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Abstract. A vibration model is proposed and analyzed dynamically to study the self-

synchronization theory of dual-mass vibration system. The differential equations of systematic 

motion are derived by applying Lagrange’s equations. As two uncertain parameters, the 

coefficients of instantaneous change of average angular velocity and the phase difference of two 

exciters are introduced to derive the coupling equations of angular velocity of the two exciters. 

The conditions of synchronous implementation and stability are derived by utilizing the 

modified small parameter average method treated as non-dimension to the parameters. The 

swing of the vibration model plays a major role in the self-synchronization of two motors. The 

mass ratio of two eccentric blocks has an effect on the stability of synchronous operation. 

Keywords: self-synchronization, stability, vibrating system. 

Introduction 

A phenomenon of self-synchronization of unbalanced rotors was first discovered by 

Blekhman I. I. [1] in the 1950s. The earliest detailed research on the theory of self-

synchronization of vibrating machinery with double exciters was also carried out by Blekhman 

I. I. [1-5] in the USSR, who established the conditions of existence and stability of self-

synchronization of the exciters in vibrating systems. Achievements of vibrational technology 

and partial cases of the self-synchronization problem were widely reflected in volume 4 of a 

reference book “Vibrations in Engineering” written by Blekhman I. I. in 1981 [4]. Then the type 

of the unbalanced rotor was generalized [6]. Based on the self-synchronization phenomenon 

discovered by Blekhman I. I., a new class of vibrational machines: crushers, mills, screens, 

feeders were developed and successfully used in mineral processing industry. Recently, 

Blekhman I. I. added the definition of dynamic [7] to the traditional theory of the self-

synchronization, which reduced the requirements for system. The methods of small parameter 

and the averaging methods were applied later by some researchers Ragulskis K. M. [8, 9], 

Khodzhaev K. Sh. [10], Sperling [11, 12] and Nagaev R. F. [13] from Russia, Lithuania, 

Germany and other countries to a number of problems. It has been proven to be useful and 

descriptive leading to better understanding and theoretical explanation of the mechanism of 

self-synchronization. In the 1980s, investigations of the problem of self-synchronization were 

developed in China. Wen [14-16] selected the phase difference between two exciters as the 

variable to simplify the analytical method for establishing the conditions of existence and 

stability of self-synchronization of two identical exciters in a vibrating system. Subsequently, 

Yamapi R. [17] introduced dynamic characteristics of two motors to the self-synchronization 

theory. The self-synchronization of a vibrating system from the effect of electric-mechanic 

motors coupling is dependent on the dynamic parameters of two induction motors [18, 19]. 

In this paper, an analytical approach is employed to study the self-synchronization theory of 

a vibrating system with two non-identical coupled exciters. By introducing two variable 

perturbation parameters to average angular velocity of two exciters and their phase difference, 

the problem of synchronization is converted into that of existence and stability of zero solution 



 

884.  SELF-SYNCHRONIZATION THEORY OF A DUAL MASS VIBRATING SYSTEM DRIVEN BY TWO COUPLED EXCITERS. PART 1: THEORETICAL 

ANALYSIS. LI HE, FU SHIBO, LI YE, ZHAO CHUNYU, WEN BANGCHUN 

 
 

 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2012. VOLUME 14, ISSUE 4. ISSN 1392-8716 
1571 

for the equation of frequency capture. The rest of the paper is organized as follows: Section 2 is 

devoted to description of the dynamic model of the vibrating system. In Section 3, we analyze 

vibratory response of the model and obtain the conditions of synchronous implementation and 

that of stabilizing synchronous operation of the two exciters. The conclusions of theoretical 

analysis are discussed in Section 4. 

The dynamic model of the vibrating system 

The dynamic model of the vibrating system is presented in Fig. 1, which is taken as an 

example to demonstrate the self-synchronization theory of the double mass vibration system. 

The system is made up of two vibratory bodies and two eccentric blocks which are driven by 

two induction motors. Vibratory body 1 is supported by two elastic foundations, which consist 

of four symmetrical isolation springs. Vibratory body 2 is connected to body 1 through master 

vibration spring F. The two bodies can only move relatively along the x direction. When the 

motors rotate, the exciting force produced by the eccentric block makes the machine vibrate. 

The system has four degrees of freedom: the horizontal direction x, the vertical direction y, the 

relative position of two bodies z and swing direction ψ. The eccentric blocks respectively rotate 

about their spin axes, which are denoted by ϕ1 and ϕ2, respectively. 

