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Abstract. Non-stationary acceleration waves in the fluid-saturated inhomogeneous 

elastoviscoplastic porous medium are studied using the mathematical theory of discontinuities. 

The equations for determining the intensity and the geometry of wave fronts of the fluid-

saturated elastoviscoplastic medium were first derived. It is shown that in the medium under 

consideration there are two types of irrotational waves and one equivoluminal wave, that are 

equal to the velocities in the homogeneous elastic porous media at every point.  
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List of Accepted Symbols  

 

−
ij
T full tension tensor of the porous medium; 

−m  porosity of the medium; 

−N  force acting on the fluid, and related to a unit of cross-section area of the porous medium; 

−µ,L  Lame coefficients; 

−k  yield stress of the material; 

−η  coefficient of viscosity; 

(1)u
�

 – displacement vector of an elastoviscoplastic phase (of the porous medium skeleton); 
(2)u
�

–   displacement vector of the fluid; 

−
0
R  compressibility modulus of the fluid; 

−
12

ρ  coefficient of the dynamic connection of the elastoviscoplastic phase and the fluid; 

−
21

,ρρ  densities of the phases; 

−
2211

,ρρ  effective densities of the phases; 

( )

iu
α −  displacement components of the phases of the medium )2,1( =α ; 

( )

iv
α – velocity components of the phase displacements of the medium; 

i
ν −  components of the unit vector of the normal to wave surface ∑ )(t ; 

−Ω  average curvature of the wave surface; 

K −  Gaussian curvature of the wave surface; 

−β,jx  derivatives of Cartesian coordinates ix  by the curvilinear coordinates; 

−αβg  coefficients of the first quadratic form; 

bγσ −  coefficients of the second quadratic form; 

−= ωωW  wave intensity. 
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Introduction 

 

Biological tissues possess a well-marked cell structure, where filtration exchange processes 

take place through the membranes that restrain the cell. The cell membranes possess a layered 

structure and as a result the biological tissue in vivo can be considered as a porous medium 

saturated with filterable fluid. Phenomenologically such medium is described by the viscoelastic 

models of various types. Clearly expressed inhomogeneity and anisotropy of the biological 

tissues require the use of appropriate media models significantly complicating the analysis of 

wave propagation. Dynamic effect on the biological tissues is realized in the form of spreading 

or standing waves, which provide a double effect depending on their characteristics. High-

intensity waves can damage, and low-intensity waves can provide stimulating, rehabilitating 

effects. In both cases irreversible effects are linked in isometric conditions and as a rule with 

irreversible deformations. Weak waves, which definition will be given hereafter, are used for 

biostimulation and rehabilitation. It is usually an ultrasound for well-balanced waves, and for 

nonstationary it is the so called waves of accelerations. Asymptotic methods such as the method 

of leaps, the ray method, the functionally invariant method, the method based on kinematic and 

dynamic Fermat’s and Huygens’ principles are the effective methods for the solution of wave 

equations for inhomogeneous media. According to these methods the displacement of the wave-

packet can approximately be described as a displacement of the center of mass (energy transfer 

of the wave-packet) along the characteristic (of the ray), the equations of which can be found as 

the Lagrange–Euler equations from the Fermat’s principle, and a set of centers of masses at any 

given time is defined as a surface (wavefront) according to the Huygens' principle. Thus, in 

general, it is possible to find the transfer equation of wave intensity along the selected ray for an 

inhomogeneous anisotropic medium that is important for the diagnostic of the effect on the 

biological tissues, allowing an accurate localization of the dynamic effects. 

As it is known, the consideration of medium inhomogeneity is realized by using different 

models. The best known models are: 1 – when there is exactly or probabilistically one 

component at every point, 2 – when there are all the components at every point of the medium. 

The ray method is developed for the first model to solve different tasks of the wave propagation 

in solids the method for constructing solutions such as the discontinuity of field values at the 

front is being developed for the second model (this work).  

The velocities of filtration processes, of diffusion in the biological tissues are much lower 

than the velocities of the wave propagation that is why in the first approximation we consider 

that medium inhomogeneity does not change within time. Waves may render irreversible 

changes for the medium that can be considered in the model of the medium with the help of 

models of plasticity. Thus, the consecutive effect of pulses, providing weak plastic deformation 

of the opposite sign, can bring the desired effect of reconstruction, when there is a wave 

rehabilitation of plastically deformed tissues. Macrostatically biological bodies have strongly 

marked anisotropy, but the medium can be considered as locally isotropic in the first 

approximation. 

