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Abstract. A new spectral plate element is presented for modeling selectively or simultaneously 

the symmetric and/or anti-symmetric modes of Lamb waves propagating in thin plate structures. 

The Legendre polynomials and the extended form of the displacement field are used in the 

formulation. The diagonal mass matrix is obtained by using a simple method with less 

computational effort. Detailed derivations are provided. Comparisons with existing results are 

performed to validate the formulations as well as the written programs. Numerical calculations 

have been carried out for thin aluminum plates with and without damages by using the proposed 

spectral plate element. Comparisons reveal that the proposed spectral plate element is more 

effective than the spectral plate element based on Chebyshev polynomials and the 3-D spectral 

finite elements with the same order of Legendre polynomials as the shape functions.  
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1. Introduction 

 

It is well known that detection of small damage in structures is an important but a 

challenging task in engineering practice. Thus, it is a hot research topic in the area of the 

structural health monitoring (SHM). To develop effective Lamb wave based SHM systems it is 

important to understand thoroughly the behavior of the Lamb wave propagation in structures 

with and without damages either experimentally or numerically. It is known, however, that the 

conventional finite element method (FEM) is computationally inefficient in analyzing elastic 

wave propagations [1]. Therefore, research efforts have been focused on developing efficient 

numerical algorithms for solutions of elastic Lamb propagations for the past few decades and 

are still underway. Various numerical algorithms reported in the literature, to list only a few, 

include the boundary element method (BEM) [2], the mass-spring lattice models (MSLM) [3], 

the local interaction simulation approach (LISA) [4], the discrete singular convolution (DSC) 

algorithm [5], and the spectral finite element method (SFEM) [6-10].  

For the spectral finite element (SFE) methods, there are two different kinds of methods 

available, namely, the fast Fourier transform based SFE and the orthogonal-polynomial-based 

SFE. Research works show that the SFE method based on the orthogonal polynomials is much 

more suitable for analyzing wave propagation in structures with complex geometry than the 

FFT-bases method. The orthogonal-polynomial-based SFE method is similar to the classical 

finite element method in the assemblage of structural mass and stiffness matrices, as well as the 

solution procedures. If the shape functions are Legendre polynomial, the mass matrix is 

approximately in a diagonal form, a remarkable advantage over the conventional finite element 

method [1]. Therefore, the orthogonal- polynomial-based SFE method has been widely used to 

simulate wave propagation in structures for damage detection [11-15]. Kudela et al. [11] studied 

the wave propagation in 1-D structures by using the Legendre-polynomial-based SFE method. 

Zak et al. [12] investigated wave propagation in plates with a crack by using 2-D spectral finite 

element and identified the crack through the transmitted and reflected waves. Peng et al. [13] 

investigated the wave propagation in plates by using a 3-D spectral element. Based on 
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Mindlin’s theory, Kudela et al. [14] studied the wave propagation in composite plates. Recently, 

Zak [15] proposed an extended form of the displacement field and presented a 2-D new spectral 

plate element. The attractive feature of the 2-D plate element is that it can model selectively or 

simultaneously the symmetric and/or anti-symmetric modes of Lamb waves propagating in 

plate structures. In other words, the 2-D plate element has the capability of a 3-D spectral 

element [13] in modeling the wave propagations in plates. Compared to the 3-D spectral 

element, the 2-D plate element is simpler and more computationally efficient. 

It is noted that, however, the mass matrix of the novel plate element in [15] is not in a 

diagonal form. Therefore, additional effort has to be made in order to allow crucial reduction of 

the complexity and the cost of the time integration by using the central finite difference method. 

To remove this deficiency and raise the computational efficiency further, a modified spectral 

plate element is proposed herein. Instead of the Chebyshev polynomials used in [15], the 

Legendre polynomials are used as the shape functions and a simple method is used to formulate 

the diagonal mass matrix. These modifications will raise the critical time step (the largest time 

step for stable time integration) more than 80 % over that of the original plate element. 

Formulations and solution procedures are worked out in detail. To validate the formulations, 

the written programs, as well as the computational efficiency, several examples are analyzed by 

using the proposed plate element. Numerical results are compared with existing (recalculated) 

data by using the 2-D spectral plate element in [15] and 3-D spectral element in [13]. Based on 

the results reported herein, some conclusions are drawn. 

