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Abstract. This research presents the application of moderaytcal approaches for the
nonlinear vibrations of cantilever beams. Thesehowd are Homotopy Analysis Method,
Parameter Expansion Method and Bubnov-Galerkin Weiy Residual Method. Powerful
analytical methods are used to obtain frequencyhtudp relationship of dynamic behavior of
the mentioned system. It is demonstrated that erm in series expansions of all methods are
sufficient to obtain a highly accurate solutiomdlly, a comparison with numerical methods is
provided in order to confirm the soundness of thiaimed results.

Keywords: homotopy analysis method, He's parameter expandiathod, Bubnov-Galerkin
method, nonlinear vibration of beam.

Introduction

Common structures such as aircraft wings, bridgesdings etc. can be modeled as beams
and their significant applications, makes neces#lagystudy their dynamic behavior at large
amplitudes. Many investigators have studied noalineibrations of beams [1-22]. These
research works predict the nonlinear frequencigh@beams, which are very important for the
design of many engineering structures. An exaaniédation of the beam problem was first
investigated in terms of general elasticity equeti¢g23]. The problem of the transversely
vibrating beam was formulated in terms of the pardifferential equation of motion, an
external forcing function by many researchers.

In recent times, substantial progresses had beele maanalytical solutions for nonlinear
equations without small parameters [24-40]. Theawehbeen several classical approaches
employed to solve the governing nonlinear diffei@nequations to study the nonlinear
vibrations including perturbation methods, formdtion approximations, semi-analytical finite
element, artificial small parameter, energy balamoethod, Adomian’s decomposition,
variational iteration method, frequency amplitudenfulation, HAM, multiple scales method,
homotopy perturbation method (HPM) and He’s paremekpanding method. The application
of new equivalent function for dead-zone nonlingaon the dynamical behavior of beam
vibration using HPEM has been investigated by [15].

In this work the nonlinear ordinary differentialiedion of beam vibration is extracted from
partial differential equation with first mode apgimation, based on a Galerkin theory. The
results presented in this paper exhibit that thesalytical methods are very effective and
convenient for nonlinear beam vibration for whidte thighly nonlinear governing equations
exist. The proposed analytical methods demonsttze one term in series expansions is
sufficient to obtain a highly accurate solutiorbefam vibration.

Equation of motion

Let us consider a beam shown in Fig. 1 with thenshba mass per unit length of the beam
m, moment of inertia of the cross-sectidbn modulus of elasticitye and let us assume that
the Euler-Bernoulli theorem can be accepted. Teeufial in-plane vibration of the cantilever
beam is, as follows [18]:
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Here, X is the axial coordinate measured from the origindenotes the lateral vibration in
direction. Assumingv(x,t) = g(t) (X, where gD(X) is the first eigenmode of the clamped-free
beam and can be expressed as:
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where A =1.875 is the root of characteristic equation for thestfieigenmode. Applying the
weighted residual Bubnov-Galerkin method yields:
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Fig. 1. Cantilever beam model

So, we can obtain the nonlinear equation in terfriseotime-dependent variables as:

G+ 6,0+ 8,0 + 6,0 + 8, ¢ =0 4)
where:
B, =12.362&1/ml* 3,= 40.4&|/ ml G,=3,= 4/6 )

Four analytical methods are employed to solve neali ordinary Eq. (4) analytically.

Overview of the analytical procedures
1. He's Parameter Expanding Method

Consider the Eq. (4) for the vibration of a camileEuler-Bernoulli beam in the following
form:

L4+ 8,0+1]8,¢ + B,a¢ + 8, dg= 0 (6)

with the following general initial conditions:
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a0)= A, (0=0 (7)
The limit-cycles of oscillating systems are perétiotions with the period = 2r/w , and

thus q(t) can be expressed by such a set of base functions:

cosimwt), m=1,2,3,.. (8)

We denote the angular frequency of oscillationdbyand note that one of our major tasks is
to determinew(A), that is, the functional behavior of as a function of the initial amplitude

A. In the HPEM, an artificial perturbation equatienconstructed by embedding an artificial
parameterp €[0,1] which is used as an expanding parameter.