 
Fig. 1. The dynamic model of the vibrating system 

In the coordinate system, 1x  and 2x  are defined as the position coordinates of body 1 and 

body 2, and represented as follows: 

1 ( , )x y=x , 2 ( cos , sin )x z y zψ ψ= − −x . 

The eccentric blocks 1 and 2 in the reference frame have coordinates: 
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As illustrated in Fig. 1, four springs are symmetrically installed on the foundations and have 

the same linear stiffness and the same damping coefficient. The deformation of springs in the 

operated state of the system can be represented as: 
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The deformation of spring F is only related to the relative position of two bodies. 

The kinetic energy T of the vibrating system can be expressed as: 

T 2 T 2
1 1 1 1 2 2 2 2

2 2 T T
3 1 4 2 01 01 01 02 02 02

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

m m

m m

T m J m J

J J m m

ψ ψ

ϕ ϕ

= + + +

+ + + +

ɺ ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ ɺ ɺ

x x x x

x x x x

      (1) 

where 1m  and 2m  is the mass of body 1 and body 2; 01m  and 02m  are the mass of exciter 1 and 

exciter 2, respectively; 1mJ , 2mJ , 3mJ  and 4mJ  are the moments of inertia of body 1, body 2 

and two motors’ rotors in terms of ψ  - direction, respectively; the top dot ( )•  denotes d( ) / dt . 

The potential energy V of the system is expressed as: 

T T T T 21 1 1 1 1

2 2 2 2 2
a a a b b b c c c d d d fV k z= + + + +x k x x k x x k x x k x      (2) 

where ak , bk , ck , dk  and fk  are the stiffness coefficients of springs A, B, C, D and F, 

diag( 4, 4)a b c d x yk k= = = =k k k k . 

The viscous dissipation function D of the system can be described as: 

T T T T 21 1 1 1 1

2 2 2 2 2
a a a b b b c c c d d d fD f z= + + + +ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺx f x x f x x f x x f x      (3) 

where af , bf , cf , df  and ff  are the damping coefficients of springs A, B, C, D and F, 

diag( 4, 4)a b c d x yf f= = = =f f f f . 

The equations of motion are derived by using Lagrange’s equations: 

( ) ( )
i

i i

d T V T V D
Q

dt q q q

∂ − ∂ − ∂
− + =

∂ ∂ ∂ɺ ɺ
       (4) 

where iq  is the generalized coordinate of the system, iQ  is the generalized force of the system. 
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If T
1 2[ , , , , , ]x y z ψ ϕ ϕ=q  is chosen as the generalized coordinates, the generalized forces are 

0,x y zQ Q Q Qψ= = = =  1 1eQ Tϕ =  and 2 2 ,eQ Tϕ =  in which 1eT  and 2eT  are the 

electromagnetic torques of the two motors. 

Substitute Eqs. (1), (2) and (3) into (4), respectively. The differential equations of motion of 

the system are:  

 
2 2

2 01 1 1 1 1 02 2 2 2 2( cos sin ) ( cos sin )x xMx m z f x k x m r m rϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ− + + = − + −ɺɺ ɺ ɺɺ ɺɺɺ ɺɺɺ  

2 2
01 1 1 1 1 02 2 2 2 2( sin cos ) ( sin cos )y yMy f y k y m r m rϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ+ + = − + + +ɺɺ ɺ ɺɺ ɺɺɺ ɺ  

2 ( ) 0f fm z x f z k z− + + =ɺɺɺɺ ɺ  

2 2 2
01 1 1 01 1 1 02 2 2
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02 2 2 01 1 1 01 1 1 02 2 2 02 2 2

cos sin cos

sin sin cos sin cos

x y x

y x y x y

J f k m r l m r l m r l

m r l m r l m r l m r l m r l

ψ ψψ ψ ψ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

+ + = + −

− + − − +

ɺɺ ɺ ɺ ɺ ɺ

ɺ ɺɺ ɺɺ ɺɺ ɺɺ

 (5) 

2
3 01 1 1 1 1 01 1 1 1 1( ) ( cos sin sin cos )m d e x yJ m r f T m r x y l lϕ ϕ ϕ ϕ ψ ϕ ψ ϕ+ + = + − + −ɺɺ ɺ ɺɺ ɺɺɺɺ ɺɺ  

2
4 02 2 2 2 2 02 2 2 2 2( ) ( cos sin sin cos )m d e x yJ m r f T m r x y l lϕ ϕ ϕ ϕ ψ ϕ ψ ϕ+ + = + + − +ɺɺ ɺ ɺɺ ɺɺɺɺ ɺɺ  

