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Abstract. This study investigates the influence of end-support conditions on the chaotic and 

bifurcation behavior of a rotating flexible shaft-disk system. The system is modeled as a 

continuous shaft with a rigid disk in its mid span whilst supported by multi-coefficients 

bearings. Both Coriolis and centrifugal effects due to shaft flexibility are included. The partial 

differential equations of motion are extracted using the Rayleigh beam theory and the assumed 

mode method is used to discretize them in order to be solved numerically. The analytical tools 

used in this work include time series, phase plane portrait, power spectrum, Poincaré map, 

bifurcation diagrams, and Lyapunov exponents. The main objective of the present study is to 

investigate the effects of end-supports stiffness and damping coefficients on the chaotic 

vibration behavior of a rotating system. Periodic, sub-harmonic, quasi-periodic, and chaotic 

states have been observed for each case. As demonstrated, inclusion of the bearing effects can 

primarily change the speed ratios at which rub-impact occurs. The principal and cross-coupling 

stiffness and damping coefficients have quite different effects in the chaotic behavior of the 

system. 
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1. Introduction  
 

Shafts or shaft-bearing assemblies are the most important components of rotating machinery. 

Study of shaft-bearing characteristics is a necessary step for the design of machine elements. 

The early rotor dynamic analysis show that designers knew about the large influence of shaft 

supports on the behavior of rotating machinery. Bearings were the first support components 

whose effects have been included in the analysis, followed by squeeze film dampers and other 

forms of bearings. The bearings play an important role in the dynamic response and stability of 

shaft-bearing systems where in many instances a bearing change, which is usually a minor 

modification, can improve the dynamic behavior of the system. 

Increasing demands for efficient industrial production have placed stringent requirements on 

designers and developers to produce high speed, high performance and trouble-free rotating 

machinery. However, some troubles, such as rub-impact between rotor and stator, can occur 

during the operation of rotating machinery. Ignoring the occurrence of rubbing may lead to 

catastrophic failures of the rotating machinery, a fact which has implied the urge necessity of its 

consideration in the dynamic analysis. 

Huang et al. [1] investigated the stability of elastic shaft-rigid disk bearing system by 

Lyapunov method. In their model, the end supports were modeled as eight-coefficient bearings, 

then various end support parameters were studied. Rao et al. [2] used an eight-coefficient 

bearing to finite element formulation of a geared rotor system. Marhomy [3] studied the stability 

of elastic shaft bearing systems with nonlinear bearing parameters. His numerical results showed 

that nonlinearity of bearing stiffness and damping parameters can influence the whirling stability 

of rotor-bearing systems. The vibration analysis of rotor shaft system with nonlinear bearing 

model is investigated by Ji et al. [4]. The rotating shaft is described by the Timoshenko beam 
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theory and the nonlinear bearings have cubic nonlinear stiffness and linear damping 

characteristics. The method of multiple scales was used for free and forced vibration analysis of 

the shaft-rotor system. Their results showed a jump corresponding to the multi-valued 

phenomenon and bifurcation character of the system. Marhomy et al. [5] studied the stability of 

rotor-bearing systems by Routh-Hurwitz criterion. The stability analysis has been performed on 

a rotor-bearing system modeled as an axially symmetric appendage at the mid-span of a spinning 

shaft mounted on two dissimilar eight-coefficient end-bearings. The results showed that the 

anisotropy of the bearing’s damping coefficients is a source of whirl instability. Hu et al. [6] 

used a finite element-based formulation for modeling the dynamic behavior of a rotating flexible 

shaft supported by a flexible support structure. The supporting mechanism between the rotating 

flexible shaft and the flexible basis was represented by three sets of non-linear springs at each 

support location. Wu [7] investigated the prediction of lateral vibration of a full-size rotor-

bearing system by using those of its scaled model. He used the eight-coefficient bearing for 

modeling the end supports in order to mathematically formulate the system. Ishida et al. [8] 

studied the nonlinear resonances and self-excited oscillations of a rotor caused by radial 

clearance and collision. In their model, the shaft was simply supported at both ends and the 

bearings were fixed in radial direction. An equivalent spring and damper model was introduced 

to simulate the collision in the clearance between the bearing and holder. Meruane et al. [9] 

considered up to third order terms on the Taylor expansion to model the stiffness and damping 

coefficients of the bearing fluid film reaction in terms of both perturbation displacements and 

velocities. Baguet et al [10] used the hydrodynamic journal bearing model for nonlinear dynamic 

analysis and eight-coefficient model for a linear dynamic analysis in the gear-shaft-bearing 

system. 

Va´zquez et al. [11] presented an experimental study on the stability and unbalance response 

of a flexible rotor supported by fluid film bearings. Their results indicated that the support 

flexibility does not influence the first critical speed. In addition, the stability thresholds 

increased with the support flexibility. Lin [12] studied the dynamic characteristics and film 

instability of a rotor-bearing system lubricated with couple stress fluids. His results showed that 

the couple stresses provide an increase in the values of the stiffness coefficients as well as the 

damping characteristics. Legrand et al. [13] investigated the vibrational behavior of the rotating 

shaft supported by short nonlinear journal bearings at its two ends. They used a Rayleigh beam 

with uniform cross-section properties to model the shaft and Reynolds’ equation to evaluate the 

oil film pressure distribution on the bearings. Chang-Jian et al. [14, 15] studied the nonlinear 

behavior of a flexible rotor supported by squeeze couple stress fluid film journal bearings. His 

results revealed that the couple stress fluid model is superior and more stable than the traditional 

Newtonian fluids. In addition, the couple stress fluid is shown to improve the dynamic behavior 

of the rotor-bearing system.  

