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Abstract. In this article, free vibration studies on functionally graded magneto-electro-elastic 

plates and cylindrical shells have been carried out by means of finite element method. The 

functionally graded material is assumed to be exponential in the thickness direction. The present 

finite element is formulated on the basis of assumed natural strain, enhanced assumed strain 

method and using displacement components, electric potential and magnetic potentials as nodal 

degrees of freedom. This element can be used as solid element and can also be applied to model 

thin curved shell structures. Numerical studies include the influence of the different exponential 

factor, magnetic and piezoelectric effect on the natural frequencies. Obtained numerical results 

are in good agreement with the semi-analytical finite element solutions available in the 

literature. 
 

Keywords: functionally graded materials, magneto-electro-elastic, free vibration, finite element, 

plates/shells. 

 

1. Introduction
1
 

 

Smart or intelligent materials such as the piezoelectric and piezomagnetic ones have 

attracted considerable interest recently due to their ability of converting energy from one type to 

the other (among magnetic, electric and mechanical energies). Magneto-electro-elastic materials 

simultaneously possess piezoelectric, piezomagnetic and magneto-electro-elastic effects, which 

is two orders higher than that of the individual constituent materials. With application in 

ultrasonic imaging devices, sensors, actuators, transducers and many other emerging 

components, there is a strong need for theories or techniques that can predict the coupled 

response of these smart materials as well as structure composed of them. Studies on static and 

dynamic behavior on simply supported plates as well as cylindrical shells have been dealt in 

literature [1-9]. 

In recent years, functionally graded (FG) materials, a novel microscopically inhomogeneous 

composites usually made from a mixture of metals and ceramics with continuously varying 

volume fractions of two materials along the thickness direction, have gained big attention in 

engineering community. But the studies on non-homogeneous magneto-electro-elastic structure 

are relatively scarce. Cao, Shi and Jin [10] employed the power series technique for solving the 

propagation behavior of Lamb waves in the FG piezoelectric-piezomagnetic material plate with 

material parameters varying continuously along the thickness direction. Wu and Tsai            

[11] used the method of perturbation to present a three-dimensional (3D) free vibration analysis 

of simply supported, doubly-curved FG magneto-electro-elastic shells with closed-circuit 

surface conditions. Pan and Han [12] presented an exact solution for FG and layered 

magneto-electro-elastic plates by pseudo-Stroh formalism. Huang, Ding and Chen [13] derived 

the analytical and semi-analytical solutions for anisotropic FG magneto-electro-elastic beams 
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subjected to an arbitrary load, which can be expanded in terms of sinusoidal series. Their 

analysis is applicable to beams with various boundary conditions at the two ends. Free vibration 

analysis of FGM and layered magneto-electro-elastic plates has been carried out by using series 

solution in conjunction with finite element approach [14]. 

From the literature survey, it is found that only several studies have been reported on 

magneto-electro-elastic structures analyzed by semi-analytical finite element analysis. To the 

author’s knowledge there is no finite element formulation without combining with series 

solution available for vibration studies on FG magneto-electro-elastic plates and shells. Hence, 

in present study, a solid-shell element formulation is presented for the free vibration analysis of 

FG magneto-electro-elastic plates and shells by using enhanced assumed strain and assumed 

natural strain methods. For the study, magneto-electro-elastic material made of a homogenous 

mixture of piezoelectric barium titanate (BaTiO3) as the embedded material and piezomagnetic 

cobalt ferrite (CoFe2O4) as the matrix material is considered. 

 

2. Constitutive equations 

 

2.1. Governing equation 

 

For anisotropic and linearly magneto-electro-elastic solid the coupled constitutive equations 

for a general three-dimensional solid is as follows [1]: 
 

,

j jk k kj k kj k

j jk k jk k jk k

j jk k jk k jk k

C S e E q H

D e S E m H

B q S m E H

σ

ε

µ

= − −

= + +

= + +

        (1) 

 

where , j jDσ  and Bj indicate the stress, electric displacement and magnetic induction. Sk, Ek 

and Hk are strain, electric field and magnetic field, respectively. , jk jkC ε  and µjk are the elastic, 

dielectric and magnetic permeability coefficients, respectively. , kj kje q  and mjk are the 

piezoelectric, piezomagnetic and magneto-electro-elastic material coefficients, respectively. A 

completely coupled magneto-electro-elastic material matrix, assuming a hexagonal crystal class, 

for above constitutive equations is given by Buchanan [7]. 

