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Abstract. Iterative methods for modification of vibratory characteristics of dynamic systems 

have attracted a lot of attention as a convenient and more economical way when compared to 

the traditional and costly structural dynamic optimization processes. Many complicated 

structures, such as telecommunication towers, chimneys and tall buildings, may be modeled as 

simple spring-mass systems. This paper presents an iterative method for modification of the 

frequencies of simple vibrating system consisting of springs and masses. The proposed 

algorithm may be used to adjust any of the vibration frequencies of a simple vibrating system to 

the target values within the desired level of accuracy. The method based on the variation of 

mass and/or stiffness properties of the system is simple yet efficient and needs less 

computational effort. The efficiency of the method is demonstrated using a numerical example. 

It is demonstrated that there is a faster convergence for adjustment of the lower frequencies and 

for the case with stiffness variation of the system rather than mass variation. 
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1. Introduction 

 

There are several techniques for frequency updating of dynamic systems that can be used for 

different purposes, including optimal design of structures. First-order sensitivity analysis of 

eigenvalues and eigenvectors was discussed by Fox and Kapoor [1]. A scheme for determining 

the rate of changes of eigenvalues and eigenvectors was developed. It can be helpful in the 

automated optimum design of structures under dynamic response constraints. Furthermore, a 

simplified procedure for finding the derivative of the eigenvectors of symmetric or non-

symmetric systems was developed by Nelson [2]. 

Extensive literature review on the development of the higher-order approximation methods 

could be found in different studies, including the one provided by Rudisill and Bhatia [3]. 

Based on Nelson’s method and generalized inverse techniques, two procedures were developed 

by Cao and Mlejnek for computation of the second order sensitivities of eigenvalues and 

eigenvectors [4]. However, it should be pointed out that these methods have their own 

limitations. The truncated Taylor series converge for small modification. However, it could lead 

to some degree of error depending on size of the “small modification”. In addition, the 

computation of the higher-order eigenvalue and eigenvector derivatives is time consuming and 

complicated. 

Iterative methods were developed due to the limitations of the aforementioned procedures in 

handling larger modifications in structural parameters. Kim has presented a simple formulation 

for the calculation of the modal design sensitivities [5]. He used the first-order perturbation 

equation to provide the starting point for the iterations. This method is useful for the systems 

with distinct and/or multiple-valued eigenvalues. To and Ewins proposed an alternative 

structural modification method based on the Rayleigh quotient iteration [6]. To and Ewins 

presented a procedure for computing the modified eigenvalues and eigenvectors. The method is 

based on expressing the eigenvectors of modified structure as a linear combination of the 

eigenvectors of the original system. They solved the problem of “small modification limitation” 

by contributing the nonlinear effects of all higher-order terms [7]. 
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This paper presents a new procedure for updating the frequencies of a simple vibrating 

system. A special feature of this method is that the exact frequencies of the modified system can 

be determined without solving the eigenvalue problem for the modified structure. Considering 

the properties of simple vibrating system, this method requires less computational time for 

extracting the eigenvalues of the modified structure. Therefore it could be efficiently used in a 

dynamic structural optimization process. The present method is based on the formulation 

derived by Tsuei and Yee for modifying the dynamic properties of the undamped mechanical 

systems [8]. They determined the exact amount of mechanical parameters (mass or stiffness) 

required for shifting each frequency to a desired value. Using their procedure, the aim is to 

solve the alternative problem of “updating the eigenvalues after modifying the structure”. 

Jankovic calculated the second and higher-order derivatives of the general eigenproblem [9]. 

Friswell extended Nelson’s method for the calculation of the first-order derivatives of 

eigenvectors, or sensitivities, to the second- and higher-order derivatives of eigenvectors [10]. 

Methods based on inverse sensitivity of complex valued eigensolutions and sensitivity of 

frequency response functions have been developed for problems of structural system 

identification and vibration-based damage detection [11-15]. 

For inexact inverse iteration the costs of the inner solves using Krylov methods has been 

investigated in [16] and [17] for the symmetric solvers CG/MINRES and in [18] for the 

nonsymmetric solver GMRES. In these papers it was shown that, for the standard eigenvalue 

problem, the number of inner iterations remains approximately constant as the outer iteration 

proceeds if no preconditioner is used but increases if a standard preconditioner is applied. A so-

called tuned preconditioner has been introduced in [18] for the standard Hermitian 

eigenproblem and in [17] for the generalized eigenproblem (though no analysis of the inner 

solves was provided in [17]). 

This paper provides an iterative method for modification of the frequencies of simple 

vibrating system consisting of springs and masses respectively. 