The squeeze-film dampers are commonly used in conjunction with rolling-elements or 

hydrodynamic bearings in rotating machinery. Some researchers such as [16, 17] studied the 

dynamic behavior of rotor-bearing systems with different models for end supports. Recently, 

researchers [18, 19] investigated the active control of rotor-bearing systems. The control action 

can be applied to either bearings or shaft. By applying these control actions, one may enhance 

the stability limit or restrain the disorder behavior of the system. 

To the best of the authors’ knowledge, no work has been reported on the influence of end-

support conditions on the chaotic behavior of rotating continuous shafts-disk systems with rub-

impact considered. In this work, a continuous flexible shaft with a rigid disk in the mid span and 

eight-coefficient bearing at the end-supports is considered. The assumed mode method is used to 

discretize the partial differential equations of motion, which leads to nonlinear coupled 

differential equations that are solved numerically. Accuracy of the solutions is shown not to 

improve substantially by including an unnecessary higher number of modes. Time series, phase 

plane portrait, power spectra, Poincaré map, bifurcation diagrams, and Lyapunov exponents are 
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employed to investigate the behavior of the system. The main objective of the present study is to 

investigate the effects of end-supports on the chaotic vibration behavior of a rotating system. 

 

2. Mathematical Formulation 
 

In this study, the uniform Rayleigh beam theory is used for the mathematical modeling of a 

rotating shaft. Investigations in the shaft-disk system behavior are performed according to the 

following assumptions: 
(1) Shear deformation is neglected; 

(2) Shaft cross-section and material properties along its length are uniform, i.e. y z sI I I= = ; 

(3) Area moment inertia of the disk are the same in the two principal directions, i.e. 

yd zd dI I I= = ;  

(4) Internal damping is negligible; 

(5) Axial and torsional vibration is neglected; 

(6) Static deflections are negligible compared to dynamic effects.  

The Coriolis and centrifugal forces due to the shaft flexibility can affect the dynamic 

behavior of the system [20]. Thus, these forces are included in the analysis. Fig. 1 shows the 

schematic of the rotating flexible shaft-disk system that is supported at its ends by two dissimilar 

eight-coefficient bearings. 

 
(a) 

 
(b) 

Fig. 1. Schematic diagram of (a) rotating flexible shaft-disk system (b) eight coefficient bearing 

 

In the dynamic equilibrium configuration of the system, the undeformed shaft is the along 

the x direction of a rotating xyz coordinate frame. The left bearing deflection is denoted by 

1 1 1y z= +r j k  and that of the right by 2 2 2L y z= + +r i j k . The displacement of an arbitrary 

element of the shaft axis at a distance x from the left bearing in its undeformed configuration is 

described by [1]: 
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1 1( ) ( ) ( ) ( ) ( )u x,t x y x,t z x,t x y xθ z xφ= + + = + + + +r i j k i j k  (1) 

 

where for small angles and displacements, these approximations become valid: 

 

2 1 2 1,  
y y z z

θ φ
L L

− −
= =  (2) 

 

The shaft rotates about centerline of the bearings with angular velocityΩ . One can write the 

system’s angular velocity in the body coordinates as: 

 

( ) ( ) ( )s φ θ φ φ θθ= Ω+ + −Ω + + Ω +ω i j kɺɺ ɺ  (3) 

 

The angular velocity vector of the shaft element due to elastic displacements and bearing 

deflections in the body coordinate is: 

 

( ) ( )

( )

( )

e e e

e e e

e e

θφ θ θ φ φ φ θ θ

θ θφ θ φ φ

φ θφ φ θ θ

 Ω+ + −Ω + − Ω + +
 

= − Ω+ −Ω + + 
 Ω + +Ω + + 

ω

ɺ ɺɺ ɺ

ɺ ɺ ɺ

ɺ ɺɺ

 (4) 

 

where eθ  and eϕ are the local slopes of the flexible shaft element and are defined as:  

 

( , ) ( , )
( , ) , ( , )e e

v x t w x t
θ v x t φ w x t

x x

∂ ∂′ ′= = = − = −
∂ ∂

 (5) 

 

where the ( )
....

 and ( )′ denote differentiation with respect to time and displacement x , 

respectively.  

The position vector of a typical differential shaft element at distance x along the shaft is: 

 

1 1

( ) ( ( ) ( )) ( ( ) ( ))

( ( )) ( ( ))

s x,t y x,t v x,t z x,t w x,t

y xθ v x,t z xφ w x,t

= + + +

= + + + + +

r j k

j k
 (6) 

 

The velocity vector at the centerline of the shaft element is [21]: 
 

1 1

1 1

1 1

( ) [( ( ))( ) ( ( ))( )]

[( ( )) ( ( ))( )]

[( ( )) ( ( ))( )]

s x,t z xφ w x,t θ φ y xθ v x,t φ θ

y xθ v x,t z xφ w x,t θφ

z xφ w x,t y xθ v x,t θφ

= + + −Ω + − + + Ω +

+ + + − + + Ω+

+ + + + + + Ω+

v i

j

k

ɺɺ

ɺɺ ɺ ɺ

ɺ ɺ ɺɺ

 (7) 

 