The present study considers FG material composed of piezoelectric and magnetostrictive 

material. The grading is accounted across the thickness of the shell. This has been achieved by 

grading the volume fraction distribution of either piezoelectric or magnetostrictive material 

governed by a simple power-law exponent.  

In the present case, a simple power-law-type definition for the volume fraction of BaTiO3 

across the thickness direction of the FGM plate is defined as: 
 

2
,

2

n

B

z h
V

h

+ =  
 

         (2) 

 

where h - thickness of the plate, z - thickness coordinates (0 ≤ z ≤ h), and n - power-law index. 

The bottom surface of the plate (0 ≤ z ≤ h) is CoFe2O4-rich, whereas the top surface (0 ≤ z ≤ h) 

of the plate is BaTiO3-rich, and the sum of the total volume fractions of the constituent 

materials, BaTiO3 (B) and CoFe2O4 (F) should be one. 

While in the case of an FGM cylindrical shell, the volume fraction of CoFe2O4(F) across the 

radial direction of the shell is assumed as: 
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,

n

z i

F

o i

r r
V

r r

 −
=  

− 
         (3) 

 

where rz represents radius at any point along the radial direction of the shell, ri is the inner 

radius, ro is the outer radius of the shell. Based on the above definition it follows that the inner 

surface of the cylindrical shell will be piezo-rich. 

On the basis of the volume fraction definition and law of mixtures, the effective material 

property definition follows: 

 

3 3

1

( ) ( ),eff j j

j

P PVς ς
=

=∑          (4) 

 

where jP  and Vj are material properties and volume fraction of the constituent material j 

comprising the functionally graded material. ‘ effP ’ is general notation for material property. 

Making use of equation (2)-(4) the effective elastic, piezoelectric, piezomagnetic, dielectric and 

magnetic permeability definitions can be derived. 

 

3. Finite element formulation 

 

In this section, the eight-node magneto-electro-elastic solid shell element is described. The 

element has four nodes at each of its top (ζ = 1) and bottom faces (ζ = −1). The mapping 

between the global Cartesian co-ordinates (X, Y, Z) and the natural coordinates (ξ, η, ζ) is: 
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    (5) 

 

where 
i

N s′  are the two-dimensional Lagrangian interpolation functions,  
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Here, the strain-displacement relation of the element will be presented. With reference to the 

interpolations of X and U, the strain with respect to (ξ, η, ζ) is computed, i.e.: 

 

, , , , , ,

, , , , , , , , , , , ,

, , ,

, , .

T T T

T T T T T T

S S S

S S S

ξ ξ ξ η η η ζ ζ ζ

ξη ξ η η ξ ζξ ζ ξ ξ ζ ζη ζ η η ζ

= = =

= + = + = +

X U X U X U

X U X U X U X U X U X U
     (8) 

 

It has been rather standard practice to use an assumed natural strain (ANS) method for 

resolving the shear locking and trapezoidal locking. Shear locking is due to the excess number 

of transverse shear strains sampled in the process of integrating the element stiffness matrix. 
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The ANS method is an effective method of resolving shear locking. By using ANS method, the 

number of independent shear strains in the system level can be reduced. The natural transverse 

shear strains are modified to be [15, 16]: 

 

0, 1 0, 1

1, 0 1, 0

1 1
,

2 2

1 1
.

2 2

S S S

S S S

ξ η ξ η
ζξ ζξ ζξ

ξ η ξ η
ζξ ζη ζη

η η

ξ ξ

= =− = =+

=− = =+ =

− +
= +

− +
= +

ɶ

ɶ

        (9) 

 

Similar to shear locking, the excessive number of sampled thickness strains lead to 

trapezoidal locking. Trapezoidal locking occurs when the common shell element is used to 

model curved shells. It can also be reduced in the system level by sampling the strain along the 

element edges, i.e. [15, 16]: 

 
1, 1 1, 1 1, 1 1, 1

1 2 3 4 .S N S N S N S N Sξ η ξ η ξ η ξ η
ζ ζ ζ ζ ζ

=− =− =+ =− =+ =+ =− =+= + + +ɶ ɶ ɶ ɶ ɶ
     (10) 

 

The conventional eight-node solid elements have a significant deficiency when the element 

thickness is small compared with the element span, the excessive shear strain energy stored in 

the thickness direction will lead to a much higher stiffness coefficient than those in planar 

directions. To overcome the thickness locking of solid shell elements, a linear extension EAS 

over the thickness is used to enhance the strain in the thickness direction [16]: 

 

[ ]

{ }

,

1
1 ,

,
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T
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ζ
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ζ
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λ λ λ λ1 2 3 4

= + ∆

∆ = =

=

ζ ζ

∆λ B ∆λ
J

∆λ

        (11) 

 

where |J| is the value of the determinant of the Jacobian. 

