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Abstract. In general, analysis of the electrostatic device is quite difficult and complicated due 

to the electrostatic coupling effect and the nonlinear electrostatic force. In this study, a hybrid 

method (H. M.) for the micro-structure system, which combines the differential transformation 

method (D. T. M.) and finite difference approximation techniques, is used to overcome the 

nonlinear electrostatic coupling phenomenon. The differential transformation employed is a 

transformed function based on the Taylor series that is effective in solving nonlinear problems 

with fast convergence. First, the natural frequencies of a micro fixed-fixed beam are derived as 

the solutions to a boundary value problem with prescribed boundary conditions by the 

differential transformation method. And then the nonlinear governing equation of a micro 

cantilever beam is solved by the hybrid method. The numerical results of the calculated pull-in 

voltage and natural frequencies are compared with other literatures using various computational 

methods and are found to be in good agreement. Overall, the results presented in this study 

show that the proposed hybrid method, provides an accurate and versatile means of analyzing 

the complex nonlinear behavior of a micro electrostatic devices. 
 

Keywords: micro cantilever beam, micro fixed-fixed beam, electrostatic device, differential 

transformation.  

 

Introduction  

 

In recent years, many commercial products using microelectromechanical devices have been 

developed. These have a wide range of uses in many fields; for example, in sensor devices such 

as accelerometers and pressure sensors [1] for automotive security systems, and in actuators 

such as the Digital Micromirror Device (DMD) and the electrostatic rotary comb actuator [2]. 

All of these devices employ electrostatic force to accomplish beam deformation for the purpose 

of sensing and actuating, hence the electrostatic actuation is the most popular for use in micro-

structure systems. Actually, in the electrostatic actuation of a micro-structure system, the 

electrostatic force is produced from the voltages of two electrodes. If the electrostatic force is 

greater than the elastic restoring force of the micro-structure system, this represents an unstable 

phenomenon [3], and the two electrodes attract and come into contact with each other suddenly. 

The critical value of the voltage is defined as the pull-in voltage, which has a tremendous 

influence on the electrostatic device. For example, the electrostatic device is regarded as an 

actuator when the operation voltage is greater than the pull-in voltage and the upper electrode 

can be attracted to the fixed bottom electrode very quickly; therefore, the pull-in voltage limits 

the operation range of the actuator. The pull-in behavior phenomenon, however, can be used in 

the design of such components as switches [4] and relays; moreover, it could be used to 

measure Young’s modulus and residual stress values [3]. Hence, the pull-in voltage is a very 

important parameter in the design of microelectromechanical devices. Hung et al. examined the 

leveraged bending and strain-stiffening methods for extending the travel distance before the 

occurrence of electrostatic actuator pull-in [5]. Chan et al. measured the pull-in voltage and 

capacitance-voltage together with two-dimensional simulations to extract material properties 

[6]. Nemirovsky et al. presented a generalized model of pull-in voltage [7]. Zook and Burns [8] 

proposed two finite element models, namely beam and plate models that consider the shear 
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deformation and rotary inertia, but do not include midplane stretching, to calculate the natural 

frequencies of a micro-beam subject to an axial load. Tilmans [9] used Rayleigh’s method to 

calculate the natural frequencies of the clamped-clamped micro-beam.  

Zhao proposed the differential transformation theory in 1986, which is applied to solve the 

linear and nonlinear initial value problems of circuit analysis. Recently, researchers have used 

this theory to solve initial value problems in mechanical engineering. Chen et al. first applied 

the differential transformation theory to solve the eigenvalue problem [10-11]. Chen et al. [12] 

showed that the combined differential transformation and finite difference method provides a 

precise and computationally-efficient means of analyzing the nonlinear dynamic behavior of 

fixed-fixed micro-beams. The same group also used the hybrid method to analyze the nonlinear 

dynamic response of an electrostatically-actuated micro circular plate subject to both effects of 

residual stress and a uniform hydrostatic pressure on the upper surface [13-14]. A numerical 

investigation was performed into the entropy generated within a mixed convection flow with 

viscous dissipation effects in a parallel-plate vertical channel using differential transformation 

method by Chen et al. [15]. 

The study begins with an explanation of the differential transformation theory, and then the 

differential transformation method is employed to the governing equation of a micro fixed-fixed 

beam. The hybrid method is used to complete the nonlinear partial differential equation of the 

micro cantilever beam and specify the initial conditions and boundary conditions. Finally, 

numerical results are derived using the hybrid method and are compared with other literature 

results. 

