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Abstract. In this paper, nonlinear dynamic characteristics of shape memory alloy (SMA) 

simply supported beam in axial stochastic excitation were studied. Von del Pol nonlinear 

difference item was introduced to interpret the hysteresis phenomenon of the strain-stress curve 

of SMA, and the hysteretic nonlinear dynamic model of SMA simply supported beam in axial 

stochastic excitation was developed. The local stochastic stability of the system was analyzed 

according to the largest Lyapunov exponent, and the global stochastic stability of the system 

was discussed in singular boundary theory. The steady-state probability density function and the 

joint probability density function of the system were obtained in quasi-nonintegrable 

Hamiltonian system theory. The result of simulation shows that the stability of the trivial 

solution varies with bifurcation parameter, and stochastic Hopf bifurcation appears in the 

process. The result is helpful to stochastic bifurcation control to SMA simply supported beam.  
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Introduction  

 

Shape Memory Alloy (SMA) is a kind of smart materials and applied in engineering field 

widely. It has many special characteristics such as shape memory effect, large damping and 

super-elasticity, based on which the SMA smart structure can be designed to reduce engineering 

vibration. SMA simply supported beam is a kind of basic smart structure, which was applied in 

vibration reduction field widely and has complex nonlinear dynamical characteristics. Lau 

analyzed vibration characteristics of SMA beams with different boundary conditions [1]. Liew 

studied the pseudoelastic behavior of a SMA beam by the element-free Galerkin method [2]. 

Zbiciak discussed dynamic characteristics of pseudoelastic SMA beam [3]. Scarpa developed 

spectral element formulation for SMA beams under random vibration excitation [4]. Hashemi 

developed the dynamic model of SMA beam [5]. Collet analyzed vibration behavior of SMA 

beam under dynamical loading [6]. 

This paper aims to offer a kind of analysis method to nonlinear dynamical characteristic of 

SMA simply supported beam in axial stochastic excitation in theoretically. Von del Pol 

nonlinear difference item was introduced to interpret the hysteresis phenomenon of strain-stress 

curve of SMA, and the hysteretic nonlinear dynamic model of SMA simply supported beam in 

axial stochastic excitation was developed. The local stochastic stability of the system was 

analyzed according to the largest Lyapunov exponent, and the global stochastic stability of the 

system was discussed in singular boundary theory. The steady-state probability density function 

and the joint probability density function were obtained in quasi-nonintegrable Hamiltonian 

system theory. Finally, the theoretic result was proved by simulation. 
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Hysteresis Nonlinear Model of SMA Simply Supported Beam in Axial Stochastic 

Excitation 

 

The strain-stress curve of SMA was shown in Fig. 1. Obviously, there is hysteretic 

nonlinearity in the strain-stress curve of SMA. Most of SMA models were based on 

thermodynamics theory and micromechanics theory, where the percentage content of martensite 

was taken as main variable of stress-strain equation. As results, those SMA models were mostly 

shown as equations with subsection function or double integral function, and hard to be 

analyzed in theory [7-13]. Usually, research results to those models can only be obtained by 

numerical method or experiment method [14-18]. In this paper, Von del Pol hysteretic cycle 

model was introduced to describe the hysteretic nonlinear characteristic of SMA. 

 

 
Fig. 1. The strain-stress curve of SMA 

 

The initial Von del Pol hysteretic model describes hysteretic loop which is symmetrical 

about the initial point (0, 0). It can be shown as follows: 
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  = = + −  
   
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where 
0 ( )f x  is skeleton curve of hysteretic loop and usually expressed in polynomial function, 

a  and b  are coefficients which determine the difference between the skeleton curve and the 

real curve. 

Supposing the strain-stress curve of SMA is symmetrical about the point G (
0
ε , 

0
σ ), the 

strain-stress curve of SMA can be shown as follows: 
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where σ  is stress, ε  is strain, 
i

b  ( 1,  2,  3,  4)i =  are coefficients, skeleton curve is chosen as: 
3

0 1 2( ) .f x b x b x= +  
4 0b ε=  since the loading curve has the same value as the unloading curve 

when 0ε = , and 3

0 1 0 2 0 0b bσ ε ε− − =  because the initial stress of SMA must be avoided for 

industry application, so Eq. 2 can be rewritten as follows: 
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2 3 2
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( )a a a a aσ ε ε ε ε ε ε= + + + − ɺ  (3) 

 

where: 2

1 1 2 03a b b ε= + , 
2 2 03a b ε= − , 

3 2a b= , 3

4

4

2b
a

b
= , 3

5 2

4

b
a

b
= . 