Suppose that the disk is mounted on the mid span of the shaft, / 2x L= ; hence, the angular 

velocity, position vector and velocity vector of the disk center are:  

 

( ) ( )

( )

( )

d d d

d d d

d d

θφ θ θ φ φ φ θ θ

θ θφ θ φ φ

φ θφ φ θ θ

 Ω + + −Ω + − Ω + +
 

= − Ω + −Ω + + 
 Ω + +Ω + + 

ω

ɺ ɺɺ ɺ

ɺ ɺ ɺ

ɺ ɺɺ

 (8) 
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1 1( /2 ) ( ( / 2 )) ( ( /2 ))
2 2

d

L L
L ,t y θ v L ,t z φ w L ,t= + + + + +r j k  (9) 

1 1

1 1

1 1

( /2 ) [( ( /2 ))( ) ( ( /2 ))( )]
2 2

[( ( /2 )) ( ( /2 ))( )]
2 2

[( ( /2 )) ( ( /2 ))( )]
2 2

d

L L
L ,t z φ w L ,t θ φ y θ v L ,t φ θ

L L
y θ v L ,t z φ w L ,t θφ

L L
z φ w L ,t y θ v L ,t θφ

= + + −Ω + − + + Ω +

+ + + − + + Ω+

+ + + + + + Ω+

v i

j

k

ɺɺ

ɺɺ ɺ ɺ

ɺ ɺ ɺɺ

 (10) 

 

where dθ  and dϕ  are the slopes of the rigid disk and are defined as: 

  

2 2

( , ) ( , )
( , ) , ( , )L Ld dx x

v x t w x t
θ v x t φ w x t

x x= =

∂ ∂
′ ′= = = − = −

∂ ∂
 (11) 

 

The kinetic energy expression of the rotating shaft is: 

 

{{

} {

T
s s s s 1

0 0 0

2 2

1 1 1

2

1 1

1 1 1
A . A

2 2 2

L L L

s

ps

T dx dx z xφ w x t θ φ

y xθ v x t φ θ y xθ v x t z xφ w x t θφ

z xφ w x t y xθ v x t θφ J θφ

v x

ρ ρ ρ

ρ

= + = + + −Ω +

 − + + Ω + + + + − + + Ω+  

+ + + + + + Ω+ + Ω+    

′+

∫ ∫ ∫(v v ) (ω I ω ) ( ( , ))( )

( ( , ))( ) ( ( , )) ( ( , ))( )

( ( , )) ( ( , ))( )

(

ɺ

ɺ ɺɺ ɺ ɺ

ɺ ɺ ɺ ɺɺ

2

22

s

s

t θ φ w x t φ θ v x t I v x t θφ

θ φ w x t I w x t θφ φ θ v x t dx

′ ′ ′−Ω + + Ω + + + − Ω+

 ′ ′ ′−Ω + − + − Ω+ +Ω + +     

, )( ) ( , )( ( , )) ( , )( )

( , ) ( , )( ) ( , )

ɺɺ ɺ ɺ

ɺɺ ɺ ɺ ɺ

 (12) 

 

where ρ  is shaft mass density, A  is the cross-section area and sI  and psJ  are the diametral 

area moment of inertia and the polar area moment of inertia of the shaft, respectively. 

The kinetic energy expression of a rigid disk is: 

 

{

}

2

1 1

2

1 1

2

1 1
2

1

2

1

2

d d

x L

d pd

T m z xφ w x t θ φ y xθ v x t φ θ

y xθ v x t z xφ w x t θφ

z xφ w x t y xθ v x t θφ

h J θφ v x t θ φ w x t φ θ vρ

=

 = + + −Ω + − + + Ω + 

+ + + − + + Ω+ 

+ + + + + + Ω+  

′ ′ ′+ Ω+ + −Ω + + Ω + +

/

( ( , ))( ) ( ( , ))( )

( ( , )) ( ( , ))( )

( ( , )) ( ( , ))( )

( , )( ) ( , )( (

ɺɺ

ɺɺ ɺ ɺ

ɺ ɺ ɺɺ

ɺɺ ɺ ɺ{ 2

22

2

d

x L

x t

θ φ w x t I w x t θφ φ θ v x t

=

 
 

 ′ ′ ′−Ω + − + − Ω+ +Ω + +    /

, ))

( , ) ( , )( ) ( , )ɺɺ ɺ ɺ ɺ

 (13) 

 

where dρ  is disk mass density and ,dm  h, dI  and pdJ  are mass, disk thickness, diametral area 

moment of inertia and polar area moment of inertia of the disk, respectively. Since the shaft has 
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a circular cross-section, its polar area moment of inertia is twice its diametrical area moment of 

inertia. The total kinetic energy of the system is the sum of sT  and dT .  

