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Abstract. Non-stationary acceleration waves in the fluid-saturated inhomogeneous
elastoviscoplastic porous medium are studied using the mathematical theory of discontinuities.
The equations for determining the intensity and the geometry of wave fronts of the fluid-
saturated elastoviscoplastic medium were first derived. It is shown that in the medium under
consideration there are two types of irrotational waves and one equivoluminal wave, that are
equal to the velocities in the homogeneous elastic porous media at every point.
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List of Accepted Symbols

T, — full tension tensor of the porous medium;

m — porosity of the medium;

N — force acting on the fluid, and related to a unit of cross-section area of the porous medium;
L, u— Lame coefficients;

k — yield stress of the material;

n — coefficient of viscosity;

u" — displacement vector of an elastoviscoplastic phase (of the porous medium skeleton);

#® — displacement vector of the fluid;

R, — compressibility modulus of the fluid,;

p,, — coefficient of the dynamic connection of the elastoviscoplastic phase and the fluid;
p,, p, — densities of the phases;

Pu» P, — effective densities of the phases;
() _

i

u displacement components of the phases of the medium (« =1,2) ;

v’ — velocity components of the phase displacements of the medium;

v, — components of the unit vector of the normal to wave surface Z ®);

Q) — average curvature of the wave surface;

K — Gaussian curvature of the wave surface;

x, , — derivatives of Cartesian coordinates X, by the curvilinear coordinates;

g — coefficients of the first quadratic form;

b,, — coefficients of the second quadratic form;

W =+ ww — wave intensity.
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Introduction

Biological tissues possess a well-marked cell structure, where filtration exchange processes
take place through the membranes that restrain the cell. The cell membranes possess a layered
structure and as a result the biological tissue in vivo can be considered as a porous medium
saturated with filterable fluid. Phenomenologically such medium is described by the viscoelastic
models of various types. Clearly expressed inhomogeneity and anisotropy of the biological
tissues require the use of appropriate media models significantly complicating the analysis of
wave propagation. Dynamic effect on the biological tissues is realized in the form of spreading
or standing waves, which provide a double effect depending on their characteristics. High-
intensity waves can damage, and low-intensity waves can provide stimulating, rehabilitating
effects. In both cases irreversible effects are linked in isometric conditions and as a rule with
irreversible deformations. Weak waves, which definition will be given hereafter, are used for
biostimulation and rehabilitation. It is usually an ultrasound for well-balanced waves, and for
nonstationary it is the so called waves of accelerations. Asymptotic methods such as the method
of leaps, the ray method, the functionally invariant method, the method based on kinematic and
dynamic Fermat’s and Huygens’ principles are the effective methods for the solution of wave
equations for inhomogeneous media. According to these methods the displacement of the wave-
packet can approximately be described as a displacement of the center of mass (energy transfer
of the wave-packet) along the characteristic (of the ray), the equations of which can be found as
the Lagrange—Euler equations from the Fermat’s principle, and a set of centers of masses at any
given time is defined as a surface (wavefront) according to the Huygens' principle. Thus, in
general, it is possible to find the transfer equation of wave intensity along the selected ray for an
inhomogeneous anisotropic medium that is important for the diagnostic of the effect on the
biological tissues, allowing an accurate localization of the dynamic effects.

As it is known, the consideration of medium inhomogeneity is realized by using different
models. The best known models are: 1 — when there is exactly or probabilistically one
component at every point, 2 — when there are all the components at every point of the medium.
The ray method is developed for the first model to solve different tasks of the wave propagation
in solids the method for constructing solutions such as the discontinuity of field values at the
front is being developed for the second model (this work).

The velocities of filtration processes, of diffusion in the biological tissues are much lower
than the velocities of the wave propagation that is why in the first approximation we consider
that medium inhomogeneity does not change within time. Waves may render irreversible
changes for the medium that can be considered in the model of the medium with the help of
models of plasticity. Thus, the consecutive effect of pulses, providing weak plastic deformation
of the opposite sign, can bring the desired effect of reconstruction, when there is a wave
rehabilitation of plastically deformed tissues. Macrostatically biological bodies have strongly
marked anisotropy, but the medium can be considered as locally isotropic in the first
approximation.

Wave propagation in complex media can be characterized by different processes: spatial and
temporal propagation, nonlinear effects, which while interacting with each other provide
sustainable or unsustainable energy propagation, distributed along the front. As it is known, the
spatial propagation dilutes the front (packet) in width, the temporal propagation is connected
with energy dissipation and leads to a decrease of the intensity (amplitude), and the nonlinearity
counteracts these processes. We assume that there are stable fronts of spreading waves in the
medium under consideration.