 

where M  is the mass of the system, 1 2 01 02 ,M m m m m= + + +  J  is the moments of inertia of 

the system rotating in terms of ψ - direction, 2 2 2 2
1 2 01 02 01 02 ,m m x x y yJ J J m l m l m l m l= + + + + +  kψ  

is the constants of the springs in ψ  - direction, 
2 2

1 2 ,y xk k l k lψ = +  fψ  is the damping constants 

in ψ  - direction, 
2 2
1 2 ,y xf f l f lψ = +  )(••  denotes 2 2d ( ) / d .t  

 

Dynamic analysis of the vibrating system 

 

As illustrated in Fig. 1, assume that: 

1 ,ϕ ϕ α= +  2 ,ϕ ϕ α= −          (6) 

where ϕ  is the average phase of the two eccentric rotors, ϕɺ  is the average angular velocity of 

the two eccentric rotors. When the system is in the steady state, we assume that the angular 

velocity of the two motors is 0mω  (constant). Introducing the coefficient of instantaneous 

change of average angular velocity and the phase difference between the two exciters: 1ε , 2ε , 

then we have: 

 

1 0(1 ) ,mϕ ε ω= +ɺ          2 0 ,mα ε ω=ɺ         (7) 

1 1 2 0 2 1 2 0(1 ) , (1 ) .m mϕ ε ε ω ϕ ε ε ω= + + = + −ɺ ɺ        (8) 

 

If the average values of 1ε  and 2ε  are zero, the system will implement frequency capture 

and achieve self-synchronization. Herein we focus the attention on the non-resonant vibrating 

system. 1εɺ  and 2εɺ  are much smaller than 1 during the steady-state operation, so 1ϕɺɺ  and 2ϕɺɺ  can 

be neglected in Eq. (5). Assume 01 0m m=  and 02 0  (0 1).m mη η= < <  For this vibrating system 

the damping coefficients of the springs are so small that they can be ignored. The responses of 

the system can be given by: 
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where: 
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y z, , x− − −π γ π γ π γ  and ψπ γ−  denote the phase angles in the direction of x, y, z, ,ψ  

respectively. 

We differentiate Eq. (9) by using the chain rule on each component of α  and ,ϕ  and obtain 

, , x y zɺɺ ɺɺ ɺɺ  and ψɺɺ  from Eq. (8). Substituting , ,x y zɺɺ ɺɺ ɺɺ  and ψɺɺ  into the last two equations of Eq. (5), 

we integrate each of them 0~2 .ϕ π=  With neglect of the high-order terms of 1εɺ  and 2εɺ , we 

obtain: 

2
3 01 0 1 2 1 0 1 2 1 1

2
4 02 0 1 2 2 0 1 2 2 2

( ) ( ) ( 1)

( ) ( ) ( 1)

m m d m e L

m m d m e L
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ω ε ε ω ε ε
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+ − + − + = −

ɺ ɺ

ɺ ɺ
     (10) 

and: 

 

1 11 1 12 2 11 1 12 2 1

2 21 1 22 2 21 1 22 2 2

L a f

L a f

T

T

χ ε χ ε χ ε χ ε χ χ

χ ε χ ε χ ε χ ε χ χ

′ ′= + + + + +

′ ′= + + + − +

ɺ ɺ

ɺ ɺ
       (11) 

 

Dimensionless parameters are as follows: 

 

2 2
01 0

2 2 2 2
1 01 0 0 01 0

1
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2 2
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f m s m s
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( cos 2 sin 2 )
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m r W W W

m r W W W

χ ω α α

χ ω α α
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2
11 01 0 0

2
12 01 0 0

1
( cos 2 sin 2 )

2

1
( cos 2 sin 2 )

2

m c c s

m c c s

m r W W W

m r W W W

χ ω α α

χ ω α α

′ = − − +

′ = − + −
 

2 2 2 2
2 01 0 0 01 0

1 1
cos2

2 2
f m s m sm r W m r Wχ η ω ω α= +        (12) 
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2 2 2 2
2 01 0 0 01 0

1 1
cos2

2 2
f m s m sm r W m r W= +χ η ω ω α  

2 2 2
21 01 0 0( cos 2 sin 2 )m s s cm r W W W= + −χ ω η α α  

2 2 2
22 01 0 0( cos 2 sin 2 )m s s cm r W W W= − + −χ ω η α α  

2 2
21 01 0 0

1
( cos 2 sin 2 )