  

2. Formulations of the new spectral plate element 

 

2. 1 Definition of element nodes 

 

It is known that in the formulation of a time-based spectral finite element, the nodal 

coordinates of an element are a key factor that strongly influences the element performance 

[15]. Different from the conventional finite element, nodes are distributed non-uniformly in the 

element. For the efficiency considerations, the nodal coordinates of the element in the element 

local coordinate system ξη  are defined as the roots of the following polynomials [11]: 

 
2 2(1 ) ( ) 0;  (1 ) ( ) 0

N N
P Pξ ξ η η′ ′− = − =    (1) 

 

where , [ 1,1]ξ η ∈ − , ( ) and ( )N NP Pξ η′ ′  denote the first derivative of Legendre polynomials of 

degree N . 

If the fifth order polynomials ( 5=N ) are chosen, the nodal coordinates of the element can 

be specified by: 
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Eq. (2) defines the Gauss–Lobatto–Legendre (GLL) points [11]. Thus, a 36-node 2-D 

spectral plate element can be formulated. It should be pointed out that the nodal coordinates 
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adopted in the present formulation differ from the ones used by Zak [15], thus the spectral plate 

element is regarded as a new one, although the same extended form of the displacement field of 

the plate is used in the formulation. 

 

2. 2 Shape functions 

 

Similar to the conventional finite element method, the generalized displacement field in the 

36-node 2-D spectral plate element can be assumed as: 

 
6 6 6 6

1 1 1 1

( , ) ( ) ( ) ( , ) ( , ) ( , )e e e

N i j N i j ij N i j

i j i j

q N N q N qξ η ξ η ξ η ξ η ξ η
= = = =

= =∑∑ ∑∑   (3) 

 

where ( , ) ( ) ( )
ij i j

N N Nξ η ξ η=  are shape functions, ( )( , ) , 1, 2,..., 6e

N i jq i jξ η =  denote the nodal 

degrees of freedom, and ( )iN ξ  and ( )jN η  are the one-dimensional shape functions in the local 

ξη  coordinate system defined as: 

 
6 6

1, 1,

( ) ;   ( ) , , 1,...,6k k

i j

k k i k k ji k j k

N N i j
ξ ξ η η

ξ η
ξ ξ η η= ≠ = ≠

− −
= = =

− −∏ ∏   (4) 

 

2. 3 Displacement and strain fields 

 

To use a 2-D spectral element to model the 3-D behavior of the Lamb wave propagation in 

plates, the extended form of the displacement field, proposed by Zak [15], is adopted. The 3-D 

displacement field of a plate in the global coordinate system (x-y-z) set in the middle plane of 

the plate can be written as [15]: 

 

0

0

0

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

u x y z u x y z x y

v x y z v x y z x y

w x y z w x y z x y

= + ⋅Φ

= + ⋅Ψ

= + ⋅Ω

    (5) 

 

where 
0 0
,  u v  and 

0
w  are the averages of the displacements at the upper and lower surfaces of 

the plate, ,  Φ Ψ  and Ω  are the differences between the displacements at the upper and lower 

surfaces, 
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h
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 (6) 

 

where h  is the plate thickness. It is seen that there are totally six generalized displacement 

functions, therefore, each node of the element has six DOFs, namely, 
0 0( , ),  ( , ),i j i ju vξ η ξ η  

0 ( , ),  ( , ),  ( , ),  ( , )i j i j i j i jw ξ η ξ η ξ η ξ ηΦ Ψ Ω . 

For small strains, the 3-D strain-displacement relations of a plate can be written by: 
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2. 4 Mass and stiffness matrices 

 

For a 36-node 2-D spectral plate element, the displacement field within the plate element 

can be expressed in the following form:  

{ }

0

0

6 6
0

1 1

( , )
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( , )
[ ] [ ( , )]

( , )

( , )
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= =   
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   Ψ
 
 Ω 

∑∑    (8) 

where [ ]N  denotes the matrix of shape functions.  

The strain within the element can be expressed as: 
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∑∑  (9) 

where [ ]B  is the strain matrix, and { }q  is the nodal displacement vector. 