Wave propagation in complex media can be characterized by different processes: spatial and 

temporal propagation, nonlinear effects, which while interacting with each other provide 

sustainable or unsustainable energy propagation, distributed along the front. As it is known, the 

spatial propagation dilutes the front (packet) in width, the temporal propagation is connected 

with energy dissipation and leads to a decrease of the intensity (amplitude), and the nonlinearity 

counteracts these processes. We assume that there are stable fronts of spreading waves in the 

medium under consideration.  

Under the assumptions made we managed for the first time to derive equations to describe 

the wave pattern of the propagation of the wave fronts in a fluid-saturated inhomogeneous 

elastoviscoplastic medium. It is stated that weak waves (acceleration waves) can exist as two 
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types of equivoluminal waves and an irrotational one, and their velocities are equal to the 

velocities of the waves in homogeneous elastic porous media. 

The propagation of elastic stationary and non-stationary waves in a homogeneous porous 

medium was considered in works [1-4]. In [5] acceleration waves in a fluid-saturated elastic 

porous medium are studied. In works [6, 7] the propagation and the attenuation of waves in an 

inhomogeneous viscous-elastoplastic medium without the saturation of fluid was investigated. 

Some aspects of the impact of aperiodic waves on the biological tissues are considered in [8], 

the wave propagation in randomly inhomogeneous media was investigated in [9]. 

 

Research Methodology  

 

1. Let’s consider the interpenetrating motion of an elastoviscoplastic and fluid phase as the 

motion of fluid in a deformable porous medium, the physical and mechanical characteristics of 

which are the functions of the coordinates. It is assumed that the pore sizes are small in 

comparison with the distance at which the kinematic and geometric characteristics of the motion 

change significantly. In this case, we can assume that the elastoviscoplastic and fluid phases are 

solid media and there will be two displacement vectors at every point of space: 
(1)u −
�

 is the 

displacement vector of an elastoviscoplastic phase (of the porous medium skeleton) and −)2(u
�

 

is the displacement vector of the fluid. 

The elastoviscoplastic phase is described by the Bingham’s body model [6, 7]. In this case, 

we assume that the deformations of the phases are small and are represented for the 

elastoviscoplastic phase as a sum of elastic and plastic ones: 
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For the elastoviscoplastic porous medium the elastic deformation tensor is connected with 

the tension tensor generalized by Hooke's law [3, 5]: 
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where N −  is the force acting on the fluid, and related to a unit of cross-section area of the 

porous medium; L , −µ
 
are Lame coefficients; −K  is the bulk modulus of a porous skeleton 

with empty pores; −m  is the porosity; .....)2(

1

)1(

1

)0(

11
+++=

pppp
WWWW  is the compressibility 

modulus of the fluid; −
0
K  is the true bulk modulus of the elastoviscoplastic phase; −δ  is 

Kronecker symbol, index 1 at the top in parentheses refers to the elastoviscoplastic phase, index 

2 refers to the fluid. 
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The tensor of plastic deformation velocity is connected with the tension tensor by a local 

condition of plasticity [6, 7]: 

(1) (1) 2( )( ) 2 ,p p

ij ij ij ijS S kηε ηε− − =  
ijkkijij

TTS δ
3

1
−=

     (1.3) 

and by the correlations of the associated flow law: 

 

)( )1()1( p

ijij

p

ij
S ηεψε −=
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22kSS
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> , 0=ψ  when 

22kSS
ijij
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where ( )ixη −  is the coefficient of viscosity, ( )ik x −  is the yield stress of the material, ( )ixψ −  

is a positive factor. 

Repeated Latin indices imply summation from one to three, according to the Greek - from 

one to two. The dot over the letter denotes the time derivative. 

It follows from correlations (1.1) – (1.4) that: 
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Expressions (1.5) along with the equations of motion: 
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12222
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where 12 ( )ixρ −  is the coefficient of the dynamic connection of the elastoviscoplastic phase and 

the fluid, 1( )ixρ  and 2 ( )ixρ −  are the densities of the phases, )(
11 i
xρ  and −)(

22 i
xρ  are the 

effective densities of the phases, ( ) ,iv
α  −= )2,1(α  are the displacement velocities of the phases. 

The acceleration wave in the considered porous medium is determined by isolated surface 

∑ )(t , on which the voltage, the force acting on the fluid and the displacement velocities of the 

phases are continuous, and their particular derivatives undergo discontinuity. The physical and 

mechanical parameters of the medium and their gradients are continuous. 