According to HPEM, the solution of Eq. (6) is exdad into a series op in the form:

a(t) = ()+ pa(y+ B g(d+.. 9)

The coefficientdl and 5, in Eq. (4) are expanded in a similar way:

1=1+pa+ pPa+..
By =w*—ph— p’l+... (10)
1=pc+ PG +...

where a, b, ¢ (i=1,2,3,...are to be determined. Whep=0, Eq. (6) becomes a linear
differential equation, for which an exact soluticen be calculated fop =1. Substituting Egs.
(10) and (9) into Eq. (6), we have:

(1+pa) (6 + Pa)+(— PO g+ P+ po- PHOL o ML & WA o @
o+, + pa)* (G pig =0

Collecting the terms of the same power pfin Eq. (11), we obtain a series of linear
equations which the first equation is:

&()+*q()=0,  q(0=A §(0=0 (12)
with the solution:
0 (t) = Acos(wt) . (13)

Substitution of this result into the right-handesinf the second equation gives:

() +w'a ()= hA-S 63, Rtaqh, A g AP T g, A%t abcosw )
4 4 4 (14)

+;—6qﬂ3Acos( 2ut)+7‘1fqﬁ?(ﬂ4w2+65w2—ﬂ2) co$ 31) .

Solution of Eqg. (14) should not contain the soadlsecular term:os(wt). To ensure this,

the right-hand side of this equation should nottaimnthe termsos that is, the coefficients of
cosmust be zero:
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3 3 1
blA—ZqﬂzA%+4q/33A+Z <‘ﬁ5ﬁw2—z @, A+ ah*|=0 (15)
Eqg. (10) for one term approximation of series wihpect top and for p=1 yields:
a=0h=uw"-0,G=1 (16)

From Egs. (15) and (16), we can easily find thatdblutionw is:

w(A)=J W+ PR 17)
4—|—364A —B3A

2. Homotopy Analysis Method
Consider the nonlinear differential equation ineyahform:

N[Y(9]=0 (18)
where N is a differential operator and(t) is a solution. Applying the HAM to solve it, we

first need to construct the following family of exjions:

(L-a){L[o(t.a)—=% (9]} = haNe(t g| (19)

where L is a properly selected auxiliary linear operagtisying:

L(0)=0 (20)

h# Qis an auxiliary parameter, aﬁtg(t) is an initial approximation. Obviously, whep=0

Eqg. (30)gives:

6(t,0)=Y,(1). (21)
Similarly, wheng =1, Eq. (19) is the same as Eq. (18) so that we have:

(1,1 =Y(1). (22)

Suppose that Eq. (19) has solutiéfl,q) that converges for ald < q <2l1and for properly
selectedh and the auxiliary linear operatok . Suppose further thaﬁ(t,q) is infinitely
differentiable atqg =0, that is:
9"0(t,q)

o , k=1,2,3,.. (23)

q=0
exists. Thus, ag increases from 0 to 1, the solutiﬁlﬁt,q) varies continuously from the initial
approximationY, (t) to the solutionY(t) of the original Eq. (18). Clearly Eqgs. (18) and (19
give an indirect relation between the initial appneation Y, (t) and the general solutio¥i(t).
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A direct relationship between the two solutionsdsscribed as follows. Consider the
Maclaurin’s series of/(t,q) aboutq as:

() =0(L0)+> V() f | (24)
where:
1 9%0(t,q
Yk(t)zﬁ% : (25)
g=0

Assume that the series (24) convergesg atl. From Egs. (21), (22) and (24), we have the
relationship:

Y(t):\g(t)jti\((b. (26)

k=1

HAM provides a general approach to derive the gower equation onk(t). Substituting

the series (24) into Eq. (19) and equating thefaoeft of the like power ofg, we get thek-th
order deformation equations:

L[Yk(t)_XkYk—l(t)]: hR( )' (27)

where:

1 dN[o(t,q)]

Rx(t): (k—l)! dd* ‘ (28)
q=0
and
0, k<1.
Xk:{l’ k< 2. (29)

It is very important to emphasize that Eq. (27)lireear. If the first k-1)-th order
approximations have been obtained, then the rightifsideR, (t) will be obtained. The limit-

cycles of oscillating systems are periodic motianth the periodT = 2r/w , And thus y(T)
can be expressed by such a set of base functions:

{cogkr) k= 0,1,2,3,}. (30)
that

y(r)= (3. cos(kr)) . { 9= A, % 9= ¢ @y
where 3, are coefficients. It is obvious that:

Yo(7) = Acos(7) (32)
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is a good initial guess oj/(T). To ensure this under the rule of solution expressiooribesi
by (31), one chooses such an auxiliary linear operator:

%0 7,0
o) = 22D gr,q), )
T
that
L[Ccosr|= 0, (34)
where C is coefficient. Then, due to Eq. (19), one defines thelimear operator:
9% (,q) 96(r,q) 0%0(7,q)
N[o(r.a).0(d)] =9 (d— 5=~ Fo(r. 4. — — —5— (9. (35)
Then, 6(7,q), 2(q), can be expanded in the Maclaurin series|afs follows:
400
(m,a)=>_ Y () d, (36)
k=0
+oo K
Qa)=> w, d (37)
k=0

To ensure this, the right-hand side teRI(t) of (28) should not contain the terng®s, i. e.

the coefficients ofcos must be zero. So, rewrite:
(k)
R(7) = 2. (Gmcos(mr)). (38)

m=1

Then, one gains one algebraic equation as:
Cea (worwsr i 1A A Ay A ) = O (39)
which determinew, , as a function ofA_, . Under transformatiomr = wt Eq. (4) becomes:
w'q"+ 5,0+ 5,0+ Bw’ad’+ 8w’ q d =0. (40)

Substituting Eq. (32) into Eq. (35), we get the algebrajc(B9) for this situation and this
yields the following formula for nonlinear frequency, whistthe same as Eq. (17):

\/(4— £25,+3K5,)(3K6,+ 43,
A= 4— A3, + 3A23, '

(41)

“o

3. Bubnov-Galerkin Method
Perhaps the best known of the approximate methods i8ubeov-Galerkin procedure.
Consider the initial boundary value problem:
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G+u'a+ f(a89=0 d0= A 49=0 (42)

To develop this method, select a trial solutiqbr(t), which satisfies initial conditions only.
In this method the weighting functions are chosen to bédkes functions of the trial solution,
i. e

w(t)= g (1)- (43)

To select the optimal function fcw(A) , the equation residual:

R(a()=8+ g+ f(q g (44)
is created. If the trial function is the exact solution, them résidual is zero. According to
Galerkin weighted residual procedure, weighted integrbthie equation residuaR. must be
equal to zero, i. e.:

2mjw

Hw)= [ w(t)Re (g (1) dt=0. (45)

0

By forming the equation residual, we have:

A

I(w): "

(BAw? + 48, — 4w®— 3A’Bw° + 3AB,) . (46)

The solution of the Eq. (46) with respectadogives:

w(A)=J Wt VR (47)
4—|—364A —ﬂsA

Discussion

To verify the accuracy of the obtained analyticalusons, the authors plot the analytical
solutions and numerical results simultaneously.

Amplitude (cm)

L L
5 6

0 { ”L 3 4

Normalized Time (o t)

Fig. 2. Comparison of the results of analytical solutiaith the numerical solution.
Symbols: numerical solution; Solid line: analytisalutions
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As can be observed in Fig. 2, the obtained firsteorapproximation ofq(t) using five

analytical methods shows an excellent agreemert witmerical results using fourth-order
Runge-Kutta method. The exact analytical soluti@xbibit that the first term in series
expansions is sufficient to achieve a highly acusalution of the problem. Table 1 shows the
values for nonlinear frequencies, as a function of amplitudeA, for different values of

system parameters.

Table 1.Nonlinear frequenciesy, as a function of amplitudé

System parameters W,

A B, x10° B, x10° B, x10°

1 65.5 214.4 4.6 256.0947033
2 41.9 137.2 4.6 204.8037687
3 2.62 2.143 1.149 51.20024855
4 5.9 4.82 1.149 76.80141328
5 94.4 308.7 4.6 307.2553308
10 128.45 420.2 4.6 358.6670051
20 132.94 434.88 4.6 365.6475255

Conclusion

In this research work modern powerful analyticaltimels were employed to solve the
governing equation of nonlinear vibration of a damer beam. The analytical solutions yield a
perceptive understanding of the effect of systeramaters and initial conditions. The accuracy
of the obtained analytical solutions is verified bymerical methods. The accuracy of the
results demonstrates that these methods can batiptitg used for the analysis of strongly
nonlinear oscillation problems.
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