2
m c c sm r W W W′ = − + +χ ω η α α  

2 2
22 01 0 0

1
( cos 2 sin 2 )

2
m c c sm r W W W′ = + +χ ω η α α  

2 2
( cos cos ( ) cos )c x x y y x yW l l= − − + + ψ ψη µ γ µ γ µ γ  

2 2
0 sin sin ( ) sins x x y y x yW l l= + − + ψ ψµ γ µ γ µ γ  

2 2
( sin sin ( ) sin )s x x y y x yW l l= − − + − + ψ ψη µ γ µ γ µ γ  

2 2
0 cos cos ( ) cosc x x y y x yW l l= + − + ψ ψµ γ µ γ µ γ  

 

It can be observed from the above formulas that the system exerts resisting moment aχ  on 

the motor at a higher speed to slow it down. In the meantime, the system exerts driving moment 

aχ  on the motor at a lower speed to speed it up. And ultimately two motors reach the same 

speed. As the mainly influencing factor of ,aχ  cW  depends primarily on the swing of the 

system. The maximum value of aχ  is 2 2
01 0 2.m cm r Wω  

Compared with the change of ϕ  in terms of time t, ,α  1,ε  2 ,ε  1εɺ  and 2εɺ  are very small 

and they can be regarded as slow-varying parameters. In one circle of motion, ,α  1,ε  2 ,ε  1εɺ  

and 2εɺ  are assumed to be the middle values of their integration ,α  1,ε  2 ,ε  1εɺ  and 2 ,εɺ  

respectively [18, 19].  

When the two motors operate near the 0 ,mω  their electromagnetic torques can be given by: 

1 01 01 1 2

2 02 02 1 2

( )

( )

e e e

e e e

T T k

T T k

ε ε

ε ε

= − +

= − −
          (13) 

with: 

2 2
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ω ω
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=

+ −
 

2 2
2 0 0

02 2 2 2 2
2 2 2 2 01 ( )

p m s s p m
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−
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2 2 2 2 2 2
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01 2 2 2 2 2
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p m r s p m m
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ss r s r s p m

n L U n
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2 2 2 2 2 2
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n L U n
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σ τ ω ω ω
ωω σ τ ω ω

− −
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+ −
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where siR  and riR  are the stator and rotor resistances; siL  and riL  are the stator and rotor 

inductances; miL  is the mutual inductance; pn  denotes the number of pole pairs; riτ  is the rotor 

time constant, /r r rL Rτ = ; iσ  is the leakage coefficient, 21 / ,m s rL L Lσ = −  1, 2.i =  

In Eq. (10), the moments of inertia of the rotors of the two motors are much less than 2
01m r  

and 2
02 .m r  Hence, 3mJ  and 4mJ  can be neglected. Introducing the following non-dimensional 

parameters into them: 

 

0
1 1

2

cW
ρ = − , 0

2 (1 )
2

cW
ρ η= − , 

01 1
1 02 2 2

0 0 0 0

e d
s

m m

k f
W

m r m r
κ

ω ω
= + + , 202 2

2 02 2 2
0 0 0 0

e d
s

m m

k f
W

m r m r
κ η

ω ω
= + + , 

1 1 2v ε ε= + , 2 1 2v ε ε= − ,          (14) 

01 1 0 0 0
1 02 2

0 0 0

cos2 sin 2
2 2 2

e d m m m
s s c

m

T f
u W W W

m r m r

ω ω ω
α α

ω
= − − − − , 

202 2 0 0 0
2 02 2

0 0 0

cos2 sin 2
2 2 2

e d m m m
s s c

m

T f
u W W W

m r m r

ω ω ω
η α α

ω
= − − − + . 

 

They are written in matrix form, i.e.: 

 
ɺAv = Bv + u             (15) 

 

where: 

 

1 12

21 2

,
a

a

ρ
ρ

 
 
 

=A  T
1 2={ } ,v vv  T

1 2{ } ,u u=u  
1 12

0
21 2

,m

b

b

κ
ω

κ
 

−  
 

=B  

12

1 1
cos2 sin 2 ,

2 2
c sa W Wα α= −  21

1 1
sin 2 cos2 ,

2 2
s ca W Wα α= +  

12 cos2 sin 2 ,s cb W Wα α= +  21 cos2 sin 2 .s cb W Wα α= −  

Equation (15) is called the equation of frequency capture of the vibrating system. 

The condition of synchronous implementation 

It can be seen from Eq. (15), when = 0v  the system achieves self-synchronization. 