Under the assumptions made we managed for the first time to derive equations to describe
the wave pattern of the propagation of the wave fronts in a fluid-saturated inhomogeneous
elastoviscoplastic medium. It is stated that weak waves (acceleration waves) can exist as two
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types of equivoluminal waves and an irrotational one, and their velocities are equal to the
velocities of the waves in homogeneous elastic porous media.

The propagation of elastic stationary and non-stationary waves in a homogeneous porous
medium was considered in works [1-4]. In [5] acceleration waves in a fluid-saturated elastic
porous medium are studied. In works [6, 7] the propagation and the attenuation of waves in an
inhomogeneous viscous-elastoplastic medium without the saturation of fluid was investigated.
Some aspects of the impact of aperiodic waves on the biological tissues are considered in [8],
the wave propagation in randomly inhomogeneous media was investigated in [9].

Research Methodology

1. Let’s consider the interpenetrating motion of an elastoviscoplastic and fluid phase as the
motion of fluid in a deformable porous medium, the physical and mechanical characteristics of
which are the functions of the coordinates. It is assumed that the pore sizes are small in
comparison with the distance at which the kinematic and geometric characteristics of the motion
change significantly. In this case, we can assume that the elastoviscoplastic and fluid phases are

solid media and there will be two displacement vectors at every point of space: #" — is the

displacement vector of an elastoviscoplastic phase (of the porous medium skeleton) and % —
is the displacement vector of the fluid.

The elastoviscoplastic phase is described by the Bingham’s body model [6, 7]. In this case,
we assume that the deformations of the phases are small and are represented for the
elastoviscoplastic phase as a sum of elastic and plastic ones:

1
1 _ (e Mp e __ [0 (@) 2 _ ., 2
e, =e; " +e", ¢ ——2(u”+u”), e’ =u

i j N Js ror (1.1)

For the elastoviscoplastic porous medium the elastic deformation tensor is connected with
the tension tensor generalized by Hooke's law [3, 5]:

T, = Ax)e,” (x)0, +2u(x)e,” + 4,(x,)e,’

(1.2)

N =4,(x)e,” +4,(x)e;”

4, = a(e)Ry () B(x), Ax) = L(x) + ﬂ(“Z)R()(x,.)

m(x,

i

K(x,)
Ky (x;)

R
A4,(x,)=pmR,, a=1-m— , B=0+—2)", K=L+£y
X, 3

a
m

where N — is the force acting on the fluid, and related to a unit of cross-section area of the
porous medium; L, p— are Lame coefficients; K — is the bulk modulus of a porous skeleton

with empty pores; m— is the porosity; W, =W + W) + W' + ... is the compressibility

1p ip
modulus of the fluid; K, — is the true bulk modulus of the elastoviscoplastic phase; J— is

Kronecker symbol, index 1 at the top in parentheses refers to the elastoviscoplastic phase, index
2 refers to the fluid.
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The tensor of plastic deformation velocity is connected with the tension tensor by a local
condition of plasticity [6, 7]:
1
(S 7781(/1”))( 775;(/1)/)) 2k27 Si/‘ = T,’/ __Tkkéi/
3 (1.3)
and by the correlations of the associated flow law:

P _ _ Mp
_l//(Stf/’ ne; ) (1.4)

w >0 when S S, >2k*, =0 when S S, <2k’

where 77(x,)— is the coefficient of viscosity, k(x;)— is the yield stress of the material, y(x,)—

is a positive factor.

Repeated Latin indices imply summation from one to three, according to the Greek - from
one to two. The dot over the letter denotes the time derivative.

It follows from correlations (1.1) — (1.4) that:

s,
= 08, + (v + o) =2p V2% 4oavs,
tny (1.5)
N = A0 + 4@, 0 =, 12 =

Expressions (1.5) along with the equations of motion:

v + v =T PV + 007 =N, (1.6)
Pu=P =P Pn =P, P

where p,,(x;)— is the coefficient of the dynamic connection of the elastoviscoplastic phase and
the fluid, p,(x;) and p,(x,)— are the densities of the phases, p,(x,) and p,(x,)— are the
effective densities of the phases, v\*’, (a =1,2)— are the displacement velocities of the phases.
The acceleration wave in the con51dered porous medium is determined by isolated surface
Z (¢) , on which the voltage, the force acting on the fluid and the displacement velocities of the

phases are continuous, and their particular derivatives undergo discontinuity. The physical and
mechanical parameters of the medium and their gradients are continuous.

