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Abstract. This paper introduces a hybrid technique for fdation of frequency response
functions (FRFs) for nonlinear MDOF systems, basedthe Structural modification using
frequency response function (SMURF) technique. Td@hnique can produce FRFs at the
desired coordinates on the structure. The term riiybindicates that the underlying linear
system is reduced by expressing it in FRF form/evthie nonlinearities are treated in the form
of describing functions based on spatial elemeértis. method uses several FRFs instead of the
spatial model therefore it is characterized by lowemputational costs. Moreover, the
experimentally measured FRFs of the underlyingalinstructure can be applied in this
technique. A system with cubic stiffness and fantidamping nonlinearities is used as a
numerical case study to verify the proposed teakiq

Keywords: nonlinear dynamics, MDOF system, FRF, DFM, SMUREgfiency domain.
Introduction

In modal analysis a set of FRFs is used to derimeathematical model of a structure. At
present this experimental method is a well-esthbtisprocedure for identification of linear
systems [1, 2]. However, in the presence of noalitg derivation of a general nonlinear
model from FRF measurements is a cumbersome tatkham yet to be found. It makes the
establishment of a general nonlinear methodolofficdit and as a result most of the proposed
methods only deal with nonlinearity for specificea.

One of the main obstacles when calculating the aesgs of a nonlinear structure, in
theoretical approaches such as harmonic balanceoch¢HHBM), is that due to the coupled
nature of nonlinear problems, all responses arepoted simultaneously. When dealing with a
large system, this results in a costly optimizatmmoblem with large number of unknowns
[3, 4].

In practice, it is not possible to measure the oasps at all DOFs due to the physical
inaccessibility or the difficulties faced in the aserement of rotational DOFs. Therefore, a
limited number of FRFs are available from measurgnier comparison purposes. While the
conventional theoretical methods produce a largebau of FRFs, it makes sense to develop a
formulation for obtaining the theoretical responsedy at the limited measured coordinates,
which results in reduction of a the number of noedir equations to be solved.

Kuran and Ozguven [5] and Tanrikulu et al. [6] usieel describing function method (DFM)
to achieve a matrix description of the nonlineasitiThe use of the DFM is further documented
in [7-11]. Chong and Imregun [12-14] used first@rdiescribing function to identify nonlinear
eigenvalues and eigenvectors of resonant modesmeéltgod is equivalent to a nonlinear modal
superposition and is compatible with existing line@dal analysis tools. Elizalde and Imregun
[15, 16] attempted to deal with the problem of afitey the theoretical responses at a few
coordinates, using the first order describing fiorct They obtained closed form expression for
frequency response functions of a nonlinear MDOS§tesy. Considering cubic stiffness and
friction damping nonlinearities, they showed thhée tmethod can successfully predict the
nonlinear behavior of real structures. However,hs@ advantage is not so attractive
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considering the heavy computational burden incurciee to direct manipulation of mass,
stiffness and damping coefficients.

This paper introduces a technique for formulatibi-BF of MDOF nonlinear systems for
selected coordinates, called hybrid formulation XHR this approach, the system is separated
into underlying linear system and nonlinear commtsiewhere the last is based on discrete
representation of the nonlinearities (typicallyffséss and/or damping related), which are
amplitude-dependent. The nonlinear components egkaged by their reaction forces on the
underlying linear system. The term hybrid arisesrfithis fact that the underlying linear system
has been reduced by expressing it in the FRF farhile the nonlinearities are kept in the
physical domain (in the form of describing func8dnThen, the nonlinear responses are
obtained via solving a set of nonlinear algebrajuiations, which is usually solved by a
Newton-Raphson scheme, or more specialized algosittAs the method uses only a few
numbers of FRFs from the underlying linear systastead of the spatial model, it has lower
computational cost compared to the methods like HBMich requires the computation of all
the responses at once. The proposed techniqueekasprogrammed in MATLAB [17] and a
modified Newton-Raphson approach was used to dihalaMarge set of nonlinear equations,
incorporating the so-called trust-regions and pneditioned gradients (PCG) [18-20].

The method computes the response at the selectadimates only, which is the prime
advantage, especially when dealing with large meali structures or in an experimental
identification procedure, due to reduction of tleenputational cost. Moreover, it can use the
experimentally derived FRFs, so that the errorateel to the modeling of the system can be
eliminated.