The strain energy expression due to the bending of the shaft is: 

 

{ }2 2
s

0

1
U ( ( , )) ( ( , ))

2

L

EI v x t w x t dx ′′ ′′= + ∫  (14) 

 

The strain energy expression of the bearing system is: 

 

(

)

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

2 2
1 1 1 1 1 1

2 2
2 2 2 2 2 2

1 1

2 2
b ij i j y y y z z y z z

i j

y y y z z y z z

U k q q k y k y z k z y k z

k y k y z k z y k z

= = + + +

+ + + +

∑∑
 (15) 

 

In addition, the dissipation energy of the shaft system is: 

 

2 2

0

1
( ( , )) ( ( , ))

2

L

sD C v x t w x t dx = + ∫ ɺ ɺ   (16) 

 

where C  is the external damping coefficient. The dissipation energy of the bearing system is: 

 

(

)

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

2 2
1 1 1 1 1 1

2 2
2 2 2 2 2 2

1 1

2 2
b ij i j y y y z z y z z

i j

y y y z z y z z

D C q q C y C y z C z y C z

C y C y z C z y C z

= = + + +

+ + + +

∑∑ ɺ ɺ ɺ ɺ ɺɺ ɺ ɺ

ɺ ɺ ɺɺ ɺ ɺ

 (17) 

 

To derive the equations of motion, it is convenient to use the assumed mode method for 

defining displacements as follows: 

 

T

1

( , ) ( ) V ( ) ( ) ( )

n

i i

i

v x t x t x t

=

= Ψ =∑ Ψ V  (18.a) 

T

1

( , ) ( ) W ( ) ( ) ( )

n

i i

i

w x t x t x t

=

= Ψ =∑ Ψ W  (18.b) 

 

where n denotes the number of terms in the truncated series expansion, ( )xΨ  is the admissible 

spatial function vector which describes the transverse deflections of the shaft, and ( )tV , ( )tW  

are the column vectors consisting of the corresponding time-dependent generalized coordinates.  

Substituting equation (18) into equations (12-14) and (16), the discrete forms of equations 

are derived. The Lagrange equations are expressed as: 

 

( ) i
i i i i

d T T U D
Q

dt q q q q

∂ ∂ ∂ ∂
− + + =

∂ ∂ ∂ ∂ɺ ɺ
 (19) 

 

By applying the Lagrange equations and after some mathematical calculations and neglecting 

small nonlinear terms, the simplified equations of motion can be introduced in compact form as: 
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( , )+ =Mq h q q Qɺɺ ɺ  (20) 

 

where M  is mass matrix, 1 1[ ]y θ z φ= Tq V W  designates the generalized 

coordinates vector, and Q  designates the forces vector, that comprises the exciting forces, 

gravitation and rub-impact forces. 

It is assumed that the contact between the rotor (disk) and the stator can be regarded as an 

elastic impact and the heating effect due to friction is negligible. As shown in Fig. 2, nf  is the 

radial impact force, tf  is the tangential rub force and ϕ  is the inclination angle between the 

direction of the impact point and the Y −  axis: 

 

( )n s

t n

f k e
e

f f

δ
δ

µ
= −

>
=

. (21) 

 
Fig. 2. Schematic diagram of the rub-impact between the rotor and stator 

 

The components of the rub-impact forces in Y and Z directions, i.e. YF  and ZF , are:  

 

Y n t n t

Z n t n t

v x t w x t
F f f f f

e e

w x t v x t
F f f f f

e e

ϕ ϕ

ϕ ϕ


= − + = − +


 = − − = − −


( , ) ( , )
cos sin

( , ) ( , )
sin cos

 (22) 

 

where 2 2( ( , )) ( ( , ))e v x t w x t= + , µ  is the friction coefficient, δ  is the radial clearance 

between the rotor and the stator. 

To demonstrate the general method of nonlinear analysis, the case of similar bearings is 

considered: 

 

1 1 2 2
/ 2y y y y yyk k k= = , 

1 1 2 2
/ 2z z z z zzk k k= = , 

1 1 1 1
/ 2y z z y yzk k k= = , 

2 2 2 2
/ 2y z z y zyk k k= = , 

1 1 2 2
/ 2y y y y yyC C C= = , 

1 1 2 2
/ 2z z z z zzC C C= = , 

1 1 1 1
/ 2y z z y yzC C C= = , 

2 2 2 2
/ 2y z z y zyC C C= = , 

 

where the yyk , yzk , yyC , yzC  are the principal and cross-coupling stiffness and damping 

coefficients, respectively.  

Let us define the non-dimensional parameters and constant coefficients as: 
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ˆ
δ

=
V

v , ˆ
δ

=
W

w , 1
1ˆ

y
y

δ
= , 1

1̂

z
z

δ
= , tτ = Ω , 

d d

dt dτ
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n

S
ω
Ω

= , 1
dm

A
α

ρ
= , 2

dm L

A
α

ρ δ
= , 

3
dm L

A

δ
α

ρ
= , 

2

4
dm L

A
α

ρ
= , 

2

5
dm

A

δ
α

ρ
= , 1

sI

A
β = , 2

sI

A
β

δ
= , 1

d dh I

A

ρ
γ

ρ
= , 2

d dh I

A

ρ
γ

ρ δ
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42 ( / )s
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A EI l
ζ

ρ
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2
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ρ
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ξ

ρ
= , 
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ρ
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ALk
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ρ
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2

yy
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k

AL
ω

ρ
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2

zz
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AL
ω

ρ
= , 

2
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yz

k

AL
ω

ρ
= , 

2

zy

zy

k

AL
ω

ρ
= , 

2

4

s
n

EI

Al
ω

ρ
= , 

yy

yyS
ω

=
Ω

, zz
zzS

ω
=

Ω
, 

yz

yzS
ω

=
Ω

, 
zy

zyS
ω

=
Ω

, 2p Aρ δ= Ω . 

 

Now, one can rewrite the simplified non-dimensional form of equation (20) as: 

 

ˆˆ ˆˆ ˆ ˆ( , )+ =Mq h q q Qɺɺ ɺ  (23) 

 

where M̂  and ĥ  presented in Appendix A. 