Substituting = 0v  into Eq. (15), we obtain 1 2 0 :u u= =  

01 1 0 0 0
02 2

0 0 0

202 2 0 0 0
02 2

0 0 0

cos2 sin 2
2 2 2

cos2 sin 2 0
2 2 2

e d m m m
s s c

m

e d m m m
s s c

m

T f
W W W

m r m r

T f
W W W

m r m r

ω ω ω
α α

ω

ω ω ω
η α α

ω

− − − −

= − − − + =

    (16) 

Rearranging 1u  and 2 ,u  1 2 0,u u= =  we have: 
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2 2 2 2 2
01 02 1 0 2 0 0 0 0 0 0

1
( ) ( ) (1 ) sin 2

2
e e d m d m m s m cT T f f m r W m r Wω ω η ω ω α− − − − − =   (17) 

Because of sin 2 1,α ≤  the condition of synchronous implementation is: 

2 2 2 2 2
0 0 01 02 1 0 2 0 0 0 0

1
( ) ( ) (1 )

2
m c e e d m d m m sm r W T T f f m r Wω ω ω η ω> − − − − −    (18) 

Stability of the synchronization 

 

Linearizing Eq. (15) around 0 ,α α=  the three first order differential equations of the system 

are derived in the following manner that we add the two rows as the first row and then subtract 

the second row from the first as the second one. Then we obtain: 

0 0 2, ,mα α α α ω ε= + ∆ ∆ =ɺ          (19) 

1 2 0 1 1 2 0 2 0 1 2 0 1

1 2 0 2 10 20 0 0 0

1 2 0 1 1 2 0 2 0 1 2 0 1

1 2 0 2 1

( cos 2 ) ( sin 2 ) [( 2 cos2 )

( 2 sin 2 ) ] 2 sin 2 ( )

( sin 2 ) ( cos 2 ) [( 2 sin 2 )

( 2 cos2 ) ]

c s m s

c m s

s c m c

c

W W W

W u u W

W W W

W u

ρ ρ α ε ρ ρ α ε ω κ κ α ε

κ κ α ε ω α α α

ρ ρ α ε ρ ρ α ε ω κ κ α ε

κ κ α ε

′ ′+ + + − + = − + +

+ − − + + + −

′ ′− − + + − = − − +

+ + − + 0 20 0 0 02 cos2 ( )m cu Wω α α α− − −

 (20) 

Adding 0 2mα ω ε∆ =ɺ  as the third new row, Eq. (20) can be rewritten as: 

 
ɺz = Cz             (21) 

 

where:  

 
-1C = E D ,      T

1 2 0{ } ,ε ε α α= −z  

11 12

21 22

0

0

0 0 1

e e

e e

 
 =  
 
 

E ,    

11 12 0

0 21 22 0

2 sin 2

2 cos 2 ,

0 1 0

s

m c

d d W

d d W

α
ω α

− 
 = −  
 − 

D  

11 1 2 0cos2ce Wρ ρ α= + + ,      12 1 2 0sin 2 ,se Wρ ρ α= − +  

21 1 2 0sin 2se Wρ ρ α= − − ,      22 1 2 0cos2 ,ce Wρ ρ α= + −  

11 1 2 02 cos 2sd Wκ κ α= + + ,   12 1 2 02 sin 2 ,cd Wκ κ α= − −  

21 1 2 02 sin 2cd Wκ κ α= − + ,   22 1 2 02 cos2 .sd Wκ κ α= + −  

 

Solving the determinant equation det( ) 0,λ− =C I  the characteristic equation for the 

eigenvalue λ  is given by: 

3 2
1 2 3 0c c cλ λ λ+ + + =           (22) 

where 1 0 1 24 ,mc h hω=  2 0 2 02 ,mc h hω=  3 0 3 02 ,mc h hω=  

 
2 2 2 2

0 1 2 0 04 cos 2 sin 2c sh W Wρ ρ α α= − +  
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1 2 1 1 2 c sh W Wκ ρ κ ρ= + −  

2 2 2
2 1 2 1 2 0 0

2 2 2
1 2 0 0

2 ( )cos 2 2 cos 2

( )sin 2 sin 2

c c s

s s c

h W W W

W W W

κ κ ρ ρ α α

ρ ρ α α

= + + + −

+ − − +
      (23) 

3 1 2 0 1 2 0( ) cos 2 2 ( )sin 2c c s sh W W W Wκ κ α κ κ α= + + + −  

 

In engineering, γ  is so small that sin 0.γ ≈  Hence, compared with cW  in the expression of 