Instead of using the existing GLL quadrature rule [11], the diagonal mass matrix is 

computed by using Gaussian quadrature as:  

( ) ( ) ( )

( ) ( )

1 1

1 1

3 3

1 1

, , ,

    ( , ) ,      , 1, 2,...,6,  6 -1

e

II kp L L kp
A

L i j kp i j i j

i j

m N dA N J d d

H H N J k p I k p

ξ η µ µ ξ η ξ η ξ η

µ ξ η ξ η

− −

= =

= =

≈ = = +

∫∫ ∫ ∫

∑∑
 (10) 

where ( ) 1, 2,3
L

h Lµ ρ= =  and ( )3
/12 4,5,6 ,

L
h Lµ ρ= =  ρ  is the mass density of the 

material, ( , )J ξ η  is the determinant of the Jacobian matrix, ,  
i j

H H  and ,  
i j

ξ η  are weights 

and abscissas of Gaussian quadrature. Note that the computational effort in obtaining the mass 

matrix is only about 25 % of that by the existing GLL quadrature rule.  

The stiffness matrix can be computed by using Gaussian quadrature as: 
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where [ ]D  is the elasticity matrix of the material. For an isotropic material, [ ]D  is given by: 

 

1 0 0 0
1 1
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1

1 0 0 0
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5(1 2 )[ ]
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−  

）
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where E is the modulus of elasticity, ν  is Poisson’s ratio. A correction factor [16] has been 

included for calculations of the transverse shear stresses. 

 

2. 4 The time integration scheme 

 

In terms of the spectral plate element, the well-known governing differential equations for 

the wave propagation in plate structures can be written in the following matrix form, 

 

{ } { } { }[ ] [ ]M Q K Q F+ =ɺɺ     (13) 

 

where { }Q  is the generalized displacement vector of the structure and the double dots denote 

the second-order derivative with respect to time t , [M] and [K] are the structural mass matrix 

and stiffness matrix, and { }F  is the vector of the time dependent excitation signal, respectively.  

Due to the fact that the mass matrix [M] is a diagonal matrix, a crucial reduction of the 

complexity and the cost of the numerical time integration can be achieved by using central 

finite difference method [17-18]. Thus, Eq. (13) can be explicitly integrated as follows, namely, 

  

{ } [ ] { } [ ]{ }( ) { } { }1
2 2

t t t t t t t
Q t M F K Q Q Q

−

+∆ −∆
= ∆ − + −   (14) 

 

where t  is the time, and t∆  denotes the time step of the time integration. When 
cr

t t∆ ≤ ∆ , the 

central finite difference method is stable. 
max2 /
e

crt ω∆ = , where 
max

eω  is the maximum circular 
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frequency of [ ] [ ]2
 0.

e e
k Mω− =  [ ] [ ]and 

e e
k M  are the stiffness and mass matrices of the 

smallest element in the spectral finite element model. 

 

3. Numerical examples and discussions 

 

Several examples with existing results are investigated to validate the formulations, solution 

procedures and written programs. Zero initial conditions are assumed for all numerical 

simulations presented in this paper. It should be pointed out that all existing results used for 

comparisons are re-produced by the present authors. 

 

3. 1 Comparisons with SFE based on Chebyshev polynomials 

 

To compare the new spectral finite element (NSFE) based on the Legendre polynomials 

with the same kind SFE but based on Chebyshev polynomials (SFE-Chebyshev) [15], consider 

first the elastic wave propagation in an aluminum thin plate with all four edges free and a 

geometric configuration of 1000 mm 1000 mm 10 mm× ×  shown in Fig. 1. Three special points, 

denoted by A, E and O, will be used in the discussions. For verifications, material properties and 

excitation signal are the same as those in [15], namely, Young’s modulus 72.7 GPaE = , mass 

density 32700 kg/mρ = , and Poisson’s ratio 0.33ν = , and the excitation signal shown in   

Fig. 2c is:  
 

( ) ( ) ( )1
50sin 2 /10 * (1 cos 2 / 60 )  if  0 60 and 0  if  60

2
F t t t t tπ π= − ≤ ≤ >  (15) 

 

where the unit of time t  is in micro-seconds (µs ). Two loading types shown in Fig. 2a and 2b 

are considered. 