Equation (23) describes the coupled nonlinear differential equation governing the flexible 

shaft-disk motion.  

Introducing 1=q z  and 2=q zɺ , the equation (23) can then be rewritten as the following set 

of first-order differential equations: 

 

1 2

1
2 1 2

ˆˆ ˆ ( , ))−

=


= −

z z

z M (Q h z z

ɺ

ɺ

 (24) 

 

3. Numerical Results and Discussion 
 

The numerical analysis of equation (24) is carried out by a variable step solver based on the 

Runge-Kutta formulation. The main point in obtaining reliable results is to select proper time 

steps for the numerical integration as well as proper number of modes for the continuous system 

[22]. In this work, a variable time step and three modes are used for numerical analysis. 

Numerical results demonstrated that the use of three modes guarantees the convergence of 

numerical results. The non-dimensional speed ratio S  is used as a control parameter. The mode 

shapes of the non-rotating uniform beam with simply supported boundary conditions at both 

ends are used as the admissible functions for the flexible shaft-disk system [23], i.e.: 

 

( ) 2sin( ) , 1, 2,3,i

i x
x i

L

π
Ψ = = …  (25) 

 

To guarantee that the data being used are in a steady state, the first few hundred-time series 

data of the integration have been neglected. The results of the next few hundred time series are 

retained to carry out the analysis.  

The values for the constant and non-dimensional parameters of the system used in the 

analysis are: 
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1 0.35( ),mα =  2 882.9 ( ),mα =  4 3
3 1.4 10 ( ),mα −= ×  3

4 0.35( ),mα =  8 3
5 5.6 10 ( ),mα −= ×  

5 2
1 5.6 10 ( ),mβ −= ×  2 0.14 ( ),mβ =  3 3

1 2.01 10 ( ),mγ −= ×  2
2 5.02 ( ),mγ =  0.372ζ = .  

 

The numerical simulation is carried out for the following cases (subsections 3.1 – 3.6).  

 

3.1. Simply supported end conditions  
 

In this case, the end-supports of the shaft-disk system are considered as simply supported. 

The speed ratio S was selected as the control parameter. Five different techniques namely, time 

series, phase plane portrait, power spectrum, Poincaré map, bifurcation diagrams, and Lyapunov 

exponents are applied to analyze the dynamic behavior of the system.  

To generate the bifurcation diagram, the system control parameter (i.e. speed ratio ( S )) is 

varied with a fixed step and the state variables at the end of each step are used as initial 

conditions for the next step. These data points are then plotted versus the rotational speed ratio. 

If the motion is regular (periodic) at the specific rotational speed ratio, the bifurcation diagram 

should contain finite number of separate points. When the motion is quasi-periodic or chaotic, 

the data points in the bifurcation diagram are distributed along a line. 

The bifurcation diagram of the system with simply supported end-condition is shown in Fig. 

3.1. In this case, the dynamic behavior of the system is regular with period-one (1T) until 

6.026S = . The period doubling is observed at 6.028S = . This situation is maintained up to 

6.09S = . Again, the motion returns to period 1T at 6.092S = .  

 

 
Fig. 3.1. Bifurcation diagram of the system with simply supported end-conditions 

 

The behavior of the system at 6.108S = , jumps  to a different regular attractor with period-

two. Since the system response jumps to a remote attractor, the bifurcation point can be 

classified as a dangerous bifurcation [24]. In the region [6.15~6.198]S = , the motion has period 

one. The motion of the system becomes irregular (quasi-periodic or chaotic) at [6.2~6.228]S = . 

The motion of the system becomes sub-harmonic with period (7T) at [6.23~6.254]S = . The 

second irregular region appears at [6.256~6.258]S = . The regular sub-harmonics with period 

(11T) and (4T) are captured at [6.26~6.268]S = . The bifurcation diagram shows two rather large 

irregular regions at intervals [6.27~6.338]S =  and [6.342~6.408]S = . The regular motions with 
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period (2T) and (4T) are captured at [6.26~6.268]S = . The behavior of the system alternates 

between regular (1T) and irregular motions at [6.35~6.452]S = . It gets into the sub-harmonic 

motion with period-one (1T) at [6.454~6.784]S =  with some small oscillations. Finally, it 

returns back into irregular motion at 6.786S = .  

Fig. 3.2 provides time series, phase plane portrait, power spectrum and Poincaré map at 

6.34S = . The dynamic response of the system demonstrates the sub-harmonic motion of period 

4T. As shown in Fig. 3.2(c), the power spectrum at this speed ratio has a clear peak at the 

frequencies 1/4 and the four discrete points in the Poincaré map shown in Fig. 3.2(d) confirm the 

sub-harmonic (period-4) motion. 

 

 

 
Fig. 3.2. (a) time series, (b) phase plane portrait, (c) power spectrum, 

(d) Poincaré map with simply supported end-conditions at 6.34S =   

 

3.2. Similar bearings with constant coefficients 
 

The bifurcation diagram of the system with similar bearings at its two ends is shown in Fig. 