We apply the mathematical theory of discontinuities to correlations (1.5) and (1.6) and
considering the geometric and kinematic compatibility conditions of first order for the phases
[8], we obtain the system of equations:

A+ AP vy, + ud’ + A7 vy, = p,G* A" + p,G* A7 (1.7)

(0] 2) _ 2 a() 2 1(2)
AL vy, + A7 vy, =p,G A7+ p,G A

where A1) (@ =1;2)— is the values characterizing the leaps of the first derivatives of the
displacement velocities of the phases; G — is the velocity of the wave surface; v, — is the
components of the unit normal of the wave surface.
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Let us assume that on the wave surface A v, =@, #0, let’s multiply each equation of
system (1.7) by v, and sum over the index. As a result, we obtain a homogeneous system of

equations relative to o, and o, :

(Aa _plan)wl +(Aa _pa2G2)a)2 =0, (a = 192) (18)
A =A+2u, A, =4
The condition for the existence of non-zero solutions of the system (1.8) is that its

determinant must be zero. This condition leads (1.8) to the equation relative to the velocity of
irrotational waves (A*v, =w, #0, a=1;2, G=G, ):

(pnpzz _p]22 )G14 + (21012141 _pnAz _pZZA])G12 + AZAI - A12 =0 (19)
Equation (1.9) implies that irrotational waves of two types Gll and Gl2 propagate in the

fluid-saturated elastoviscoplastic inhomogeneous porous medium, and the velocity squared of
these waves is given by the formula:

i szz _4k3k4 )’ (]’i(a)vi * 0)’ kl = pllAZ _210]2Al +1022A]’

kz =/011’42 _/022A17 kz =/022A1 _plezﬂ k4 =/012A| _p]lAl’ ks = PuPxn _plzz

(1.10)

If 2v, =0 (a=1;2), on the wave surface, on the condition that not all 2 are equal to
zero simultaneously, then we obtain the formula for determining the velocity of the
equivoluminal wave (G = G,) from the system (1.7):

,upzz (a)
G = P2 (o, _g)
PP — Py (1.11)

Thus, in this inhomogeneous elastoviscoplastic porous medium there are two types of
irrotational waves and one equivoluminal, which possess the velocities of longitudinal and
transversal waves at every point of the medium [4].

2. Let’s get the equations that determine the intensity change of equivoluminal and
irrotational waves. For this equation of motion (1.6), taking into account correlations (1.5) and
the second equality (1.3), let’s write in the discontinuities:

A0 T+ w1+ )+ 4,0 T+, (v + [0 ]) - f”’ ([T,,/]——[ T, )-

2
2B OV e A ] = o [+ o]
C(L+ny) ox, @1

AWO T+ AVOT+ A4, 01+ 4, v = p, [0 1+ p, [V
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Let’s write the geometric and kinematic compatibility conditions of the second order for the
phases [8]:

HCN Py (O Pl é‘ﬂ(fﬂ (Mﬁ
[1]= LG —2G, 2L - )¢
' ' ot oot (2.2)

[v (‘”]—L(”’)vv +g7ﬁl(“)(x SV X V) - l(“) " 87h, X, X

Jij Iﬂ J

D9]= L9 =204, 1= 2, [T,,]=

LJ] 1

vi, a=1,2,1=1,,

1/

Here p,, I\ — are respectively the values characterizing the leaps of the first derivatives of

ij?
the tensions and the second derivatives of the displacement velocities of the phases, Q, — is the
average curvature of the wave surface of the irrotational wave, g’ ,b,, — are the coefficients of
the first and second quadratic forms, x, , — are the derivatives of Cartesian coordinates x, by

the curvilinear coordinates u, of the wave surface, J — differentiation with respect to time ¢.

B
Value x,; can be found from the first equation (1.6).
Let’s substitute expressions (2.2) into equality (2.1), multiply by v,, and taking into account

that viv, =1, x, ,v, =0, we have:

ow, oG
L(il)vam _2p](xGl §tl P (5'[[ @, +(2AaQI _A(x,ivi)a)l +
+L(12)V;Ba2 _210211G1 50)2 = P 5G[ o, + (2AaQ[ _Azx,ivf)w2 +
o o (2.3)

{2#&,‘/1‘// |:d‘//j| 4 ,L“//GI

(+np)* Ldn | 3147 (in%a’)}(z a)=0

Bla :plaGlz_Aa’ Bla :plaGlz_Aa’ azl’ 2

Let’s eliminate value L'” from the system (2.3) in a standard way when « =1, 2. Then value