 

 
Fig. 1. Geometry of an aluminum plate 

 

A uniform mesh of 50 50×  spectral plate elements is used in modeling the aluminum square 

plate, resulting in 378,006 degrees of freedom, the same as that in [15]. The total time is set to 

0.4 ms. For the element with the same size and the same number of nodes, the critical time step 

is different. 0.188 µs
cr
t∆ =  for NSFE and 0.103 µs

cr
t∆ =  for SFE-Chebyshev. Thus, much 
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larger time increment can be used as compared to SFE-Chebyshev to achieve the same solution 

accuracy. In turn, the computational efficiency is raised by using the proposed element. 

For loading case 1 shown in Fig. 2a, the anti-symmetric Lamb mode A0 is excited. In the 

present 2-D plate model, the dual forces are applied at point O along the direction of 
0

w . Fig. 3 

shows the response of the displacement of the plate at the excitation point O and the boundary 

point A, and results obtained by both elements are close to each other. 

 

 
Fig. 2. Loading types and excitation signal in time domain 

 

  
(a) (b) 

Fig. 3. Response displacement signals at (a) point O and (b) point A for the A0 mode 
 

For loading case 2 shown in Fig. 2b, dual forces with opposite directions are applied on both 

the upper and the lower surfaces of the plate at point O, thus the symmetric Lamb mode S0 is 

excited. In the 2-D plate model, the dual forces are applied at point O along the direction of the 

generalized displacement Ω . Fig. 4 shows the response of the displacement of the plate at the 

excitation point O and the boundary point A. It is observed that results obtained by both 

elements are again close to each other. Fig. 5 indicates two snap shots at time of 0.08 ms     

(Fig. 5a) and 0.16 ms (Fig. 5b) and demonstrate the process of wave propagation visually. The 

reflective waves from the boundaries can be clearly seen in Fig. 5b. 
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(a) (b) 

Fig. 4. Response displacement signals at (a) point O and (b) point A for the S0 mode 

 

  
(a) (b) 

Fig. 5. Propagation of the S0 mode of Lamb waves in an aluminum plate 

 

3. 2 Comparisons with the 3-D SFE  

 

To compare the new spectral plate element with the 3-D SFE  based on the same Legendre 

polynomials in [13], consider again the elastic wave propagation in an aluminum thin plate 

shown in Fig. 1. However, the thickness changes to 2 mm and Young’s modulus 

71.0 GPaE = . Two loading types shown in Fig. 6a and 6b are considered. The excitation 

signal shown in Fig. 6c is given by: 

 

( ) ( ) ( )( )sin 2 / 5 * 1 cos 2 / 25 / 2   for  0 25 and  0 for  25  F t t t t tπ π= − ≤ ≤ <  (16) 

 

where the unit of time t  is in micro-seconds ( µs ). 

For comparisons, the aluminum plate under investigation is meshed by 100 100× . For the new 

spectral finite elements, there are total of 1,506,006 degrees of freedom. For the 3-D SFE [13], 

three points are used in the thickness direction ( 6 6 3× × ) thus there are a total of 2,259,009 

DOFs. For the same size element, the critical time step is different. 0.117 µs
cr
t∆ =  for NSFE 

( 6 6× ) and 0.098 µs
cr
t∆ =  for 3-D SFE. The total calculation time is set to 0.3 ms. Thus, NSFE 

needs 3000 time steps and 3-D SFE uses 4000 time steps [13] to achieve similar accuracy, since 

the thickness of the plate is only 2 mm. 
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 (c) 

Fig. 6. The loading types and excitation signal in time domain 
 

For loading case 3 shown in Fig. 6a, both symmetric mode S0 and anti-symmetric mode A0 

are excited. In the 2-D plate model, the force is applied at point O along the direction of the 

displacement components 
0
v  and Ψ . Fig. 7a shows the response of the displacement v  of the 

plate recorded at point E. It is observed that results obtained by the two methods are comparable 

but have slight differences at certain time instants. Perhaps this might be caused by the slightly 

different distributions of the in-plane displacements along the thickness direction.  

 

  
(a) (b) 
Fig. 7. Response signals of displacement v  at point E 

 

For loading case 4 shown in Fig. 6b, only the symmetric Lamb mode S0 is excited. In the    

2-D plate model, the dual forces are applied at point O along the y direction. Fig. 7b shows the 

response of the displacement v  of the plate recorded at point E. It is observed that results 

obtained by the two methods are close to each other. 