We apply the mathematical theory of discontinuities to correlations (1.5) and (1.6) and 

considering the geometric and kinematic compatibility conditions of first order for the phases 

[8], we obtain the system of equations:  
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where ( )

i

αλ  ( 1;2)α = −  is the values characterizing the leaps of the first derivatives of the 

displacement velocities of the phases; −G  is the velocity of the wave surface; −
i

ν  is the 

components of the unit normal of the wave surface.  
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Let us assume that on the wave surface 0
2

)2( ≠=ωνλ
ii

, let’s multiply each equation of 

system (1.7) by iν  
and sum over the index. As a result, we obtain a homogeneous system of 

equations relative to 
1

ω  and 2 :ω  

 
2 2

1 1 2 2( ) ( ) 0,G A Gα α α αρ ω ρ ωΛ − + − =  )2,1( =α
     (1.8) 

1 2 ,λ µΛ = +  
12
A=Λ

 

The condition for the existence of non-zero solutions of the system (1.8) is that its 

determinant must be zero. This condition leads (1.8) to the equation relative to the velocity of 

irrotational waves ,0( )( ≠= α
α ωνλ

ii
 ,2;1=α  

l
GG = ) :  
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Equation (1.9) implies that irrotational waves of two types 
1l

G  and 
2l

G  propagate in the 

fluid-saturated elastoviscoplastic inhomogeneous porous medium, and the velocity squared of 

these waves is given by the formula: 
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If 0)( =
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νλ α  )2;1( =α , on the wave surface, on the condition that not all )(αλ
i

 are equal to 

zero simultaneously, then we obtain the formula for determining the velocity of the 

equivoluminal wave )(
t
GG =  from the system (1.7):  
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Thus, in this inhomogeneous elastoviscoplastic porous medium there are two types of 

irrotational waves and one equivoluminal, which possess the velocities of longitudinal and 

transversal waves at every point of the medium [4]. 

2. Let’s get the equations that determine the intensity change of equivoluminal and 

irrotational waves. For this equation of motion (1.6), taking into account correlations (1.5) and 

the second equality (1.3), let’s write in the discontinuities: 
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Let’s write the geometric and kinematic compatibility conditions of the second order for the 

phases [8]: 
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Here ,
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µ  ( )

iL
α −  are respectively the values characterizing the leaps of the first derivatives of 

the tensions and the second derivatives of the displacement velocities of the phases, −Ω
l

 is the 

average curvature of the wave surface of the irrotational wave, ,g bγβ
γσ −  are the coefficients of 

the first and second quadratic forms, −β,ix  are the derivatives of Cartesian coordinates 
i
x  by 

the curvilinear coordinates βu  of the wave surface, −δ  differentiation with respect to time t . 
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i

ν , and taking into account 

that ,1=
ii

νν  ,0
,

=
ii

x νβ  we have: 

 

+Λ−ΩΛ+−−
1,11

1

11

)1(
)2(2 ωνω

δ
δ

ρ
δ
δω

ρν ααααα iil

l

lii
t

G

t
GBL

 

+−Ω+−−+
2,22

2

22

)2(
)2(2 ωνω

δ
δ

ρ
δ
δω

ρν ααααα iil

l

lii
AA

t

G

t
GBL

   (2.3)
 

0)2()(
13

4

)1(

2
212111

2

2
=−









+
+

−





+

+ αωρωρ
ηψ

µψψ
ηψ

ννµ
ljiij G

dn

dS

 

2

1 1 ,lB Gα α αρ= − Λ  2

1 1 ,lB Gα α αρ= − Λ  ,1=α 2  

 

Let’s eliminate value )2(

i
L from the system (2.3) in a standard way when ,1=α 2 . Then value 

)1(

i
L  will be eliminated from (2.3) taking into account equation (1.9). 

After the transformations, the system of equations (2.3) is reduced to one equation with two 
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With the help of equality (1.8) when 1α =  we eliminate the value 11
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from the equation (2.4). Then, after the transformations we get the differential equation for the 

change of the intensity of irrotational waves 
1 1 1lW ω ω=  in the inhomogeneous 

elastoviscoplastic porous medium of the first phase: 
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In (2.5) it is taken into account that 
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Then (2.5) can be written down as: 
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We find the intensity of irrotational waves in the elastoviscoplastic porous medium of the 

second phase from the expression: 
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The overall intensity of irrotational waves in the fluid-saturated inhomogeneous 

elastoviscoplastic porous medium will be as the sum: 

 

1 2 1(1 ) ,l l l l lW W W W= + = +Γ  ( ,
1
ll =

2
l )      (2.9) 
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νλ  0)2( =
jj

νλ  that are running on the surface of the wave, and 

we obtain: 

 
(1) (1) (1)
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)2()2(

, jjjjjj
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   (2.10)
 

 

Then let’s write down the geometric compatibility conditions of the second order for the 

phases in the form: 

 
(1) (1) (1)

, , ,[ ] ,j ij j i j j j iv L g xαβ
α βν ν λ ν= +  (2) (2) (2)

, , ,[ ]j ij j i j j j iv L g xαβ
α βν ν λ ν= +

   (2.11) 

 

We’ll get a differential equation that determines the change of the intensity of the 

equivoluminal wave )(
t
GG =  in the first phase in the process of its propagation, having 

substituted the geometric and kinematic compatibility conditions (2.11) in equalities (2.1), and 

taking into account (1.11):  

 

t

ijijtt

t

t W
k

SSG

ds

Gd

ds

dW
122

111 2
)1()(2

)ln(

2

1





















+

+
⋅

+
−⋅−Ω= ψ

ηψηηψ
ρµ

   (2.12) 
)1()1(

1 iit
W λλ=

 
 

where −Ω
l

 is the average curvature of the wave surface of the irrotational wave. 