4.1. In this case, the dynamic behavior of the system is regular with period-one (1T) until 

5.728S = . The rub-impact occurs at 5.729S =  with period doubling bifurcation. This situation 

is maintained up to 5.761S = . Again, the motion returns to period 1T at [5.762~5.819]S = . The 

motion of the system becomes irregular (quasi-periodic or chaotic) at [5.82~5.85]S = , that 

accompanied with increases in the response amplitude. The response amplitude decreases at 

5.851S =  and the second irregular region appears at [5.851~5.903]S = . The regular sub-

harmonics with period (4T) and (3T) are captured at [5.904~5.906]S = . The motion becomes 

irregular at [5.907~5.911]S = . The regular motions with period (5T) and (4T) are captured at 

[5.912~5.947]S = . The bifurcation diagram shows the other rather large irregular regions at 

interval [5.948~5.982]S = . The behavior gets into the sub-harmonic motion with period one (1T) 

at 5.983S = .  
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Fig. 4.1. Bifurcation diagram of the system with similar bearing coefficients 

 
Fig. 4.2 shows the time series, phase plane portrait, power spectrum and Poincaré map at 

5.75S = . The behavior of the system demonstrates the sub-harmonic motion of period 2T. As 

illustrated in Fig. 4.2(c), the power spectrum at this speed ratio has a clear peak at the 

frequencies 1/2 and the two discrete points in the Poincaré map shown in Fig. 4.2(d) confirm the 

sub-harmonic (period-2) motion. Fig. 4.3 shows the dynamic response of the system at 5.84S = . 

As shown in Figs. 4.3(b, d), many crossings and loops are seen in the phase plane portrait and 

fractal structure in Poincaré map, which can be a sign of the chaotic motion. 

  

 
Fig. 4.2. (a) time series, (b) phase plane portrait, (c) power spectrum, 

(d) Poincaré map with similar bearing coefficients at 5.75S =   
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Fig. 4.3. (a) time series, (b) phase plane portrait, (c) power spectrum, 

(d) Poincaré map with similar bearing coefficients at 5.84S =   

 
3.3. Principal stiffness coefficient effect 
 

In this case study, the speed ratio is constant, i.e. 5.85S = , as mentioned above, the dynamic 

behavior of the system is chaotic. The aim of this case is to investigate the effect of principal 

stiffness on the chaotic behavior of the system. Fig. 5.1 shows the bifurcation diagram of the 

system when yyS  is selected as a control parameter. The behavior of the system is irregular up to 

9.058yyS = . By increasing the control parameter, the response gets to regular motion with 

period (5T) at [9.059~9.062]yyS =  and return to irregular one at [9.063~9.221]yyS = . Again, the 

motion returns to period 5T at 9.222yyS =  and this region continues up to 9.306yyS = . By 

further increasing the stiffness of the bearings, the other irregular region appears at 

[9.307~9.341]yyS = . The motion returns to period 1T at 9.342yyS = , thus properly choosing the 

principal stiffness coefficient and its respective parameter can improve the dynamic behavior of 

the system and avoid the chaotic behavior at 5.85S = .  

Fig. 5.2 shows the time series, phase plane portrait, power spectrum and Poincaré map at 

9.24yyS = . The behavior of the system demonstrates the sub-harmonic motion of period 5T. As 

shown in Fig. 5.2(c), the power spectrum at this speed ratio has a clear peak at the frequencies 

1/5 and the five discrete points in the Poincaré map shown in Fig. 2.2(d) confirm the sub-

harmonic (period-5) motion at bearing position. Fig. 5.3 shows the dynamic response of the 

system at 9.45yyS = . As shown in Fig. 5.3(d), there is single point in the Poincaré map; this can 

be a sign of the regular motion with period one (1T).  
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Fig. 5.1. Bifurcation diagram of the system for principle stiffness coefficient 

 

 

 
Fig. 5.2. (a) time series, (b) phase plane portrait, (c) power spectrum, 

(d) Poincaré map with principle stiffness coefficient at 9.24yyS =   

 

3.4. Cross-coupling stiffness coefficient effect 
 

For this case study, the speed ratio is constant, i.e. 4.5S = , as mentioned in section 3.2, the 

dynamic behavior of the system is regular (1T) until 5.728S = . The aim of this case is to 

investigate the effect of cross-coupling stiffness on the behavior of the system. The Fig. 6.1 

shows the bifurcation diagram of the system with cross-coupling stiffness coefficient while zyS  

is selected as a control parameter. The behavior of the system is regular with period one up to 
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7.96zyS = . Increasing the cross-coupling stiffness will increase the disorder behavior of the 

system. The motion gets into chaotic behavior at 7.97zyS = . The situation preserves until 

8.06zyS =  accompanying with amplitude increasing. By further increasing the control 

parameter, the irregular motion aggravates. Thus increasing the cross-coupling stiffness can lead 

to undesirable behavior, even if the speed ratio is in the regular motion region. 

 

 

 
Fig. 5.3. (a) time series, (b) phase plane portrait, (c) power spectrum, 

(d) Poincaré map with principle stiffness coefficient at 9.45yyS =   

 

 
Fig. 6.1. Bifurcation diagram of the system for cross coupling stiffness coefficient 
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Fig. 6.2. (a) time series, (b) phase plane portrait, (c) power spectrum, 

(d) Poincaré map with cross coupling stiffness coefficient at 8.2zyS =   

 
Fig. 6.2 shows the dynamic response of the system at 8.2zyS = . As indicated, many 

crossings and loops in the phase plane portrait, broadband power spectrum and fractal structure 

in Poincaré map are observed, which can be a sign of the chaotic motion. 