L will be eliminated from (2.3) taking into account equation (1.9).
After the transformations, the system of equations (2.3) is reduced to one equation with two
unknown quantities @, and o, :

O oG
2G,(-k,G} +¢,) T+ {(~p, L+ 2A,Q, —Av)B, -
o ot
oG,
_(_1012 S5 +2AQ Alt ,) 2_5 iU!//G[ pllez}a)1+
tny (2.4)
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%, tp 240, ~ 4 v)B, -
ot
oG
—(—p22—1+2A2Q[ _Azx A)B IL“//GI plZBZZ}wZ +
ot 1+ny

2
hidy yLaM
(+ny)’ dn

ks = pps, _p1229 ¢ =pnd —pud, ¢, =p,A4,—py4

B
—_ 1 —
= o =T 0

With the help of equality (1.8) when a =1 we eliminate the value @,
12

from the equation (2.4). Then, after the transformations we get the differential equation for the
change of the intensity of irrotational waves W, = @@ in the inhomogeneous

elastoviscoplastic porous medium of the first phase:

Dv
B 45, o D 2 _py Dy
ds 2G, ds 2G’D, 3 l+ny D,

_ IL[S[.].V[.V] BIZBZZ [ '//]
(I1+nw)* G!D, ~dn 2.5)

D, =(p,pnA4, + PP\, =29, pnA)G} + p, A4, —2p, 4, A, + p,, A A,

D, =(puPnd = PuPuh)G + ppA, (A~ 4)

D, =(p,p,4,, —2p,pn4, +,1J12,022AU.)G,4 +Q2p,A,A, +2p, N A —

- PN = p AN, - p,NA,, —p AA )G+ AAN, -24,N A, + AN A,

B = (P = P ) (Puh, — pud), B, =~{4D, + (@B, - p.D)G} (DB,)"

where § — is the distance along the normals

In (2.5) it is taken into account that — = G, 4 ,
ot ds

to the surface Z(to) .

Let’s find the value [il—l//] from the condition of plasticity (1.3):
n

[d_l//] __ (pl]w] +p,0, )G SUV,V/
dn 3k*n(1+ny) (2.6)

Then (2.5) can be written down as:
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dWI,:{Q B, dG, 1 dD u ( S,S,a,
1

2 o D wouD, |, =0
T+ npknG, J} '

2.7)
a, =B, (p, 4 —puA), ¥, = Gzle

We find the intensity of irrotational waves in the elastoviscoplastic porous medium of the
second phase from the expression:

W,=CLWw,, W, =L'W, (2.8)

The overall intensity of irrotational waves in the fluid-saturated inhomogeneous
elastoviscoplastic porous medium will be as the sum:

W, =W, +Wy =(1+T )W, (I=1,1,) 29

To determine the intensity of an equivoluminal wave, let’s differentiate with respect to
variable & correlations A'v, =0, A7v, =0 that are running on the surface of the wave, and
we obtain:

M, __ 720 _ () ot @, __ @ _ @) ot
AoV, ==V, =4"87bx; s A v, ==V, , =4"¢"b, X, (2.10)

Then let’s write down the geometric compatibility conditions of the second order for the
phases in the form:

a 2 2 2
[ 0= LPviv, + A0gx, v 1= L7V + 402 x; v, (2.11)

We’ll get a differential equation that determines the change of the intensity of the
equivoluminal wave (G =G,) in the first phase in the process of its propagation, having

substituted the geometric and kinematic compatibility conditions (2.11) in equalities (2.1), and
taking into account (1.11):

S.S.
dm,:{gt_l_dlnwa)_ p.G, ( +2'/’j}W

d 2 4 240w | Kn(+nw) “
s s (+nw) n(l+ny) 2.12)

— 1) 7))
I/Vlr - Ai Ai

where Q, — is the average curvature of the wave surface of the irrotational wave.

Changes of the intensity of the equivoluminal wave in the second phase can be found from
the second equality (1.7):

P
P (2.13)

I/Vzr :rrVVlt’ r ==

t

Then the change of the intensity of the equivoluminal wave in the fluid-saturated
inhomogeneous elastoviscoplastic porous medium will be written down as:
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VV( = I/Vl/ +W21 = (1+F/)VV1/ (214)

Equations (2.7) and (2.12) can be written in one form:

a,
ds

= {Q,, (s) —l(l,, (s)+g,(s)-2¢, (S))} W,(s), (p=11)
2 (2.15)

dG, _dInG, _ 1 dD _dlnp

Z,=ﬂzg, X 8 wds &=

H ij
& = [ ———+2yD J
Y31+ ny)D  Kn+ny)’ ?