 

3. 3 Damage detection by using the NSFE method 

In this section, a plate with damages shown in Fig. 8 is considered. The dimension and 

material parameters are the same as those given in Section 3.1. There are two damage zones: d1 

and d2. The damage zone d1 has the dimensions of length 40 mm  and width 20 mm  and the 

damage zone d2 has the dimensions of length 20 mm and width 20 mm . Load case 1 is used in 

the simulation. The plate is modeled by 100 100×  36-node NSFEs. The damage is modeled by 

simply reducing the element stiffness [19]. In the simulation, modulus of elasticity in the 

damaged area is reduced to 10 % of the modulus of elasticity in the undamaged area. The total 

calculation time is set to 0.8 ms so the reflected waves from the damage can reach all measuring 

points (points B, C, D and E). The time increment is set to 
7

10 s
−

. 
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Consider first only the damage d1 existing in the plate. Fig. 9 shows a snapshot at time 

instant 0.016 ms. The reflected wave from the damage can be clearly observed. For damage 

detection, the displacement responses at points B, C, D and E depicted in Fig. 8 are recorded. 

The responses of undamaged plate are then subtracted from the corresponding responses of the 

damaged plate. The differences of responses are plotted in Fig. 10. Based on the time interval, 

the wave propagation speed, as well as the location of points B, C, D and E, the location of the 

damage can be determined by using the method presented in [12]. 

 

  
Fig. 8. A square plate with damages Fig. 9. Snapshot at time of 0.016 ms 

 

  
(a) (b) 

  
(c) (d) 

Fig. 10. Difference response signals of plate with damage d1 at point (a) B, (b) C, (c) D, (d) E 
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Consider next two damages exist in the plate. Fig. 11 shows three snapshots at different time 

instances to demonstrate the processes of the wave propagation. The reflected waves from the 

both damages are clearly observed. Similarly, the displacement responses at points B, C, D and 

E are recorded for damage detection; the responses of undamaged plate are then subtracted from 

the corresponding responses of the damaged plate which are shown in Fig. 12. Based on the 

time interval, the wave propagation speed, as well as the location of points B, C, D and E, the 

location of the damages can be determined by using the method presented in [12]. 

Comparison of results provided in Fig. 10 and Fig. 12 indicates obvious difference due to 

different damages existing in the plates. 

 

   
(a) (b) (c) 

Fig. 11. Propagation of the A0 mode Lamb waves in an aluminum plate with damages 

 

  
(a) (b) 

  
(c) (d) 

Fig. 12. Difference response signals of plate with damages at point (a) B, (b) C, (c) D, (d) E 

 



 

843. EFFICIENT MODELING AND SIMULATIONS OF LAMB WAVE PROPAGATION IN THIN PLATES BY USING A NEW SPECTRAL PLATE ELEMENT. 

CHUNLING XU, XINWEI WANG 

 

 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2012. VOLUME 14, ISSUE 3. ISSN 1392-8716 
1198 

4. Conclusions 

 

In this paper, a new spectral plate element is proposed for modeling selectively or 

simultaneously the symmetric and/or anti-symmetric modes of Lamb waves propagating in 

plates. The extended form of the displacement field and the Legendre polynomials are adopted 

in the formulation. A simple way to formulate the diagonal mass matrix is used to reduce 

further the computational effort. Formulations are given in detail. Various numerical 

simulations have been carried out for aluminum plates with and without damage by using the 

proposed spectral plate element. Comparisons of simulated results to existing results verified 

the formulations. The feature of the proposed element, i.e., modeling selectively symmetric 

and/or anti-symmetric modes of Lamb waves propagating in plates, has been demonstrated. It is 

demonstrated that the proposed spectral plate element is more effective than the spectral plate 

element based on Chebyshev polynomials and the 3-D spectral finite element based on the same 

order of Legendre polynomials. Since the damage location can be also identified from the 

simulated transmitted and reflected waves by using the method presented in [12], therefore, the 

new spectral plate element may be useful in the area of Lamb-wave based structural health 

monitoring. 
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