 

3.5. Principal damping coefficient effect 
 

In this case study, the speed ratio is constant, i.e. 5.85S = , in which the system behavior is in 

a chaotic region. The effect of principal damping on the dynamic behavior of the system is 

studied in this section. Fig. 7.1 displays the bifurcation diagram of the system while the principal 

damping coefficient yyξ  is selected as a control parameter. The behavior of the system is regular 

(3T) until 0.017yyξ = . By increasing the control parameter, the response falls into chaotic 

motion at [0.018~0.052]yyξ =  and returns to regular motion with period (5T) again at 

[0.115~0.140]yyξ = . By further increasing the principal-damping ratio, the motion returns to 

period 1T at 0.150yyξ = . Thus by proper selection of the principal damping ratio one can 

improve the dynamic behavior of the system and avoid the chaotic behavior at 5.85S = .  

Fig. 7.2 shows the time series, phase plane portrait, power spectrum and Poincaré map at 

0.012yyξ = . As shown, many crossings and loops in the phase plane portrait, broadband power 

spectrum and fractal structure in Poincaré map are observed, which can be a sign of the chaotic 

motion in the bearing position. As shown in Fig. 7.3, at 0.06yyξ = , the behavior of the system 

demonstrates the sub-harmonic motion of period 5T. 
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Fig. 7.1. Bifurcation diagram of the system for principle damping coefficient 

 

 

 
Fig. 7.2. (a) time series, (b) phase plane portrait, (c) power spectrum, 

(d) Poincaré map with principle damping coefficient at 0.012yyξ =   

 

3.6. Cross-coupling damping coefficient effect 
 

In this case, the speed ratio is constant, i.e. 4.5S = , as mentioned previously, the motion is 

regular (1T) until 5.728S = . Fig. 8.1 shows the bifurcation diagram of the system with cross 

coupling damping coefficient zyξ  as the control parameter. The behavior of the system is regular 

with period until 0.198zyξ = . Increasing the cross-coupling damping coefficient will increase 

the disorder behavior of the system. The motion gets into chaotic behavior at 0.199zyS = . By 
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further increasing the control parameter, the irregular motion aggravates. Thus increasing the 

cross-coupling damping coefficient can lead to undesirable behavior, even if the speed ratio is in 

the regular motion region.  

 

 

 
Fig. 7.3. (a) time series, (b) phase plane portrait, (c) power spectrum, 

(d) Poincaré map with principle damping coefficient at 0.06yyξ =  

 

 
Fig. 8.1. Bifurcation diagram of the system for cross-coupling damping coefficient 

 

Fig. 8.2 shows the dynamic response of the system at 0.21zyξ = . As shown, many crossings 

and loops in the phase plane portrait, broadband power spectrum and geometrically fractal 

structure in Poincaré map are observed, which can be a sign of the chaotic motion. 
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Fig. 8.2. (a) time series, (b) phase plane portrait, (c) power spectrum, 

(d) Poincaré map with cross-coupling damping coefficient at 0.21zyξ =   

 
The Lyapunov exponents determine the average rate of the exponential expansion or 

contraction in the direction of an initial deviation (0)y  on a trajectory of the system, which is 

given by 
( )1

lim ln( )
(0)

i
t

y t

t y
λ

→∞
= , where the symbol  denotes a vector norm and iλ  is called the 

Lyapunov exponent. If the maximum Lyapunov exponent is negative or zero, there is a regular 

motion, and a positive maximum Lyapunov exponent will confirm the chaotic motion [24, 25]. 

The Lyapunov exponents of Eq. (23) are obtained using the algorithm given in Ref. [26]. As 

shown in Fig. 9, the maximum Lyapunov exponents at 5.84,S =  8.2,zyS =  0.012yyξ =  and 

0.21zyξ =  in the respective cases are positive, confirming the chaotic motion at given control 

parameters. Thus, the maximum Lyapunov exponent proves as a useful tool for verifying the 

results of other nonlinear analytical tools used to identify chaotic behavior. 

 

4. Conclusion  
 

The influence of end-supports conditions on the chaos and bifurcation of a rotating flexible 

shaft-disk system with rub-impact was investigated in this paper. The system was modeled as a 

continuous shaft with a rigid disk in its mid span and the end-supports modeled as eight-

coefficient bearings. The assumed mode method was used to discretize the partial differential 

equations of motion. Time series, phase plane portrait, Poincaré map, bifurcation diagrams, and 

Lyapunov exponents were used to analyze the nonlinear dynamic behavior of the system. The 

effects of Coriolis and centrifugal forces due to shaft flexibility were also considered. The 

results obtained from the different numerical tools agreed well with each other. According to the 

results, the following conclusions may be drawn: 
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1. Considering the end-supports as eight-coefficients bearing can primarily change the speed 

ratios in which rub-impact occurs, i.e. simply supported 6.028S =  and eight-coefficient similar 

bearing 5.728S = . In addition, the dynamic behavior of the system had substantial differences in 

the two mentioned cases. 

 

  
a) b) 

  
c) d) 

Fig. 9. Maximum Lyapunov exponents at respective control parameters 

 
2. The principal stiffness and damping coefficients can improve the dynamic behavior of the 

system. As demonstrated, by increasing these coefficients, the chaotic vibration at 5.85S =  

transformed into the period-one motion.   

3. The cross-coupling stiffness and damping coefficients can aggravate the dynamic behavior 

of the system. As demonstrated, by increasing these coefficients, the regular motion with period 

one at 4.50S =  transformed to the chaotic vibrations.  