 

2. Parameter updating resulted from shifting frequency 

 

In this section the formulation developed by Tsuei and Yee is briefly reviewed. The 

undamped equation of motion of a dynamic system under force vector {f(t)} is represented by: 

{ }[ ]{ } [ ]{ } ( )+ =ɺɺM x K x f t                                              (1) 

where [M] and [K] are the mass and stiffness matrices respectively and {x} and { }ɺɺx  are the 

relative displacement and absolute acceleration vectors respectively. For harmonic excitation at 

frequency ω , ({ } { }2( ) ( )ω=ɺɺx t x t ), the response of the system can be determined from the 

system as: 

( ) { }
12{ ( )} [ ] [ ] [ ] [ ] ( )ωΦ Λ Φ
−

= − Tx t I f t  

or: 

{ } [ ( )]{ }ω=x H f                                                                        (2) 

where [ ]Φ  is matrix of mode shapes of the system. [ ( )]ωH  is the frequency transfer function 

matrix. The natural vibration of a modified dynamic system is: 

( ){ } ( ){ }[ ] [ ] ( ) [ ] [ ] ( ) {0}δ δ+ + + =ɺɺM M x t K K x t                                 (3) 

where  [ ]δM  and [ ]Kδ  are the modification in mass and stiffness matrices respectively. 

Since, the response {x} is harmonic ({ } { }2( ) ( )ω=ɺɺx t x t ), the following expression can be 

obtained: 

( ) ( )
12 2{ } [ ] [ ] [ ] [ ] [ ] [ ] { }ω ω δ δΦ Λ Φ
−

= − −Tx I M K x  
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or: 

( )2{ } [ ( )] [ ] [ ] { }ω ω δ δ= −x H M K x                                                          (4) 

where [ ]I is identity matrix. The natural vibration frequencies of the modified system can be 

obtained from Eq. (4) directly, instead of solving Eq. (3). Also in case of change in mass 

parameters qm  only, the above equation can be simplified. Assuming the eigenfrequency ωs  

for the modified system, then the variation δ qm  must satisfy the following equation: 

2

1

( )
δ

ω ω
=q

s qq s

m
H

                                                        (5) 

Therefore, by changing the amount of mass qm  to qm +δ qm , the system will have the 

eigenfrequency ωs . Similarly, if only the change in stiffness parameter, δ pk  is considered, 

the modified dynamic system with an eigenfrequency ωs  has the following characteristic 

equation: 
1

, , , ,

1
, , , ,

( ) ( ) ( ) ( )
det 0

( ) ( ) ( ) ( )         

δ ω ω ω ω

ω ω δ ω ω

−

−

 + + +
  =
 + + + 

p ii s ii p ij s ji p ii s ij p ij s jj p

ji s ii p ji s ji p p ji s ij p jj s jj p

k H a H a H a H a

H a H a k H a H a
(6) 

 

3. New iterative method for frequency updating 

 

Other frequencies (and mode shapes) must be updated after determination of the required 

modification for the mass or stiffness parameters. This section presents a new method for 

frequency updating of simple vibrating system that is based on the above formulation. 

Noting that in the simple vibrating system the mass matrix is diagonal, Eq. (5) (that has a 

simple form) is used. On the other hand, since in simple vibrating system the stiffness matrix is 

tri-diagonal, Eq. (6) can be transformed to a simple form. A typical simple vibrating system is 

shown in Fig. (1). If the stiffness parameter 1k  is the only parameter to be changed, then Eq. 

(4) changes to the following form: 

1 1 11 1( )δ ω=−x k H x                                                                                              (7) 

The modification 1δ k  at the desired frequency ωs  can be evaluated from the following 

simple scalar equation: 

1
11

1

( )
δ

ω

−
=

s

k
H

                                                                                       (8) 

In case of any change for the stiffness parameter qk  ( 1q> ), one has: 

( 1) ( 1) ( 1)( 1)

1
δ

− − − −
=

+ − −
q

q q q q q q qq

k
H H H H

                                (9) 

where the elements of H  matrix are at the desired frequency ωs . 

