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Abstract. This article attempts to analyze the Hopf bifureatbehavior of a railway wheelset
in the presence of dead-zone and yaw damper naniiies. A model that is more precise than
Yang and Ahmadian is investigated. Using Bogoliubitropolsky averaging method and
critical speed, the amplitude of the limit cycletive presence of the mentioned nonlinearities is
taken into consideration. To solve these nonlimegrations analytically, the integration interval
has been divided into three sub-domains. Two-dimeasbifurcation diagrams are provided to
illustrate the mechanism of formation of Hopf bdation. These diagrams can be used for
design of stable wheelset systems.

Keywords: Hopf bifurcation, hunting, rail wheelset, discontinuous nonlinearignalytical
approach.

Introduction

High-speed railway vehicles are assuming an ewgeasing importance in today’'s
transportation infrastructures. As the velocityaif vehicle increases, the vehicle becomes less
stable and ultimately exhibits rigorous oscillaspnamely “Hunting”. It has been only last two
decades that analyses have been made incorposating of the more important nonlinearities
that lead to the occurrence of the hunting, suchleerances between components, the wheel
flange contacting forces, dry friction in suspens@mmponents etc. Yang and Ahmadian [1]
reported that De Pater [2] used Krylov and Bogaiwh3] method to examine limit cycle
behavior of a two-axle bogie with cylindrical wheelaw and Brand [4] used the same method
to analyze the dynamics of a single wheelset hawinged wheel profiles and flange contact,
where they modeled the effects of this flange fdvgea linear rail spring with a dead-band
equal to the flange clearance.

The nonlinear studies led to more advanced resebathused bifurcation and chaos theory
in dynamic systems. Huilgol [5] first investigatdte Hopf bifurcation in a wheelset, in the
presence of the nonlinear contact force betweemvttel and the rail. Later, Lohe and Huilgol
[6] found an asymmetric oscillation in their nunoali simulation. Subsequently, a group of
scientists led by True Hans [7] further studied hifercations in two rail bogie models, where
nonlinear creep force and dead-band wheel/rail aminforce are considered. They found
periodic, bi-periodic and chaotic behavior in thmodel and stated that subcritical Hopf
bifurcation is popular in rail vehicles. The retatship between the damping and the critical
hunting speed of a truck has been studied by Wgk&n9]. Chung and Shim [10] studied the
Hopf bifurcation in a rail bogie. They found thatroducing hysteretic nonlinearity leads to
supercritical bifurcation. Pombo and Ambrésio [Hijalyzed the implementation of a multi
joint wheel-rail contact model to railway dynamiossmall radius curved tracks. Yang and
Ahmadian [12] analyzed Hopf bifurcation in a wheelsn the presence of nonlinear yaw
damper in a primary suspension system.

The flange force is modeled as a linear springdassia nonlinear fourth order damping
including a dead-zone due to the wheel/rail clezga$edighi et al. [13-18] have modeled the
dead-zone nonlinearity and other discontinuitiemgigontinuities based function to facilitate
the severe computational issues that are encodntetbe analytical investigations of nonlinear
problems. This investigation emphasizes the inftesnof suspension nonlinearities and the
wheel/rail interface nonlinearities on Hopf bifutiod. Frequency of the limit cycle is found
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analytically. Also using the Averaging method atien between the limit cycle amplitude and
parameters of the system is introduced. Theseiortatead to several analytical criteria for
prediction of possibility of hunting behavior. Twddmensional bifurcation diagrams are
depicted to study the Hopf bifurcation in the syste

Governing equations of motion of a single-axle whéset

The wheelset is considered to be a 4 degreeseaddra system and is illustrated in Fig. 1.
z
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Fig. 1. Free-body diagram for wheelset

The equations of motion are organized using Newts&tond law of motion fog y, zand
¢ as follows:

m/vy: Fly + Fry - Nr Sin(ﬂr _99)—’— NI Sin(ﬁl +<P)+ FS,Y B FT (1)
it = (L =y )0 = a(F, — F,,) s [N, sin(5, — )+ N, sin(5, +)