Thus, the results obtained in this study allow a suitable set of system parameters (i.e., 

principal and cross-coupling stiffness and damping coefficients) to be specified such that the 

rotating system trajectories avoid undesirable behavior and thereby lead to increase of the life 

cycle of the system. 
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Appendix A 

 

v1 v2 v3 v4 v5 v6
n n n n n 1 n 1 n 1 n 1

w1 w2 w3 w4 w5 w6
n n n n n 1 n 1 n 1 n 1

y1 y2 y3 y4 y5 y6
1 n 1 n 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ

× × × × × ×

× × × × × ×

× × × × × ×

                      

                      

                      
=

M M M M M M

M M M M M M

M M M M M M
M

1

θ1 θ2 θ3 θ4 θ5 θ6
1 n 1 n 1 1 1 1 1 1 1 1

z1 z2 z3 z4 z5 z6
1 n 1 n 1 1 1 1 1 1 1 1

φ1 φ2 φ3 φ4 φ5 φ6
1 n 1 n 1 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

× × × × × ×

× × × × × ×

× × × × × ×



                      

                      

                      

M M M M M M

M M M M M M

M M M M M M


 
 
 
 
 
 
 
 
 
 
 
 

                (A.1) 

 

where the mass matrix elements are as: 

 
1

v1 w2 1 1 d1
ˆ ˆ ,α −= = +M M I Γ Γ  v2 w1

ˆ ˆ= =M M 0 , 1 1
v3 w5 1 5 1 1 d3α− −= = +ˆ ˆM M Γ Γ Γ Γ ,  

1 12
v4 w6 1 4 1 d3

1ˆ ˆ
2

α
δ

− −= = +M M Γ Γ Γ Γ ,  v5 v6 w3 w4
ˆ ˆ ˆ ˆ= = = =M M M M 0 ,   

1 1
1 2 6 1 9 1 6 1 d5

ˆ ˆ Γ Γy z α− −
− −= = +M M Γ Γ ,  2 1 2 1

ˆ ˆ ˆ ˆ
y z θ φ= = = =M M M M 0 ,  

1
3 4 1 6 1

ˆ ˆ 1 Γy z α −
−= = +M M ,  

1 12
4 6 6 1 6 2 6 1

1ˆ ˆ Γ Γ Γ
2

y z

α
δ

− −
− − −= = +M M ,

5 6 3 4 5 6 3 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0y y z z θ θ φ φ= = = = = = = =M M M M M M M M ,  

1 13
1 2 7 10 7 d5

ˆ ˆ Γ Γ
2

θ φ

α
δ − −= = +M M Γ Γ ,  

1 13
3 5 7 6 2 7

ˆ ˆ Γ Γ Γ
2

θ φ

α
δ − −

−= = +M M , 

14
4 6 7

ˆ ˆ 1 Γ
4

θ φ

α −= = +M M , 

T
1 1[ ]v w y z φθ= − =ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆH Q h H (q,q) H (q,q) H (q,q) H (q,q) H (q,q) H (q,q)ɺ ɺ ɺ ɺ ɺ ɺ              (A.2) 

 

( ) ( )

( ) ( )

1
1 2 1 21

v 1 5 1 1 1 1 1 4

4
2 1 1 1

1 3 1 1 2 2 1 82

1 2 1 2
1 1 d3 1 1 1 1 1 1 d1

2

1
2 2 2

p

2 2
2

2 2

2

v z θφz φ y y φ φ θ θ

L
φθ φ θ

S S

z θφz φ y y φθ φ

δ

ζ
β β

α α

α

−
− −

− − −

− −

= − − + + + − + +

− − − − + + − −

− + + + − + + +

−

Γ Q ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆH [ Γ Γ Γ Γ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆw w v v v Γ Γ v Γ Γ v Γ Γ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆΓ Γ Γ Γ w w v v

Γ

ɺɺ

ɺ ɺ

ɺɺ

( )1 2 1 1
1 d3 1 1 d2 2 1 d42 2φ φ θ θ θγ γ− − −+ + − +ˆ ˆ ˆˆ ˆ ˆΓ Γ Γ v Γ Γ ]ɺ

                         (A.3) 

 

( )
1

1 2 1 21
w 1 5 1 1 1 1 1 4

4
2 1 1 1

1 3 1 1 2 2 1 82

1
2 2 2

p

2 2
2

w y θφy θ z z θ φθ φ

L
φθ θ φ

S S

δ

ζ
β β

−
− −

− − −

 = − − − − + − − 
 

+ − − − + + − −

Γ Q ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆH [Γ Γ Γ Γ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆv v w w w Γ Γ w Γ Γ w Γ Γ

ɺɺ

ɺ ɺ
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( ) ( )1 2 1 2
1 1 d3 1 1 1 1 1 1 d1

1 2 1 12
1 d3 1 1 d2 2 1 d4

2 2

2 2
2

y θφy θ z z φθ θ

θ φθ φ φ

α α

α
γ γ

− −

− − −

+ − − − + − − −

 + − − − − 
 

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆΓ Γ Γ Γ v v w w

ˆ ˆˆ ˆ ˆ ˆΓ Γ Γ Γ w Γ Γ ]

ɺ ɺ

ɺ
                             (A.4) 

 

( ) ( )
( ) ( )

( ) ( )

1 2 1 2
1 6 1 6 2 6 1 9

2 1 2
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