 

3. 1. Modification in parameter qm  of the mass matrix 

 

First, the element qqH  must be calculated. Note that ( )
12[ ] [ ] [ ]ωΛ
−

= −J I  is a diagonal 

matrix and: 

1
,ii

i

J λ ω
λ λ

2    ==
−

                                                                   (10) 

From definition of H  matrix, the element qqH  becomes: 
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2

1

ϕ

λ λ
=

=
−∑

N
qj

qq
j

j

H                                                                              (11) 

Eq. (5) can be rewritten to: 

1
λ

δ
=

q qqm H
                                                                                 (12) 

Substituting Eq. (11) into Eq. (12) with some rearrangement would lead to the following 

recursive equation for updating i-th eigenfrequency: 

( )( ) ( ) ( )

( 1)

21

λ λ λ λ δ
λ

ϕ δ

+
+ −

=
+

n n n
i i qi i qin

i
qqi

m S

m
, 

2
( )

( )

1

ϕ

λ λ=
≠

=
−

∑
N

qjn
qi n

j ij
j i

S                      (13) 

The λi  is the i-th eigenvalue of the original system, ϕ
qi

 is an element of modal matrix 

[ ]Φ , n  is the order of iteration and 
( 0 )

λ
i

 is the starting point. For both 
( 0 )

0λ =
i

 and 

( 0 )
λ λ= ii

, the amount of (1)λ  becomes (1) 2/ (1 )λ λ ϕ δ= +i qqi
m . In this study the starting 

point ( 0 )λ  is considered to be equal to λi . 

 

3. 2. Modification in parameter qk  of stiffness matrix 

 

Substituting Eq. (11) with 1=q  into Eq. (8), the following equation is obtained: 

2
1

1
1

1
0

ϕ

λ λ δ
=

+ =
−∑

N
j

j
j

k
                                                                 (14) 

Also, substituting Eq. (13) for 1=q  into Eq. (14), the following recursive equation is 

obtained: 
2

( 1) 1

( )1
1 1

ϕ
λ λ

δ

+

−
= +

+

n i
ii n

i
k S

                                                (15) 

In the case of modifying the parameter qk , ( 1q> ) of stiffness matrix, from Eq. (11) the 

following equation is obtained: 

( )2( 1)( 1)

( )1

λ ϕ ϕ
λ

δ

−+

−

+ −
=

′+

i q j qjn
i n

q qi
k S

, 
( ) 2( 1)( )

( )

1

ϕ ϕ

λ λ

−

=
≠

−
′ =

−
∑
N

q j q jn
qi n

j ij
j i

S         (16) 

 

4. Case study 

 

As shown in Fig. 1, many complicated structures such as telecommunication towers, 

chimneys and tall buildings can be modeled as simple spring-mass systems. The important 

parameter in evaluating the iterative methods is speed of convergence of the recursive equation. 

For the proposed algorithm, this will be verified using an example. The example is a three-

spring-mass model shown in Fig. 1. A computer program for frequency updating was written 

using MATLAB according to that algorithm. 

First, the required modifications in structural parameters for shifting some of the frequencies 

to the desired values are investigated. Equations (5), (8) and (9) are used to determine the 
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required change in the stiffness and mass matrix of the system for the desired frequency 

shifting. Figs. 2-3 demonstrate the structural modification versus frequency for structural 

parameters. 

 

 
Fig. 1. Structural model as a simple spring-mass system 

 

  
Fig. 2. Required change in stiffness for frequency shifting 

 

  
Fig. 3. Required change in mass for frequency shifting 
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After modifying the structural parameters to achieve the target frequency, the change in 

other frequencies is determined. The effects of 50 % modification in 2k  and 3m  on the 

frequencies of the system are provided in Figs. 4-7. It is demonstrated that the proposed method 

is converging very fast. It takes less number of iteration to achieve the target frequency with 

stiffness modification compared to mass modification as well. The performance of the 

algorithm has been studied for the case with large modifications in structural parameters 

through many appropriate examples demonstrating the efficiency of the method. The results are 

the same as those presented herein. 

 

 

 

 

 

 

 

Fig. 4. Required steps for frequency updating 

(50 % decrease in 2k ) 

Fig. 5. Required steps for frequency updating 

(50 % increase in 2k ) 
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Fig. 6. Required steps for frequency updating 

(50 % decrease in 3m ) 

Fig. 7. Required steps for frequency updating 

(50 % increase in 3m ) 

 

5. Conclusion 

 

A new iterative method was presented for frequency updating of the simple vibrating 

system. The efficiency of the method was examined using numerical example with three 

degrees of freedom. The extensive parametric study performed indicates that the method is 
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more efficient for the stiffness modification rather than mass modification. However, in any 

case of stiffness or mass modification, only a few iterations are needed to obtain the desired 

frequencies with the required accuracy. Furthermore, the convergence rate for lower 

frequencies is faster than for higher frequencies. Due to extensive use of simple vibrating 

systems in structural analysis and importance of dynamic characteristics of those models, the 

proposed method can be very helpful in design process of such kind of structures. 
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