Changes of the intensity of the equivoluminal wave in the second phase can be found from 

the second equality (1.7): 

 

,
12 ttt
WW Γ=  

22

12

ρ
ρ

−=Γ
t

        (2.13) 

 

Then the change of the intensity of the equivoluminal wave in the fluid-saturated 

inhomogeneous elastoviscoplastic porous medium will be written down as: 
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Equations (2.7) and (2.12) can be written in one form: 
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As an unknown function equations (2.15) contain geometric invariant −Ω )(s
p

 the average 

curvature of wave surface ∑ )(t , that changes in the process of the wave propagation, and 

consequently they are not closed. The equation for determining the average curvature and the 

method of solution is given in [5]. 

Since the wave fronts propagate along the rays, remaining all the time orthogonal to these 

rays, then the equation of the ray trajectory is found from the principle of Fermat functional 

[9,10]: 
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p i i
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i

i
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   (2.16) 

 

where −β,ix  is the vector tangent to the wave surface 

3. Let’s determine the intensity of the waves 
p

W ( ,p l= )t . For this, let’s consider equation 

(2.15) and initial conditions: 

 
(0) (0)

1 01(0) ,p pW W=  
( )

1 (0) 0,i

pW =  ,1=i 2      (3.1) 

 

The solution of equation (2.15) we will find by the method of successive approximations. 

Let’s substitute the expressions:  
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in (2.15) and restricting to the second approximation, we’ll get: 
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where (1)

pχ , (1)

pg , (1)

Pξ −  denote the first orders of approximation of functions 
pχ ,

pg ,
Pξ . 

Zero approximation for Gaussian curvature corresponds to the homogeneous elastic porous 

medium [4]: 
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where 
p0

Ω  and −
p

K
0

 are the average and Gaussian curvatures of wave surface from which the 

distance 0s  
is measured. 

We’ll write down the solution of equations (3.2) with initial conditions (3.1) and  

0)0()1( =Ω
p

 as: 
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Then the intensity of two irrotational waves as well as of the equivoluminal waves in the 

fluid-saturated inhomogeneous elastoviscoplastic porous medium is determined by the formula: 

 

1 2 ,p p pW W W= +  ,lp = t         (3.5) 

 

4. Example. Let’s consider the fluid-saturated inhomogeneous  elastoviscoplastic porous 

medium, characterized by elastic moduli ),(xL  )(xµ , the coefficient of the dynamic connection 

of the elastoviscoplastic phase and the fluid )(
12
xρ , the effective densities of the 

elastoviscoplastic phase )(
12
xρ  and the fluid )(

22
xρ , the viscosity )(xη

 
and the yield stress of 

the material ).(xk  

The front of the irrotational wave with velocity (1.10) propagates at the time moment 0=t  

in the ,x y  plane along the x  axis. Determine the intensity of the given wave. 

Since in this case, the quadratic forms are 0== αβ
αβ bg  and the curvatures are 

0
00
==Ω

ll
K  when 0=x , it follows that 0==Ω

ll
K . Then from (2.7) and (2.9) we find the 

dependence of the intensity level of the wave on the velocity and the physical-mechanical 

characteristics of the fluid-saturated inhomogeneous elastoviscoplastic porous medium: 
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where −
l

W
0

 is the function value 
l
W  when .0=x  

Specifying a particular type of inhomogeneity for the physical and mechanical characteristics 

of the medium, we find the change of the intensity level of the irrotational wave in the fluid-

saturated inhomogeneous elastoviscoplastic porous medium. 

 

Conclusions 

 

1. Based on the principles of Fermat and Huygens propagation process of the wave packet in 

a heterogeneous viscoelastoplastic environment regarded as transfer of energy along the beam 

path in the form of the jump intensity, localized at the wave front.  

2. On the kinematic and geometrical conditions compatibility, viscoelastoplastic environment 

is saturated with fluid, there are irrotational and equivoluminal waves.  

3. Expressions for the wave velocities, depending on the environment parameters are 

provided.  

4. A system of differential equations for wave energy transfer along the path of rays is 

provided, changing the geometric parameters of the energy flow lines and geometry of the wave 

front. 
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