Theory
N-DOF nonlinear mass spring system is depicted ¢n Fa. Fig. 2a shows its underlying

linear system which can be obtained by removinglinear elements between tif& and r™
DOFs (NI-el,) and between the" DOF and the ground\{-ely).

- = = =

Fig. 1. (@) N-DOF nonlinear system, (b) underlying system

Fig. 2 illustrates the free body diagram of thetasys where the nonlinear action and
reaction forces between the underlying linear systad the nonlinear elementi$-el, andNI-
el; are presented. If the system is excite"aDOF and the response is measurdd &OF, the
governing equation for the experimental systembmagiven by:
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X =y R +os I:ista’n F~§ + o R 1)

where X, is the displacement of DOF of the system shown in Fig. 1a. The nonlimesure
of the system is acknowledged by a *“~ " symbokam ay, ajj, ais anday, are the receptances of
the underlying linear system (Fig. 1), is the excitation force an®, ,R and R, are the
reaction forces of the added components'ati” and s" DOFs respectively. According to
Newton’s third law:

R =-R )

el e [t
R R’ R’
Fig. 2. Free body diagram of thé-DOF system

Defining R, =R =—R and substitutingR, and R, by R, and -R, respectively
according to the Eq. (2) in Eq. (1), we have:

X = o R +as Ry +(ay —ay ) Ry (3

If the responsex is sufficiently close to a pure sinusoid and pded that little energy is
leaked to frequencies other than the fundamenieln it is reasonable to assume that the

nonlinear functionR is also of a periodically oscillating nature. It gssible to find a
linearized coefficienty which provides the best average of the true resjoforce. This

coefficient acts on the fundamental harmonic ofrtbalinear response(fﬂ) for a single load-
cycle, in such a way that:

R ~ 7.X %~ XStsin@t+0)= X sinz (4)

In order to find the nonlinear coefficientt, the restoring forceR is expanded arounst
via a Fourier series, neglecting all the highereoitgérms:

R~V.X =0 X+ 05 X+ 02 X+ 72 X+ ... (5)

Neglected terms

where theo functions are given by:
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1 27 . ~ X
ot = L g (x*'sinz 0 x*' cog )simrdr

~1st
7rx1 . ©)
ot =—0 L §(x"'sinz, 0% cog )cosdr
X
so the nonlinear coefficient is uniquely defined by:
V=0t y o ©)
Introducing Eq. (4) into Eq. (3) yields:
X = ay R =g Vs (Xs) Xs— (@ =)V (% = % ).(x = %) (8)

Setting F, to be constant for all the frequency range andditig both sides by, , we
have:

Gy = o — g Vs(is)'d*sk_(a Ii_alr)vir(ii - S(r)-(diT( —ay ) 9

whereq, ,&. &, andq, are the receptances of the nonlinear system.

If p nonlinear elements were between the DGFs) (= (i1, r1), (iz r2), ..., (p, p) andq
nonlinear elements were between the DOEs(s,, s, ..., ) and the ground, Eq. (8) and Eq.
(9) are modified as:

S Ipl'p

)Z| = O Fk _ZQISVS(XS).XS_ Z (05 Ii_alr)'vir(~' - X)(X N X) (10)

s=3s ir=iyry
Sq 'p'p
Gic =y — D) Vs (Xs) A Z (@ i)V (% = %)@ —dx ) (11)
s=g ir=iyr

Defining n as those DOFs associated with nonlinear elemgwrtg,can be split inton and
(N-n) components. Expression (10) represents a systemmonlinear equationsX , defined
for the DOFs| en) with n unknowns, the nonlinear responses atrtHeOFs {X,,}, where
typically n << N. This demonstrates that a nonlinear system cafulbe described by first

calculating the nonlinear responses atrtfi2OFs only. Once the nonlinear respons#&s ) are
calculated, the problem has been reduced to arlime@ The remaining nonlinear responses

{Xn_n} (responses of DOFs associated with linear eles)ecan be found all at once by
solving equation (10) on an individual basis, fat (N —n) .

Numerical case study

A three DOFs mass-spring system with two nonlireanponents is considered here as the
numerical case study (Fig. 3). The system is cosegriof three masses, whose motion is
defined at all times by the response coordingtey, andys;. The masses are linked to each
654

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING JUNE 2012.VOLUME 14,ISSUE2. ISSN1392-8716



791.A HYBRID FREQUENCY RESPONSE FUNCTION FORMULATION FARDOF NONLINEAR SYSTEMS
E. JAMSHIDI, M. R. ASHORY, A. GHODDOSIAN, N. NEMATIPOOR

other and to the ground by the stiffness and dagnfiirear elements, creating fully-populated
linear matrices. The system is driven by a singlartonic force of constant amplitude imposed
at massm.