/=_ pllGr ( - /) 2_’_21//\]
20 +nwy)\ k' n(l+ny)

As an unknown function equations (2.15) contain geometric invariant Q (s)— the average

curvature of wave surface Z(t), that changes in the process of the wave propagation, and

consequently they are not closed. The equation for determining the average curvature and the
method of solution is given in [5].

Since the wave fronts propagate along the rays, remaining all the time orthogonal to these
rays, then the equation of the ray trajectory is found from the principle of Fermat functional
[9,10]:

dx.

i

dv. B dxiﬂ 9]
— L= _g% lnG sa Xi o —= lnG) avi_ }/b llxi ’ V“ =
ds g ( p) a ip ds ( ’)’ g Ds v ds (216)

where X; ; — is the vector tangent to the wave surface
3. Let’s determine the intensity of the waves W, (p =1, ). For this, let’s consider equation

(2.15) and initial conditions:

W(0) =W, W(0)=0, i=1,2 (3.1)

1p 0lp>

The solution of equation (2.15) we will find by the method of successive approximations.
Let’s substitute the expressions:

w,

1p

=WO+wP w4, Q =0V +QY + QP + L.
P P P P P P

ip
in (2.15) and restricting to the second approximation, we’ll get:

AW
P _ OO
ds =,

aw,
P —ammy vfor - el 20wy 62
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dW“)
ds

o Lo O o L gopo
=Q)W, {Q,, -(x, +g, 25, )}Wl,, +QUW
where y(", ¢!, & — denote the first orders of approximation of functions y,,g,.&, .

Zero approximation for Gaussian curvature corresponds to the homogeneous elastic porous
medium [4]:

o _ QO -K, S

o1-2Q, s+ K, s’ (3.3)

where Q and K, — are the average and Gaussian curvatures of wave surface from which the

distance s, is measured.
We’ll write down the solution of equations (3.2) with initial conditions (3.1) and
Q7 (0)=0 as:

W(O) wo s
Wy = L W= e
J1-29,, 5 +K, s J1-2Q, s+ K, s G
W(O) s 1 s s
W, = = { [ars,yds, +— [ f‘”(sl)f‘”(sz)dsldsz}
V1-2Q, s +K, 5 (5 493

[P =28" ()= (x,"(9)+g, ()

Then the intensity of two irrotational waves as well as of the equivoluminal waves in the
fluid-saturated inhomogeneous elastoviscoplastic porous medium is determined by the formula:

w,=w,,+Ww,,, p=11 (3.5)

4. Example. Let’s consider the fluid-saturated inhomogeneous elastoviscoplastic porous
medium, characterized by elastic moduli L(x), u(x), the coefficient of the dynamic connection
of the elastoviscoplastic phase and the fluid p,,(x), the effective densities of the
elastoviscoplastic phase p,,(x) and the fluid p,,(x), the viscosity 7(x) and the yield stress of
the material k(x).

The front of the irrotational wave with velocity (1.10) propagates at the time moment ¢ =0
inthe x, y plane along the x axis. Determine the intensity of the given wave.

Since in this case, the quadratic forms are g% = b, =0 and the curvatures are
Q, =K, =0 when x=0, it follows that Q, = K, =0. Then from (2.7) and (2.9) we find the

07
dependence of the intensity level of the wave on the velocity and the physical-mechanical
characteristics of the fluid-saturated inhomogeneous elastoviscoplastic porous medium:

=T, et [0, TR B
7 (x)  dx @D
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_2[ p(x) $(0)s(x)

30D, ok o) O (x))]dX}’ n(x) =1+ (W (x)

where W,, — is the function value /¥, when x =0.

Specifying a particular type of inhomogeneity for the physical and mechanical characteristics
of the medium, we find the change of the intensity level of the irrotational wave in the fluid-
saturated inhomogeneous elastoviscoplastic porous medium.

Conclusions

1. Based on the principles of Fermat and Huygens propagation process of the wave packet in
a heterogeneous viscoelastoplastic environment regarded as transfer of energy along the beam
path in the form of the jump intensity, localized at the wave front.

2. On the kinematic and geometrical conditions compatibility, viscoelastoplastic environment
is saturated with fluid, there are irrotational and equivoluminal waves.

3. Expressions for the wave velocities, depending on the environment parameters are
provided.

4. A system of differential equations for wave energy transfer along the path of rays is
provided, changing the geometric parameters of the energy flow lines and geometry of the wave
front.
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