 

Differential Transformation Theory 
 

The basic principles of the differential transformation method are introduced below. 

If ( )x t  is an analyzable function in time domain T, a definition of the differential 

transformation of x  at 0t t=  in the K  domain is:  

0

0( ; ) ( ) ( ( ) ( )) ,  
k

k

t t

d
X k t M k q t x t k K

dt
=

 
= ∈ 

 
       (1) 

where k  belongs to the set of non-negative integers denoted as the K  domain, 0( ; )X k t  is the 

transformed function in the transformation domain, otherwise called the spectrum of ( )x t  at 

0t t=  in the K  domain, ( )M k  is the weighting factor, and ( )q t  is regarded as a kernel 

corresponding to ( ).x t  Both ( )M k  and ( )q t  are non-zero and ( )q t  is an analyzable function in 

time domain T. Therefore, the differential inverse transformation of 0( ; )X k t  can be described 

as:  

0 0

0
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( ) ,
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if ( ) !kM k H k=  and ( ) 1,q t =  where H  is the time interval. Let 0 0;t =  Eq. (1) then becomes: 

0

( )
( ) ,

!

k k

k

t

H d x t
X k k K

k dt
=

 
= ∈ 

 
        (3) 



 

878. NUMERICAL SIMULATION AND ANALYSIS OF THE MICRO ELECTROSTATIC DEVICE 

CHIN-CHIA LIU 

 

 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2012. VOLUME 14, ISSUE 4. ISSN 1392-8716 
1517 

The differential inverse transformation of ( )X k  can then be expressed as below by Eq. (2):  

0

( ) ( ),   

k

k

t
x t X k t T

H

∞

=

 = ∈ 
 

∑          (4) 

Substituting Eq. (3) into Eq. (4) gives: 

 

0 0

( )
( ) ,  

!

k k

k

k t

t d x t
x t t T

k dt

∞

= =

 
= ∈ 

 
∑          (5) 

 

Eq. (5) can be derived by Taylor series expansion. Therefore, the main basic operation 

properties of the differential transform are as listed below: 

(a) Linearity operation: 

 

[ ( ) ( )] ( ) ( )T x t y t X k Y kα β α β+ = +         (6) 

 

where T denotes the differential transform and α  and β  are any real numbers. 

(b) Differential operation: 

 

( ) ( )!
( )

!

n

n n

d x t k n
T X k n

dt k H

  +
= + 

 
         (7) 

 

where T denotes the differential transform and n is the order of differentiation [12–15]. 

 

Natural Frequencies Analysis of the Micro Fixed-Fixed Beam 

 

The purpose of this section is to obtain the governing equation of the system using 

Hamilton’s principle. First, using energy expressions that include the strain energy, electrical 

potential energy and kinetic energy, Hamilton’s principle is used to obtain the partial 

differential equation [14]. The micro fixed-fixed beam is shown schematically in Fig. 1. The 

governing equation of micro fixed-fixed beam as follows: 

 
24 2

0

4 2 22( )

wVu u
EI A

x t G u

ε
ρ

∂ ∂
+ =

∂ ∂ −
ɶ          (8) 

 

where 0 ,ε  ,w  V  and G  represent the permittivity of free space, the width of the micro fixed-

fixed beam, the voltage applied between electrodes and the initial gap between electrodes, 

respectively. ρ  is the density of micro fixed-fixed beam and A is the cross-section of micro 

fixed-fixed beam Eɶ  is the effective beam material modulus. The micro fixed-fixed beam is 

considered wide when 5w h≥  that Eɶ  for wide beam becomes the plate modulus E/(1 – ν
2
), 

where ν is the Poisson ratio and h  is the thickness of the beam, or else for the narrow beam 

which Eɶ  is equal to Young’s modulus, E. I is the moment of inertia of the micro fixed-fixed 

beam. The transverse displacement u is the function of position x and time t and can be shown 

as ( , ).u u x t=  

The boundary condition is, for example: 
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( , )
( , ) 0 at    0

u x t
u x t x

x

∂
= = =

∂
   

( , )
( , ) 0 at    

u x t
u x t x L

x

∂
= = =

∂
         (9) 

and the initial condition is, for example: 

( ,0)
( ,0) 0

u x
u x

t

∂
= =

∂
          (10) 

 