Y iwt
7| FQe
—p
7
7 m m: ms 4
A

Fig. 3. Diagram for the analyzed sample cases

The numerical values for all the coefficients oé thnderlying linear system are shown
below in matrix format, where a proportional hyster damping mechanism has been assumed:

m 0 0] [3159 0 0
M=0 m O0|=| 0 55401 0 | kg,
0O 0 m| | O 0 24.21
k, k, ks| [200491.263 - 64920.98 - 36279.371
K=lk, Kk, ky|=|-64920.98 398118.365- 17503.2 5
Ky Ky, Kyg| | —36279.371 - 17503.205 132578.8R5
F 0
F=<F, =412} N,
F, 0
n=0.12 %.

In addition to the linear system, two nonlineamaats have been incorporated, represented
by the two thick links and boxes in Fig. 3. Bottbrustiffness and friction damping types are
considered here. The numeric values of these ciggifs are listed in Table 1. The nonlinear
elements were placed in a way to provide a suffityegeneral arrangement considering the
size of the system. It has a mixture of grounded aon-grounded nonlinear elements, a
nonlinear region comprised of DOFs 2 and 3, as aelk region away from nonlinearities,
represented by DOF 1.

Table 1. Nonlinear coefficients for the Sample Cases 12nd

Sample Case 1 Sample Case 2
DOF | DOF 2 (N /m3) » (N) Type

1 1 - - -

1 2 - - -

1 3 - - -

2 2 - - -

2 3 7.82:10 1.25 Non-grounded
3 3 1.44-10 2.10 Grounded

The mathematical model of a cubic stiffness elersantbe expressed as:
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R=ky+8Yy (12)
where the coefficienk represents the linear component of the springlewthie coefficient

accounts for the nonlinear effects due to the grrntroducing (12) into (6), and dropping the
superscript® for the sake of clarity, we have:

1 g .
0a=FL (ky + By3)sinrdr
o, =2sin(r)cosg = 0

(13)

Introducing these functions into (7) and developmgher (the subscrigtin V, meaning a
stiffness-related coefficient):

2 - ~
ak(y‘,y)=i~j (KY sinr + BV 3 sinr )sine dr
zY Jo

B . _ 1 2z -~ 5 1 27 -3 . 4
Vk(y,)’)——ﬂY~ IO kY sin r+—7rY~ IO BY sin“7 dr

Kk (27 BY 2 (ox (14)
ak(y,y)=;j0 sin2r+7jo sin*rdr
2
v~k(y'.y)=§(7r)+/”Y )

and we finally arrive to the first-order represeiota of a cubic stiffness element:
- 3 2
V(y,y)=k+ZﬂY (15)
where the nonlinear part of the coefficient is givsy:
- 3 2
v(y.y) =AY (16)

This linearized coefficient effectively averages tihanges in the nonlinear function.

Developments hitherto apply to a grounded elememthich its only coordinate in motion
isy. If the nonlinear element is attached betweennweing nodey; andy, (meaning it is not
grounded), a variable change is needed to applgahe procedure:

Z=Y" Y ylziSin(Wt"'@l)’ Y> 2?25"7(50“‘@2),
z=Zsin(ot+0,)= Zsinr , Z=|4=|y- y|. ©,=£(.Y,), 17)

and the nonlinear restoring force becomes:

5(29~Y(7} - 19)
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Introducing this variable change and applying alsinprocedure, the following expression
is readily available:

v (Z,2)= k+%,8 z? (19)

where the nonlinear part of the coefficient is givmy:

v (Z,2) =%/3 72 (20)
The friction damping mechanism can be mathemayieadpressed as:

a(y.y)= c'y+y§ for y> Y, (slip condition) (21)

where the|y| term is used to ensure that the restoring foraeyd opposes the direction of
motion. This model is only valid during the “sligtage, occurring at displacements over a
certain limit Y, , which is related to the properties of the surfairecontact. Barely below

this threshold a phenomenon known as “stick-slixi5ts, which is characterized by intermittent
motion and stationary behavior. Such a conditiomlidates Eq. (21).

