorithm presented in
Section 4 and to demonstrate the capability ohtleéhod for time-varying system identification.
A five-storey shear-beam building model is shownFigure 1. The mass coefficients are
assumed agy = m,= M= My = Mg = 5 kg, the stiffness coefficients and damper dciefits are
Ki1= Ky= Kz= K;= Ks= 80000 N/m andE; = E, = Ez= E4;= Es= 3 N-s/m respectively. The first
five natural frequencies of the system are 5.7 #z7 Hz, 26.4 Hz, 33.9 Hz and 38.6 Hz. Free
vibration responses data are calculated using Nekrbgta method. All initial displacements
and velocities condition are set to zeros but tfigal values of accelerations are assumed as
5000 m/é. The free decay acceleration signals are samyplet, &1000 Hz and the duration

of the signals is two secondB£ 2s).
The Mexican hat mother wavelet function is usedthe wavelet-based identification
algorithm. The Mexican hat wavelet function cardeéined as

w(t) = (~t* +6t2 —3)e ™ (14)

It is easy to check that this function satisfiesadgpns (2) and (3) needed for the performed
analysis. The identification algorithm utilizes tf@lowing values of wavelet scale and shift
parametera=2°%,  p=2°% (16k+8), where j = -680 and k=0:0.001:12.99¢ To
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estimate the time-varying system physical pararmset@nd instantaneous frequency, the
acceleration response signals of all five massesaeded. In this example 1000 samples are
used for setting up the linear least squares pnoble

= 'N{)
K (t) E-(t)

[ ()
KL(t) E,(t)

_m_;(T]
K,(t) E,(1)

| m——— NG|
K.(1) E.(t)

_m-_( I’]
K, (1) E,(1)

Fig. 1. Afive-storey shear-beam building model

The identification algorithm, presented in Sectignis applied to reveal the time-varying
nature of the system. Three time-varying cases, the abruptly, smoothly and periodically
varying scenarios, are studied to verify the apditd robustness of the identification algorithm.

The estimated physical parameters and instantané®agiencies are shown in the
following figures extracted for the LTV building mel. The results demonstrate that all
physical parameters and natural frequencies cdrabked relatively well using the acceleration
responses.

Case 1: Alinear time-varying system with abruptly vargidamping and stiffness.
mg(t) =5- 02t known in advance.

3 t<1ls 80000 t<11s
Es(t)=E5(t)={ < ; Kz(t)=K4(t)={ < the other mass, stiffness

4 t>11s’ 50000 t>11s’

and damping coefficients are assumed as constémtiainitial values.

Figures 2 - 3 illustrate the identification of aptly varying stiffness and damping (dotted
lines), which are compared with analytical solusidsolid lines). The estimated instantaneous
frequencies are shown in Figure 4 and 5. Resulifcate that the proposed identification
algorithm has a good capability of tracking paraimetbrupt changes of the LTV system.

It is easy to see the abrupt jump in the physieaameters and instantaneous frequencies of
the system can be tracked using the proposed figatibn algorithm using free vibration
acceleration response data. The estimated resitlistve dotted line shown in Figure 3 reveal
an abrupt change in the stiffness from 80000 to0BOOI/m, which matches with the
corresponding true changes denoted with the sl 4t t = 1.1s. However, it is noted that
there exists larger identification error at the dinmstance when the system stiffness has an
abrupt change. This indicates that the proposethadehas poor capability in tracking abrupt
variations due to the assumption that the systehibéx the same time-varying properties
during the time intervals in the development of {@rameter identification equations in
Section 4.

Case 2: Alinear time-varying system with smoothly vargidamping and stiffness.
mg(t) =5- 02t known in advance;E,(t) =3+ 05t; Kg(t) =80000-2000Q, the other
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mass, stiffness and damping coefficients are ass@meonstant at their initial values.

Figures 6 and 7 provide the identification of snibptvarying dampingd=, and stiffnes¥s
(dotted lines), which are compared with analytisalutions (solid lines). The estimated
instantaneous frequencies are shown in Figure 89amesults demonstrate that the proposed
identification algorithm has a good capability tfaking the parametric smooth changes of the
LTV system.

Case 3: Alinear time-varying system with periodicallyrying damping and stiffness.

E,(t) =3- 05cosnt; K,(t) =80000-3000Ccosnt , the other mass, stiffness and damping

coefficients are assumed as constant at theialinigilues.

Figures 10 - 11 show the identified results for feriodically time-varying damping
coefficientE, and stiffness coefficients, respectively. It can be observed that the doftesb|
(the identification values) are found varying arduhe solid lines (the true values) very well.
The proposed method is shown to be capable ofitradke periodical change of stiffness
during the whole time duration. It is noted thadrthis a little phase shift between the estimated
result and the corresponding true value in Figuwe This phase shift is due to some time
instants used for calculation at each discrete ftins¢ant. It is noted that the instantaneous
frequencies cannot be correctly identified for theginning and end of the analyzed time
records in Figure 12 and 13. The proposed algoritas no capability of tracking the system
parameter variations there due to the edge effetated to the CWT calculations.