As the material properties are often defined in a local orthogonal frame (x, y, z), it is 

necessary to obtain the local physical strains from the ones with respect to (ξ, η, ζ). It will be 

assumed that z-axis is perpendicular to the mid-surface of the shell. Hence the relation between 

the nature coordinate infinitesimal strains and the local physical strains is: 

 

{ } ,EAS

z u eS S S S S S Sξ η ζ ζη ζξ ξηζ= + ∆ =ɶ ɶ ɶS T B U       (12) 

 

where T is the strain transformation matrix [16]. 

For eight-node magneto-electro-elastic solid shell element with one electric degree and 

magnetic degree per node, the electrical potential field and the magnetic field are adopted as 

follows: 

 

,  ,
e eφ ψ= − = −E B φ H B ψ         (13) 
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[ ] [ ]1 8 1 8,   = ,N N N Nφ ψ= ⋯ ⋯N N         (15) 

 

where 
i

N s′  are the three-dimensional Lagrangian interpolation functions, Tφ, Tψ is the 

transformation matrix. 

The thermodynamic potential for a 3-D magneto-electro-elastic solid is given by: 

 

( ), , ,G = G S E H          (16) 

 

where S, E and H are independent variables which represent strain, electric field and magnetic 

field, respectively. By using Eq. (1) in Eq. (16), the variation expression for 

magneto-electro-elastic solid can be obtained as follows: 

 

1 1 1
,

2 2 2

T T TG = S CS E εE H µH SeE SqH EmH
     − − − − −     
     

     (17) 

 

where C, εεεε, µµµµ represent elastic, dielectric and magnetic permeability coefficients and e, q, m 

indicate the piezoelectric, piezo-magnetic and magneto-electric coefficients, respectively. 

By minimizing Eq. (17) for nodal variables of shape functions for strain-displacement, 

electric field-electric potential, and magnetic field-magnetic potential, the finite element 

equations for magneto-electro-elastic solid can be obtained. A formulation for such coupled 

field variables can be written as [2]:
 

 

( )2 0,

0,

0.

uu u u

T

u

T

u

φ ψ

φ φφ φψ

ψ φψ ψψ

ω− + + =

− − =

− − =

K M u K φ K ψ

K u K φ K ψ

K u K φ K ψ

        (18) 

 

Various stiffness matrices are defined as follows: 

 

, ,

, ,

, .

T T

uu u u u u
v v

T T

u u
v v

T T

v v

dv dv

dv dv

dv dv

φ φ

ψ φψ φ ψ

φφ φ φ ψψ ψ ψµ

= =

= =

= =

∫ ∫
∫ ∫
∫ ∫

φ

K B CB K B eB

K B qB K B mB

K B εB K B B

        (19) 

 

Bu, Bφ and Bψ denotes the strain-displacement, electric field-electric potential and magnetic 

field-magnetic potential relations, respectively. 

Mass matrix for the structure is: 

 

( ) ( )0 0
.

T

n n
dvζ ρ ζ= + +∫M N N N N         (20) 

 

In equation (18) by using a condensation technique ϕϕϕϕ and ψψψψ are eliminated to obtain an 

equivalent system stiffness matrix 
eq

K . The equation of motion for the system can be written 

as: 

 

0,
eq

+ =ɺɺMU K U          (21) 
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where: 
 

1 1

ΙΙ Ι ΙV ΙΙΙ
.

eq uu u uφ ψ
− −= + +K K K K K K K K         (22) 

 

The component matrices for Eq. (19) are: 
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1
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.
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−
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−
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= −

= −
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        (23) 

 

The eigenvectors that correspond to the distribution of ϕϕϕϕ and ψψψψ are shown below: 
 

1 ,
II I

−=φ K K u  
1 .