1,c  2c  and 3 ,c  Ws can be neglected. Then 0 ,h  1,h  2h  and 3h  can be simplified as follows: 

2 2
01 1 2 04 cos 2ch Wρ ρ α= −  

11 2 1 1 2h κ ρ κ ρ= +            (24) 

2 2 2
21 1 2 1 2 0 02 ( )cos 2 sin 2c c ch W W Wκ κ ρ ρ α α= + + + +  

31 1 2 0( ) cos 2ch W κ κ α= +  

Use the Routh-Hurwitz criterion
 
to determine the stability of the system. If the trivial 

solution 0iz =  is stable, it must satisfy the following conditions: 

1 3 1 2 30, 0, .c c c c c> > ⋅ >           (25) 

(1) If 01 0h > ,  

2 2
1 2 04 cos 2 0cWρ ρ α− >  

2 1 1 2 0κ ρ κ ρ+ >  

2
1 2 1 2 02 ( )cos 2 0c cW Wκ κ ρ ρ α+ + + >         (26) 

1 2 0( )cos 2 0cW κ κ α+ >  

2 2 2 2 2 2 2 2
2 1 1 2 1 2 0 0 0 2 1 1 24( )(2 sin 2 ) cos 2 ( cos 2 4 4 )c c c cW W W Wκ ρ κ ρ κ κ α α α κ ρ κ ρ+ + + > − + +  

From the first four formulas of Eq. (26), we can deduce that: 

2 2
0 1 2 1 2 0cos2 0, 0, 0, 4 cos 2 0.c cW Wα ρ ρ ρ ρ α> > > − >      (27) 

When these conditions are met, the left side of the fifth formula of Eq. (26) is greater than 

zero, while the right side is less than zero. Hence, Eq. (26) can satisfy Eq. (25). 

(2) If 01 0h < , 

2 2
1 2 04 cos 2 0cWρ ρ α− <  

2 1 1 2 0κ ρ κ ρ+ <  

2
1 2 1 2 02 ( )cos 2 0c cW Wκ κ ρ ρ α+ + + <                                        (28) 

1 2 0( ) cos 2 0cW κ κ α+ <  

2 2 2 2 2 2 2 2
2 1 1 2 1 2 0 0 0 2 1 1 24( )(2 sin 2 ) cos 2 ( cos 2 4 4 )c c c cW W W Wκ ρ κ ρ κ κ α α α κ ρ κ ρ+ + + < − + +  

From the first four formulas of Eq. (28), we obtain: 
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2 2
0 1 2 1 2 0cos2 0, 0, 0, 4 cos 2 0.c cW Wα ρ ρ ρ ρ α< < < − <           (29) 

When these conditions are satisfied, the left side of the fifth formula of Eq. (28) is less than 

zero, while the right side is greater than zero. Hence, Eq. (28) cannot satisfy Eq. (25). 

Therefore, Eq. (26) is the condition of the synchronous stability. 

Conclusions 

A vibration model is developed for the self-synchronization theory of a dual-mass vibration 

system, in which two unbalanced rotors are installed symmetrically about the mass center of the 

rigid frame. Lagrange's equations are utilized to establish the differential equations of motion 

for dynamic analysis of the model. To obtain the coupling equations of angular velocities of two 

exciters, two uncertain parameters, including coefficient of instantaneous change of average 

angular velocity and the phase difference between two exciters, are introduced. 

Dimensionless parameters are obtained by adopting the modified small parameter average 

method to derive the conditions of synchronous implementation and stability. If Eq. (18) is 

satisfied, the system can implement the self-synchronization. aχ  is the coupling torque of the 

system. It acts on the faster motor as resisting moment and acts on the slower motor as driving 

moment. Ultimately two motors reach the same speed. When 2α = 90o
, aχ  is the maximum. 

If the speeds of two motors are identical and mass ratio of two eccentric blocks is 1, the 

synchronous speed is equal to the rated speed. Hence the phase difference of two motors is zero, 

and the mechanism can only implement the horizontal movement, this phenomenon is called 

complete symmetry. Otherwise, it can implement the elliptical motion in xy-plane. 

When the non-dimensional moments of inertia of the two exciters are all greater than zero 

and Eq. (26) is satisfied, synchronization is at the stable state on which the mass ratio of two 

eccentric blocks and their eccentric radius etc, have effects. To guarantee the synchronous 

stability, the phase difference must be in the interval of ( 2, 2),π π−  and masses of two 

eccentric blocks should be made as small as possible. 
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