 
Fig. 1. A schematic diagram of the micro fixed-fixed beam 

 

Not taking into account the effects of residual stress and stray electric field, the governing 

equation, in dealing with a free vibrating micro fixed-fixed beam of length L, as illustrated in 

Fig. 1, is simplified into: 

4 2

4 2
0

u u
EI A

x t
ρ

∂ ∂
+ =

∂ ∂
ɶ           (11) 

For an arbitrary vibration mode, the transverse displacement u can be expressed as: 

( , ) ( ) ( )u x t U x T t=            (12) 

where ( )U x  represents the modal displacement of the micro fixed-fixed beam, and ( )T t  a time 

harmonic function. With ω  symbolizing the angular frequency, then: 

2
2

2

( , )
( )

u x t
U x

t
ω

∂
= −

∂
          (13) 

Consequently, the eigenvalue problem in Eq. (13) is simplified into the ordinary differential 

equation: 

4
2

4

( )
( ) 0

U x
EI A U x

x
ρ ω

∂
− =

∂
ɶ          (14) 

For brevity, dimensionless quantities are defined as: 
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,
x

x
L

=  
0

( )
( ) ,

U x
x

d
φ =  

2 4
2 .

A L

EI

ρ ω
Ω =

ɶ
        (15) 

Respective substitutions of Eq. (15) into Eqs. (13) and (14) yield: 

4
2

4

( )
( ) 0

x
x

x

φ
φ

∂
−Ω =

∂
          (16) 

and the dimensionless boundary condition is:  

( )
( ) 0 at    0

d x
x x

x

φ
φ = = =

∂
 

( )
( ) 0 at    1

d x
x x

x

φ
φ = = =

∂
         (17) 

It is devoted to firstly address eigenfunctions by use of a differential transformation 

approach, and secondly natural frequencies by mode superposition. Letting 
2
,λ = Ω  taking the 

differential transformation of Eq. (16) leads to: 

0 0

( 1)( 2)( 3)( 4) ( 4) ( )
k k

r r

r r r r r rλ
= =

+ + + + Φ + = Φ∑ ∑ ,       (18) 

with boundary conditions, for 0x = : 

(0) 0,

(1) 0,

Φ =

Φ =
            (19) 

and for 1x = : 

0

0

( ) 0,

( ) 0.

m

k

m

k

k

k k

=

=

Φ =

Φ =

∑

∑
           (20) 

( )k

i
Ω  and ( 1)k

i

−Ω  denote the respective ith dimensionless natural frequencies through a kth 

order differential transformation and a ( 1)thk −  one, while the order is determined by the 

condition: 

( ) ( 1)k k

i i
ε−Ω −Ω ≤ ,           (21) 

for a specified error 0ε > . Accordingly, in the case of 33,k =  it is found that: 

 
(33)

1

(33)

2

22.3722,

61.6728.

Ω =

Ω =
           (22) 

 



 

878. NUMERICAL SIMULATION AND ANALYSIS OF THE MICRO ELECTROSTATIC DEVICE 

CHIN-CHIA LIU 

 

 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2012. VOLUME 14, ISSUE 4. ISSN 1392-8716 
1520 

The inequality (21) holds true for 
1

22.3722,Ω =  
2

61.6728Ω =  and ε  = 0.0001. Through 

mode superposition, the first, second and third vibration modes are plotted in Fig. 2.  

 

 
Fig. 2. Vibration modes of a free vibrating micro fixed-fixed beam 

 

Tabulated in Table 2 are simulated dimensionless natural frequencies for respective modes 

and orders of differential transform. Illustrated in Fig. 3 is a plot of dimensionless natural 

frequencies against order k, from which a fast convergence is seen.  

 

 
Fig. 3. A plot of dimensionless natural frequencies against order k for the micro fixed-fixed beam 

 

Moreover, as compared in Table 1, a rather low relative error below 0.006 % is seen 

between the numerical and analytical solutions of dimensionless natural frequencies, that is, a 

good agreement in dealing with the eigenvalue problem of a micro system. 