IV III

−=ψ K K u         (24) 

 

To study the magneto-electric effect on the system frequencies, the equivalent stiffness 

matrix 
_eq reduced

K  is derived by neglecting the coupling between the piezoelectric BaTiO3 and 

piezomagnetic CoFe2O4 materials. The magneto-electric material coefficient (m) is zero for 

single phase BaTiO3 and CoFe2O4. From equation (18), by putting Kφψ = 0, the reduced finite 

element equations are as follows: 
 

( )2 0,

0,

0.

uu u u

T

u

T

u

φ ψ

φ φφ

ψ ψψ

ω− + + =

− =

− =

K M u K φ K ψ

K u K φ

K u K ψ

        (25) 

 

The reduced stiffness matrix 
_eq reduced

K  is shown below: 

 

1 1

_
.

T T

eq reduced uu u u u uφ φφ φ ψ ψψ ψ
− −= + +K K K K K K K K         (26) 

 

To study the piezoelectric effect due to piezoelectric BaTiO3 on the frequency of the 

magneto-electro-elastic structures, the stiffness matrix 
_eq φφK  is derived by putting magnetic 

potential to zero as follows: 
 

1

_
.

T

eq uu u uφφ φ φφ φ
−= −K K K K K         (27) 

 

To study the magnetic effect of piezomagnetic CoFe2O4 on the frequency of the system, 

_eq ψψK  is used as the stiffness matrix and is expressed as: 

 

1

_
.

T

eq uu u uψψ ψ ψψ ψ
−= +K K K K K         (28) 

 

4. Results and discussion 

 

In this section, we present some numerical results by using the finite element formulation 

proposed in this paper. Plate and shell problems are considered for validating the presented 

finite element method. Material constants are given in several papers and Aboudi [17] is the 

source for the material parameters used here and hence not repeated here. The density of 

BaTiO3 and CoFe2O4 is assumed to be the same 5730 kg/m
3
. 

_
,  ,  ,  

uu eq eq reduce
f f f fψψ  and fφφ  
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are system frequencies, which are computed by using 
_ _

, , ,K  K  K  K
uu eq eq reduced eq φφ  and 

_
.K

eq ψψ  

 

4.1 Simply supported FGM plate 

 

Frequency analysis of simply supported FG magneto-electro-elastic plate for different 

power-law index as n = 0, 1.0, 5.0 and 1000.0 has been carried out. The dimensions of the 

FGM plate are 1 m,
x y

L L= =  h = 0.3 m. 

Tables 1-4 show the results of frequency behavior of FGM plate by using present element 

and Bhangale’s element [18]. Here, power-law index is n = 0 representing an isotropic plate 

with properties corresponding to that of homogeneous BaTiO3 (piezoelectric) plate and       

n = 1000.0 corresponds to isotropic plate made up of magneto-electro-elastic material 

(CoFe2O4). Comparing with the results given by Bhangale, a good correlation is observed when 

applying the presented finite element. 

 
Table 1. Normalized natural frequency for power-law index n = 0 of FGM plate 

No. fuu feq feq_reduced fψψ fφφ 

1 1.8791(1.9180) 1.9100(2.1091) 1.9100(2.1091) 1.8791(1.9180) 1.9100(2.1091) 

2 2.3020(2.3003) 2.3020(2.3003) 2.3020(2.3003) 2.3020(2.3003) 2.3020(2.3003) 

3 2.4824(2.6503) 2.5225(2.8014) 2.5225(2.8014) 2.4824(2.6503) 2.5225(2.8014) 

4 2.6330(2.8014) 2.7077(2.8153) 2.7077(2.8153) 2.6330(2.8014) 2.7077(2.8153) 

5 3.5781(3.7772) 3.6373(3.9397) 3.6373(3.9397) 3.5781(3.7772) 3.6373(3.9397) 

 
Table 2. Normalized natural frequency for power-law index n = 1 of FGM plate 

No. fuu feq feq_reduced fψψ fφφ 

1 1.7383(1.8946) 1.7566(1.9897) 1.7566(1.9897) 1.7369(1.8901) 1.7577(1.9938) 

2 2.1074(2.3394) 2.1077(2.3394) 2.1077(2.3394) 2.1074(2.3394) 2.1077(2.3394) 

3 2.2488(2.6934) 2.2618(2.7800) 2.2617(2.7800) 2.2465(2.6925) 2.2640(2.7807) 

4 2.4319(2.8170) 2.4659(2.8170) 2.4658(2.8170) 2.4301(2.8170) 2.4673(2.8170) 

5 3.3852(3.8237) 3.4684(3.8905) 3.4679(3.8905) 3.3824(3.8231) 3.4699(3.8905) 