Following a similar approach as we did for the cubiiffness nonlinearity, a first-order
analysis of a friction damping element yields:

V.(9,y) = ioc+ i-L (22)
Y

For non-grounded nonlinear elements, the relevastribing function is:

V.(2,2)= iwcr i (23)

7rZij
The imaginary numbarin Egs. (22) and (23) is used to introduce a plagdetween the
restoring force and its correspondent physical ldegment, given that this nonlinearity is
velocity-dependent.

Results and discussion

: Y, Y, Y .
The nonlinear FRFSF—l, F—2 and F_S together form a set of three complex nonlinear
2 2 2

equations with three complex unknowns (the respoNse Y, andY,), valid for a single

frequencyw. The responses can be solved by using a standawmtbN-Raphson algorithm. The
performance of the proposed method will be compavét the harmonic balance method
(HBM), which is a recognized benchmark for nonlingaroblems. After applying the
minimization process for every step frequenty, the nonlinear response is obtained and
shown in Figs. 4-5 for the cubic stiffness casgsFb and 7 provide the results for the friction
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damping case. The dashed lines represent the liesponse, while the solid lines represent the
results obtained from the harmonic balance metkowlly, the “»” marks are the results from
the HF method. It can be observed that the HF nde{t*d marks) is in complete agreement
with the benchmark HBM (solid line), both exhibgimonlinear distortions when compared to
the linear case (dashed line).

For the cubic stiffness case, the effect of thdinearity is a jump phenomenon, being more
noticeable in the first and second modes as inglicat Figs. 4 and 5. It is observed that the
responses can be calculated at the resonant regityiswhere the nonlinearities are expected
to become active, everywhere else beieglaced by the linear responses. The resultshior t
friction damping case (Figs. 6-7) reveal that tffea of the nonlinearity is an overall reduction
in the amplitudes, being more noticeable in thst fimd second modes. This explains why this
nonlinear mechanism is so welcome (and even inguecetlirbine bladed disks, where higher
amplitudes are a risk for the structure stabilithe third mode is less affected because, at
higher frequencies, the nonlinear damping forcevisrwhelmed by the linear restoring forces;
the more pronounced effect in the second mode eaxplained by the fact that two masses are
in opposite motion, generating an additive effddhe friction forces.

XIF (dB)

XIF (dB)

XIF (dB)

Frequency (Hz)

Fig. 4. FRFs of underlying linear system (---), nonlinegstem via HF method)( nonlinear system via
HBM ( ) for the cubic stiffness case (zoom-irthe resonances are shown in the next figure)

Frequency (Hz)

Fig. 5. Nonlinear FRFs for the cubic stiffness case (zdowf individual resonances)
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XIF (dB)

XIF (dB)

12
Frequency (Hz)
DOF3

Frequency (Hz)

Fig. 6. FRFs of underlying linear system (---), nonlinegstem via HF method)( nonlinear system via
HBM (___) for the friction damping case (zoom-intbé resonances are shown in the next figure)

DOF2

X/F (dB)

XIF (dB)

I |
145 1455 146 14.65 147 1475 148
Frequency (Hz)

Fig. 7. Nonlinear FRFs for the friction damping case (zdarof individual resonances)
Conclusions

In this paper a technique for frequency responsetion formulation of nonlinear MDOF
systems called hybrid formulation (HF) was proposElde technique is based on Structural
modification using frequency response function (SRR) technique. The term hybrid indicates
that the underlying linear system is reduced byresging it in FRF form, while the
nonlinearities are represented in the form of dbsw functions (physical domain). The
nonlinear elements have been formulated based @ir@ady proven “engine”, the describing
function method (DFM). The introduced formulatiomgtects the existence of sub/super
harmonics, this being one of our main assumptidiés assumption, while inaccurate for a
time domain representation, works very well in ftegjuency domain, which considers average
guantities in a single load-cycle.

The performance of the method was compared witth#renonic balance method (HBM),
which is a recognized benchmark for nonlinear poid. The advantages of the proposed
formulation were illustrated by analyzing two saephses for which the theoretical nonlinear
FRFs were obtained. While the results of the HF @areexcellent agreement with the
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benchmark, it has lower computational cost. It ige do this fact that the technique only
produces FRFs at the desired coordinates. Alsaniiiiod uses a few FRFs from underlying
linear system, instead of the spatial model. Moee@s the method only needs FRFs of several
coordinates, it can employ the experimentally d=titFRFs for the underlying linear system.
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