Model of SMA simply supported beam in axial stochastic excitation was shown in Fig. 2, 

where ( , )w x t  is displacements of points of SMA beam, N  is axial excitation, 
0 ( )NN N c tξ= − , 

0N  is initial excitation, Nc  is coefficient, ( )tξ  is Gauss white noise whose mean is zero and 

intensity is 2D, D > 0. 

 
Fig. 2. The model of SMA simply supported beam in axial stochastic excitation 

 

In this paper, tension and compression were assumed as symmetrical, so the neutral axis was 

located in the geometrical center. A rectangular cross-section under bending moment M was 

shown in Fig. 3. 

 
Fig. 3. The cross-section and curvature of the assumed beam 

 

The boundary conditions of SMA simply supported beam can be written as follows: 

0x = : 0w = , 0
xx

w =   

x l= : 0w = , 0
xx

w =   

In main mode, w  can be shown as follows: 

 

( , ) ( )sinw t x u t x
l

π =  
 

 (4) 

 

where ( )u t  is amplitude of the fundamental mode. 

The geometrical deformation condition is: 
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According to the relationship between stress and strain shown in Eq. 3, the bending moment 

M can be shown as follows: 

 
/ 2

2 3 2

1 2 3 4 5
/ 2

[ ( ) ]
h

h
M ydA b y a a a a a dyσ ε ε ε ε ε ε

−
= − = − + + + −∫ ∫ ɺ  (6) 

 

Considering Eq. 4 and Eq. 5, we obtained: 
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where 
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The dynamical equation of SMA simply supported beam can be shown as follows: 

 
2 2 2

2 2 2
0

M w w w
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ρ

∂ ∂ ∂ ∂
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∂∂ ∂ ∂
 (8) 

 

where c  is linear damping coefficient, ρ  is density of the SMA and A  is area of the cross-

section of SMA beam. 

Considering Eq. 4 and Eq. 7, we obtained differential equation of vibration amplitude with 

parametric excitation as follows: 
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Introducing non-dimensional transformation: 
1

2
* 1 1

2

a I
t t

Alρ
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 

, 

1

2
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and ignoring the symbol *, we obtained the non-dimensional motion equation as follows: 
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Stochastic Stability Analysis of System 

 

Let u q= , u p=ɺ , Eq. 10 can also be shown as follows: 

 

3 2( ) ( )

q p

p kq q q p eq tα µ γ ξ

=

= − − − − +

ɺ

ɺ

 (11) 

 

Considering that the items 3qα− , 2( )q pµ γ− −  and ( )eq tξ  are all small, the Hamiltonian 

function of Eq. 11 can be shown as follows: 
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2 21
( )

2
H p kq= +  (12) 

 

According to the quasi-nonintegrable Hamiltonian system theory, the Hamiltonian function 

H(t) converges weakly in probability to an one-dimensional Ito diffusion process. The averaged 

Ito equation about the Hamiltonian function can be shown as follows: 

 

( ) ( ) ( )dH m H dt H dB tσ= +  (13) 

 

where ( )B t  is standard Wiener process, ( )m H  and ( )Hσ  are drift and diffusion coefficients of 

Ito stochastic process, which can be obtained in stochastic averaging method: 

 
2

2 2

3/2

2
( )

2

De k a
m H H H H

k kk

µ γ
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−
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2
2 2( )

De
H H

k
σ =  (15) 

 

Based on quasi-nonintegrable Hamiltonian system theory [19], the largest Lyapunov 

exponent of a linearized system is defined as follows: 

 

0

1
lim ln ( , )
t

Z t z
t

λ
→∞

=  (16) 

 

The linearized Ito differential equation can be shown as follows after the system was 

linearized in the trivial solution H = 0: 

 

(0) (0) ( )dH m Hdt HdB tσ′ ′= +  (17) 

 

Then the associated largest Lyapunov exponent is: 

 

[ ]{ }
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21/21
lim ln (0) (0) / 2 / 2

4 2t

De
H m

t k

µ
λ σ

→∞
′ ′= = − = −  (18) 

 

Now the local stochastic stability of the system can be discussed as follows: 

1) The trivial solution H = 0 is locally asymptotic stable if and only if λ  < 0, which means 
2

2

De

k
µ > ; 

2) The trivial solution H = 0 is locally asymptotic unstable if and only if λ  > 0, which means 

k

De

2

2

<µ ; 

3) Bifurcation should appear near the trivial solution H = 0 if and only if λ  = 0, which means 
2

2

De

k
µ = . 