—True
*==+ |dentified

4.5

E3 /(Ns/m)
w
S

2% 05 1 15 2
ti(s)

Fig. 2. Comparison of true value and the identified dampingfficientE; for the abruptly time-varying
structure

4
8.5% 10

—True
-=== |dentified

7.5F

K, /(N/m)
(o]
SL

L L L
4% 0.5 1 15 2
ti(s)

Fig. 3. Comparison of true value and the identified stiémeoefficientK, for the abruptly time-varying
structure
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Fig. 4. Comparison of true value and the identified insiaebus frequencies for the abruptly time-varying
structure
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Fig. 5. Comparison of true value and the identified insiaebus frequencies for the abruptly time-varying

structure
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Fig. 6. Comparison of true value and the identified dampuogfficientE, for the smoothly time-varying
structure
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Fig. 7. Comparison of true value and the identified stéfmeoefficienKs for the smoothlytime-varying
structure
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Fig. 8. Comparison of true value and the identified instaebus frequencies for the smoothly
time-varying structure
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Fig. 9. Comparison of true value and the identified insaaeous frequencies for the smoothly
time-varying structure
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Fig. 10. Comparison of true value and the identified dampougfficient E, for the periodically

time-varying structure
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Fig. 11. Comparison of true value and the identified séffa coefficientk, for the periodically
time-varying structure
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Fig. 12. Comparison of true value and the identified inttaaous frequencies for the periodically

time-varying structure
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Fig. 13. Comparison of true value and the identified insiaebus frequencies for the periodically
time-varying structure

In order to assess the capability of the method sigstem identification under noisy
conditions, the response signals are contaminatitihe zero-mean Gaussian white noise. The
signal-to-noise ratio (SNR) is defined as:

SNR=Ss/S (15)

where S's is the “pseudo” (aggregate over the time duratistdndard deviation of the
original response signal ané the “pseudo” standard deviation of the added ndlde
simulated responses are calculated and ti&8 levels estimated. The level dfn is then
determined from a given value of SNR. A standardsS&n white noise with zero mean and a
unit standard deviation is then generated, mustiplivith the valu&n and added the response
data in order to produce contaminated responsesamalyzed SNR values are equal to 100, 90,
80, 50 and 30.

Tables 1 and 2 compare the true (analytical) amdtifled instantaneous frequencies for
different noise levels. The Mean Absolute Percemtagor (MAPE) defined as:

i
P

MAPE = %z x100% (16)

is used to assess the performance of the methbd.P designate the true and identified
natural frequency, respectively, at the-th time instant andN the total number of time
instants. The results in Tables 1 and 2 demonstyatel performance of the method with
respect to the considered noise levels. All fivgtantaneous natural frequencies are identified
correctly; the estimated MAPE error in all the casesmaller than 4.5%.
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Table 1. Errors of identification (MAPE) using noisy datafferent SNR values) with smoothly varying
parameters

SNR f1 (%) f2(%) f3(%) fi(%) f5(%)
Without noise 0.066 0.840 1.139 0.788 0.585
100 0.791 0.838 1.141 0.792 0.605
90 0.974 0.840 1.138 0.786 0.615
80 4249 2.057 1.139 0.784 0.622
50 4440 1.832 1.139 0.791 0.642
30 4497 1591 1.136 0.808 0.747

Table 2. Errors of identification (MAPE) using noisy datdifferent SNR values) with periodically
varying parameters

SNR f1 (%) (%) f3(%) (%) f5(%)
Without noise  0.873 2.072 0.244 1.219 1.588
100 1.314 2075 0.243 1.223 1.598
90 1.329 2069 0.245 1.228 1.601
80 1.414 2068 0.246 1.218 1.585
50 2.963 2451 0246 1.229 1.620
30 3.626 2116 0.248 1.240 1.687

6. Conclusions

A linear time-varying system identification algdwit was postulated using a CWT-based
integration procedure that transforms the diffaedréquations of motion into linear algebraic
equations. Under the assumption of the systemics peperties are know in advance, varying
system parameters (stiffness and damping) are atettaby solving the linear algebraic
equations via a Linear Least Squares procedureinwish sliding time window and the
instantaneous frequencies are subsequently idshtify solving the eigenvalue problem.

The performance of the method was illustrated usimgsimulated LTV five-storey
shear-beam building model. The results demonstrgtedl performance of the identification
method. Time-varying stiffness and damper parameterd instantaneous frequencies were
established correctly for various noise levels.
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