2
+Mzr+MZ| +a1/)(Fry_F|y)+Ms,z_2de ( )
=Ly =11 )00 =[N, sin(g, —0)R =N, sin( + )R | +(M,, +M, ) 3)
+R R —Fy|+a-N, cos(8, —¢)+ N, co$ +¢)|+R [F,¢—F,|+a[-F, +F,]
m,Z=F,+F,+N, cos3, —¢)+ N, co$s +¢)—m,g (4)
where:
Fxp =—Tf4 pr = _fllfy - f12€.’~‘p’ MZp = flgy - f2§sp ()

and ¢ is the Kalker's creepages, for roll, pitch and yates of the left and the right contact
planes. Fig. 2 provides that the suspension fornethe lateral direction,F;, and the
suspension moments in the vertical directidty ,, acting on the wheelset:
F,,=—2K,y—2C y,M_, =— XK b’y (6)
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Fig. 2. The wheelset model
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The nonlinear longitudinal yaw damping fordg, and the flange contact forcg; is
described as follows:

CV, +CV2+CV 2 +CV,* V, >0 K (y—=6) y>é
F, = , FF=10 —6<y<$é (7)
Clvu - szpz + C3V;‘)3 _C4\/p‘)4 V;‘) < O Kr (y+6) y < _6

where V, = by and the coefficients<C, to C, are obtained from experimental tests on the
actual dampers by [12]. The constaft is the wheel/rail contact lateral stiffness, ands the

flange clearance. Assumingo=\y/a, R=X¢y, R =R =R, , the vertical wheelset

displacement equation of motion can be also negflecthus equations of motion are reduced
as follows:

. y 2f11[ A], 2f,|. yV
+m L+ S R Sy -Vl + S AL L —F —F 8

mNy wg a V R_)a y 770 V 7/} aR_) s,y T ( )

. AV 2af 2f A 2a°f.. .
L (l,, —1 Ay ey fhe [1+ —]'—v )
w0+ (1 Wx)aROy R v{ RS|V-Vu i+ o
—mg>\a¢+2\];22{zlj+é /\X}:MSZ—Zde

a ,

Comparison between equation (8) with results of rand Ahmadian indicated that the

term (1, —1 Aly has been omitted and the Eulerian acceleration tgas deletion in
wy WX a R)

their paper. As illustrated in the result sectitims term changes the critical speed of the
system.

Analytic behavior of the nonlinear model

Based on the achieved results Mr and w in the numerical simulations, the nonlinear
behavior of the system can be analyzed using therafging method, Expanding\(v)about
V. and combining equations (10) and (11) gives:

X =AM)X+eF (X, me), F(X,ue)=BX+F(X)={0f,,0f,} (10)

In which the parameters,, f, are nonlinear functions in terms of dead-zone ramdinear
yaw dampers. The eigenvectors o& (V,)and A'(V,) corresponding to*iw are
&, =a=xip and n, = p+iq, respectively. Using the Averaging method [3], @& obtain
the approximate solution of equation (10) as fobow
X =2a(acosp— 3 sip)= 2/a’+ 3> cofp+7) (11
where~ = tg’l(ﬂ/a) and the time dependent variablesand o are defined as:

da d
2 cH,(a), T-wrC(a) (12
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Using symbolic calculations, the functioh$ (a) and G, (a) can be expressed as:

1 T8 .
Hl(a)zzx f Z f2><i(p2<i COSp + 0y S'“P)ds&
v, =l
1 2m—ry 2 (13)
G (a) =5 —x f Z:, 2 (0 COSP— P, SiNp)dip

The steady state solution (limit cycle) occurred—|ij(a) =0. Equation (13) can be used to

examine the amplitude and the phase of the limiflecyTo solve for the amplitude of the
stationary limit cycle, we assume:

27—
1708

=/ D fau(Pay 0087 1y sing)dy = (14)
Y, =

which has the nontrivial solution, . To solve equation (14) foa, , it is divided to three sub-

domain intervals as shown in Fig. 3:

H. (a)

1 arcco$S)—y T—y+ arccqs) 21—y
Hi (@)= [ det [ der [ e (15)
d - 7—vy—arcco$S) 2— arccq$)

where the termS in the integral domain i§/2a\/a2 + 3% . To solve for the frequency of the
limit cycle, we obtaineds, from (14) and substituted in (13):

21—y o

Q=wto— f > foi (0o, 008 Py Sing)dy (16)

therefore the long-term behavior of the systemhlmbbtained by substituting solution equation
(14) for a into equation (11) that is given as follows:

X = 2a+a’ + 7 cofQt +6 + ) 7)
where ¥ =tg~*(a,/0,), the theoretical as well as the numerical simatatimit cycle are
indicated in Fig. 4. This figure confirms the sonads and effectiveness of the introduced EFs.

m—19—cos™'S m—9+cos'S

Fig. 3. Discretization of lateral contact force for analgt approach
347

[0 VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2012.VOLUME 14,1sSUEL. ISSN1392-8716



755.A SURVEY OFHOPF BIFURCATION ANALYSIS IN NONLINEAR RAILWAY WHEELSET DYNAMICS.
HAMID M. SEDIGHI, KOUROSHH. SHIRAZI

Results

In order to analyze the influence of the systenapeaters on the hunting behavior, we solve
equations (8) and (9) numerically. By varying ford/@peedv and plot stable response of the
lateral displacement vs. speed, bifurcation diagrgenerate as shown in Figs. 5-11. In Fig. 5
the direct numerical solution of equation of motisrdepicted. As this figure indicates thg

from numerical solution is 160 km/h.
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Fig. 4. Comparison of theoretical (symbols) and numesgaulation (continues line) limit cycles
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Fig. 5. Bifurcation diagram for set of main parameters

The effect of the rail stiffnessi(, ) on the critical speed is considered. Fig. 6 shthas the

rail stiffness has no remarkable effect on hunspged, however it reduces hunting amplitude.
Also, Fig. 7 indicates that smaller flange cleamreduces the amplitude of limit cycle with no
significant effects on critical speed.
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Through Fig. 8 to Fig. 11, the effect of variatiohthe parameter€ , K , K, and A on
critical speed are indicated. Increasing laterdfnstss as well as lateral damping and yaw
stiffness, raises the critical spe®d and lowers the hunting amplitude. Comparing Figo 8
Fig. 10 it is observed that the hunting speed showse sensitivity to change of the yaw
stiffness relative to the other parameters suchatateral damping.

As Fig. 11 indicates increasing wheelset conicitgcreases the critical speé&d and

increases the hunting amplitude, while the hunspged and amplitude shows more sensitivity
to change of the wheelset conicity.
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Fig. 7. The effect of flange clearance on critical speed
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Conclusions

In this paper Hopf bifurcation in a railway wheelses studied through a nonlinear model.
Novel procedure for modeling of discontinuous needirities has been employed to predict
analytical response of nonlinear vibration in timeet domain. It appears from the present work
that the method can significantly alleviate the Iginzal investigation of the nonlinear
problems. The authors believe that the introducedqaiure has special potential to be applied
to other strong nonlinearities such as preload,ddeme and saturation discontinuous.
Additionally, the effects of suspension parametarsh as lateral damping and stiffness, yaw
stiffness and wheelset conicity on critical speeeravalso investigated. The results of the
investigation demonstrate that:

1. Increasing gauge clearance reduces the amplitudenting. Gauge clearance does not have
a significant effect on the critical speed.

2. Yaw stiffness has a major effect on hunting #yoand can be an important design

parameter, while increasing lateral damping has ééfect on increase of the critical speed.

3. Increasing rail lateral stiffness does not digantly affect the critical speed, but reduces

hunting amplitude.