The largest Lyapunov exponent can only estimate the local stability. In this paper, the 

boundary classification method was used to analyze the global stability of the trivial solution of 

the system. Generally, the boundaries of diffusion process are singular, and the boundary 
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classification is often determined by diffusion exponent, drift exponent and character value 

[20]. 

When 0H → : 
2

2 2

3/2

2
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m H H H H
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µ γ
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= − +

2De k
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So: 

2lα = , 1
l
β = , 

2
2 1l

k
c

De

µ = − 
 

  

where lα  is diffusion exponent, 
lβ  is drift exponent, lc  is character value, l  is left boundary. 

Thus, the left boundary H = 0 belongs to the first kind of singular boundary. According to 

the classification for singular boundary [20], we obtained: 

1) The left boundary H = 0 is repulsively natural if lc  > 1; 

2) The left boundary H = 0 is strictly natural if lc  = 1; 

3) The left boundary H = 0 is attractively natural if lc  < 1. 

Similarly, the right boundary H = ∞  belongs to the second kind of singular boundary. 

When H →∞ : 
2

2 2
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So: 

2rα = , 2rβ = , 
2

4

2
r

k a
c

k De

πγ

π

−
=   

where r  is the right boundary. Thus, the right boundary H = ∞  is an entrance boundary. 

The necessary and sufficient conditions for globally asymptotic stability of the trivial 

solution require that the left boundary be attractively natural and the right boundary be entrance. 

Thus, the trivial solution H = 0 is globally asymptotically stable only lc  < 1, which means 

k

De

2

2

>µ . The influence of the character value to the stability was shown in Fig. 4. 

 
Fig. 4. The influence of the character value to the stability 

 

Stochastic Bifurcation and Simulation 

 

The averaged FPK equation of Eq. 11 is: 
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2 2
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1 [ ( ) ]
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2

f H f
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= − +
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 (19) 

 

where f  is probability density.  

Thus, the stationary probability density function of the system is: 
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where A  is a normalization constant, 
2

2
k

De

µ
η = − . 

The joint probability density function of the system is: 

 

2 2 2 2
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1 1 4 1 1
( , ) exp

2 2 2 22
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η
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    

 (21) 

 

The results of numerical simulation were shown in Fig. 5 – Fig. 8, where 5.0=k , 5.0=D , 

05.0=c , 1=l , 40=M , 11102×=E , 4108 −×=A , 11106 −×=I . 
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Fig. 5. The steady-state probability density when 0µ =  

 

 
Fig. 6. The joint probability density when 0µ =  

 

From Fig. 5 – Fig. 8, we can see that: 

1) p = 0 and q = 0 when H = 0 since ( )2 21
,

2
H p kq= +  so the trivial solution H = 0 corresponds 

to the origin (0, 0) in the figure of joint probability density; 
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2) The steady-state probability density of H = 0 is the max when 0=µ , which is locally 

asymptotic unstable; 

3) The steady-state probability density of H = 0 decreases when µ  increases, and its stability 

varies from unstable to stable; 

4) Stochastic Hopf bifurcation appears when the bifurcation parameter µ  varies. We can 

obviously see that there is a limit cycle in the figures of joint probability density, which is 

accord with the result of stochastic stability. 
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Fig. 7. The steady-state probability density when 0.1µ =  

 

 
Fig. 8. The joint probability density when 0.1µ =  

 
Conclusions  

 

In this paper, nonlinear dynamic characteristics of shape memory alloy (SMA) simply 

supported beam in axial stochastic excitation were studied. Von del Pol nonlinear difference 

item was introduced to interpret the hysteresis phenomenon of the strain-stress curve of SMA, 

and the hysteretic nonlinear dynamic model of SMA simply supported beam in axial stochastic 

excitation was developed. The local stochastic stability of the system was analyzed according to 

the largest Lyapunov exponent, and the global stochastic stability of the system was discussed 

in singular boundary theory. The steady-state probability density function and the joint 

probability density function of the system were obtained in quasi-nonintegrable Hamiltonian 

system theory. The result of simulation shows that the stability of the trivial solution varies 

from unstable to stable when the bifurcation parameter µ  varies, and stochastic Hopf 

bifurcation appears in the process. The result is helpful to stochastic bifurcation control to SMA 

simply supported beam. 
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