 
Table 1. Agreement between numerical and analytical solutions for dimensionless natural frequencies 

 
Numerical results 

(D. T. M.) (1) 
Analytical results [16] (2) 

Error 

(∆e) (%) 

The first dimensionless natural 

frequencies 
22.3733 22.3729 0.001788 

The second dimensionless natural 

frequencies 
61.6728 61.6696 0.005189 

(2) (1)
100%

(2)
e

−
∆ = ×  
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Table 2. Listing of the dimensionless natural frequencies against the order k 

Order (k) 
The first dimensionless natural 

frequencies 

The second dimensionless natural 

frequencies 

10.0 18.8206 x 

11.0 22.8271 38.3542 

12.0 22.8271 38.3542 

13.0 22.8271 38.3542 

14.0 22.8271 38.3542 

15.0 22.3776 53.7016 

16.0 22.3776 53.7016 

17.0 22.3776 53.7016 

18.0 22.3718 x 

19.0 22.3733 60.9658 

20.0 22.3733 60.9658 

21.0 22.3733 60.9658 

22.0 22.3733 62.1521 

23.0 22.3733 61.6611 

24.0 22.3733 61.6611 

25.0 22.3733 61.6611 

26.0 22.3733 61.6779 

27.0 22.3733 61.6727 

28.0 22.3733 61.6727 

29.0 22.3733 61.6727 

30.0 22.3733 61.6729 

31.0 22.3733 61.6728 

32.0 22.3733 61.6728 

33.0 22.3733 61.6728 

34.0 22.3733 61.6728 

 

Pull-in Voltage Prediction of the Micro Cantilever Beam 

 

The micro cantilever beam is shown schematically in Fig. 4 as being constructed from a 

single beam to a fixed frame. Following assumption have been supposed to simplify the 

analysis: 

a. residual stress is ignored; 

b. fringing field effect is ignored; 

c. small deflection is assumed. 

 

 
Fig. 4. A schematic diagram of the micro cantilever beam 

 

The nonlinear governing equation of the micro cantilever beam is as follows [14]: 
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24 2
0

4 2 2
2( )

wVu u
EI A

x t G u

ε
ρ

∂ ∂
+ =

∂ ∂ −
ɶ          (23) 

The boundary condition is, for example: 

( , )
( , ) 0 at    0

u x t
u x t x

x

∂
= = =

∂
   

2 3

2 3

( , ) ( , )
0 at    

u x t u x t
x L

x x

∂ ∂
= = =

∂ ∂
        (24) 

and the initial condition is, for example: 

( ,0)
( ,0) 0

u x
u x

t

∂
= =

∂
          (25) 

Based on the assumption of the small deflection and adopting the Taylor series expansion, 

the electrostatic force term can be simplified as fifth-order model by omitting the terms of 

higher order. For analysis convenience, the nonlinear governing equation may be normalized. In 

order to analyze the pull-in behavior of the complex micro cantilever structure, the method of 

hybrid scheme [14], comprising the differential transformation method and the finite difference 

method, is used to obtain the numerical results of pull-in voltage for the micro cantilever beam.  

The geometric and material properties of the micro cantilever beam are: Young’s modulus 

E, 169 GPa; density ,ρ  3 32.33×10  Kg/m ;  length of the beam L, 500 µm;  width of the beam w, 

1.6 µm;  thickness of the beam h, 4.6 µm;  initial gap between electrodes, 32.2 µm.  The air 

permittivity of free space 0ε  is 8.85 PF / m  and Poisson’s ratio is 0.06. Table 3 shows the 

numerical results of pull-in voltage by hybrid method, which greatly resembled Adomian 

Decomposition Method [17] in the narrow micro cantilever beam. 

 
Table 3. Comparison of simulated pull-in voltage with numerical results 

Numerical method Pull-in voltage (V) 

Engery model [18] 112 

Adomian decomposition method [17] 104 

Hybrid method (H. M.) 108 

 

Conclusions 
 

In the present study, the natural frequencies of a micro fixed-fixed beam has been derived as 

the solutions to a boundary value problem with prescribed boundary conditions through the 

differential transformation method. As tabulated in Table 1, the numerical results are found in 

good agreement with analytical solutions, verifying the accuracy of this differential transform 

approach when applied to the natural frequency analysis problem of a micro fixed-fixed beam. 

In addition, a hybrid method that combines differential transformation and finite difference 

approximation has been demonstrated as a useful and powerful numerical analysis 

methodology. This method has been successfully applied to analyze the nonlinear partial 

differential equation of the micro cantilever beam. Briefly, the numerical results found for the 

pull-in voltage are close to the other literature results. Hence, the hybrid method applied in this 

paper also has great potential for analyzing other types of complex micro-structure devices in 

the future, such as the fringe effect and the residual stress effect. 
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