References

[1] Yang S., Chen E.The Hopf bifurcation in a railway bogie with hystéc nonlinearity. Journal of
the China Railway Society, Vol. 15, 1993, p. 44B-45

350

0 VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2012.VOLUME 14,1SSUEL. ISSN1392-8716



(2]
(3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

755.A SURVEY OFHOPF BIFURCATION ANALYSIS IN NONLINEAR RAILWAY WHEELSET DYNAMICS.
HAMID M. SEDIGHI, KOUROSHH. SHIRAZI

Pater D. The approximate determination of the hunting mosenof a railway vehicle by aid of the
method of Krylov and Bogoliubov. Applied ScientifResearch, Vol. 2960, p. 205-228.
Bogoliubov N. N., Mitropolsky Y. Asymptotic Method in the Theory of Nonlinear Okibns.
Delhi, India: Hindustan Publishing Corp, 1961, p84192.

Law E. H., Brand R. S.Analysis of the nonlinear dynamics of a railwayiste wheelset. Dynamic
Systems, Measurement and Control, Vol. B%/3, p. 28-35.

Huilgol R. R. Hopf-Friedrichs bifurcation and the hunting of @lway axle. PMM Journal of
Applied Mathematics and Mechanics, Vol. 12, 1978%94.

Lohe M. A, Huilgol R. R. Flange force effects on the motion of train wheel¥ehicle System
Dynamics, Vol. 11, 1982, p. 283-303.

True H., Kaas-Petersen CA bifurcation analysis of nonlinear oscillatiomsrailway vehicles. The
Dynamics of Vehicles on Road and on Tracks, 8th&8VSymp., 1984, p. 438-444.

Wickens A. H. The hunting stability of railway vehicle wheelsetad bogies having profiled
wheels. International Journal of Solids and StmestuVol. 1, 1965, p. 319-341.

Wickens A. H. Static and dynamic instabilities of bogie railwaghicles with linkage steered
wheelsets. Vehicle System Dynamics, Vol. 26, 1996.-16.

Chung W. J., Shim J. K. Influence factors on critical speed hysteresisaifway vehicles. Japan
Society Mechanical Engineering International Jolval. 46, 2003, p. 278-288.

Pombo J. C., Ambrésio J. C.Application of a wheel-rail contact model to radlyvdynamics in
small radius curved trackMlultibody System Dynamics, Vol. 19, 2008, p. 91-114

Yang S., Ahmadian M. The Hopf bifurcation in a rail wheelset with nedar damping. Proc. of
Transportation Division, International Mechanicalgiheering Congress and Exposition, Atlanta,
1996, p. 112-135.

Sedighi H. M., Shirazi K. H., Zare J.Novel equivalent function for deadzone nonlingaripplied

to analytical solution of beam vibration using Heparameter expanding method. Latin American
Journal of Solids and Structures, 2012, in press.

Sedighi H. M., Shirazi K. H., Reza A., Zare JAccurate modeling of preload discontinuity in the
analytical approach of the nonlinear free vibratimhbeams. Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechani€algineering Science, 2012, doi:
10.1177/0954406211435196.

Sedighi H. M., Reza A., Zare J.Dynamic analysis of preload nonlinearity in noekn beam
vibration. Journal of Vibroengineering, Vol. 13,120 p. 778-787.

Sedighi H. M., Reza A., Zare J.Study on the frequency — amplitude relation ofrbbedbration.
International Journal of the Physical Sciences, .Vd, 2011, p. 8051-8056, doi:
10.5897/1JPS11.1556.

Sedighi H. M., Shirazi K. H. A new approach to analytical solution of cantilebeam vibration
with nonlinear boundary condition. ASME Journal @®mputational and Nonlinear Dynamics,
2012, doi: 10.1115/1.4005924.

Sedighi H. M., Shirazi K. H., Noghrehabadi A. R., Ydirim A. Asymptotic investigation of
buckled beam nonlinear vibration. Iranian Journ&lSgience and Technology, Transaction B.
Engineering, 2012, in press.

351

[0 VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2012.VOLUME 14,1sSUEL. ISSN1392-8716