 
Table 3. Normalized natural frequency for power-law index n = 5 of FGM plate  

No. fuu feq feq_reduced fψψ fφφ 

1 1.6545(1.73467) 1.6613(1.74004) 1.6613(1.74004) 1.6532(1.72695) 1.6626(1.74769) 

2 2.0092(2.20267) 2.0093(2.20267) 2.0093(2.20267) 2.0092(2.20267) 2.0093(2.20267) 

3 2.1495(2.53548) 2.1533(2.54305) 2.1533(2.54305) 2.1479(2.53399) 2.1549(2.54447) 

4 2.3026(2.60829) 2.3113(2.60829) 2.3113(2.60829) 2.3002(2.60829) 2.3136(2.60829) 

5 3.2151(3.57426) 3.2352(3.57426) 3.2351(3.57426) 3.2100(3.57426) 3.2401(3.57426) 

 
Table 4. Normalized natural frequency for power-law index n = 1000 of FGM plate 

No. fuu feq feq_reduced fψψ fφφ 

1 1.5032(1.5477) 1.4989(1.5403) 1.4989(1.5403) 1.4989(1.5403) 1.5032(1.5477) 

2 1.9763(1.9747) 1.9763(1.9747) 1.9763(1.9747) 1.9763(1.9747) 1.9763(1.9747) 

3 2.1172(2.2607) 2.1153(2.2594) 2.1153(2.2594) 2.1153(2.2594) 2.1172(2.2607) 

4 2.2461(2.3372) 2.2436(2.3372) 2.2436(2.3372) 2.2436(2.3372) 2.2461(2.3372) 

5 2.9033(3.1866) 2.8996(3.1866) 2.8996(3.1866) 2.8996(3.1866) 2.9033(3.1866) 

Note: Data format: results of present element / Bhangale’s element [18] 
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From Tables 1–4 it is determined that as the value of power-law index increases, the natural 

frequency decreases as it is approaching toward the homogeneous magneto-electro-elastic 

material, which corresponds to n = 1000.0. This is due to the fact that piezoelectric effect has a 

tendency to increase the stiffness of the plate by induced electric field, while magnetostrictive 

material has a tendency to decrease the stiffness of the system by inducing the magnetic field. It 

is observed from Tables 1 and 4 that 
eq

f  and 
_eq reduce

f  classes of eigenvalues are the same; 

this is due to the fact that n = 0 represents the plate fully made up of BaTiO3 only and        

n = 1000.0 corresponds to CoFe2O4 (magnetostrictive), where magneto-electro coupling 

coefficients are zero. In contrast, for n = 1.0 and 5.0, similar behavior is not observed for 
eq

f  

and 
_eq reduce

f  classes of vibration in Tables 2-3. Further, it is observed that as power-law index 

n increases, the influence of the magnetic effect is more pronounced when compared to 

piezoelectric effect as the material approaches to homogeneous magnetostrictive. This is 

evidenced by looking at Tables 2-4. 

 

4.2 Simply supported FG cylindrical shells 

 

Studies have been carried out for FGM (BaTiO3–CoFe2O4) cylindrical shells of radius r and 

thickness h. In present analysis it is assumed that the composition is varied from the inner to the 

outer surfaces, i.e., the inner surface of the shell is metal piezoelectric-rich, whereas the outer 

surface is magnetostrictive-rich. In addition, material properties are graded throughout the 

thickness direction according to the volume fraction power-law distribution. Fig. 1 provides the 

first axial mode frequency results associated with first 10 circumferential modes for a simply 

supported boundary condition obtained for different power law indexes for different r/h ratios. 

The influence of the power law index is mainly to change the magnitude of the first axial mode 

frequency. As the power law index increases the frequencies increase as well. This fact can be 

understood easily, as the elastic properties of magnetostrictive are higher compared frequencies 

associated with 10 circumferential harmonics for FGM cylindrical shells for different r/h ratios 

and power law index n to piezoelectric counterpart. The power law index does not have a great 

influence to alter the associated circumferential mode number to the lowest of the first axial 

mode frequency. However, the change in the r/h ratios of the FGM shell does shift the mode 

number of the lowest frequency. It is observed from Fig. 1, as r/h ratios increases the lowest 

frequency of the shells occurs at higher circumferential mode. This behavior is similar to 

conventional shells. It is also detected that the frequency does not vary much with r/h ratios for 

lower circumferential modes. This is also to be expected, as the membrane effect is more 

predominant at the lowest circumferential mode. As expected, at higher circumferential mode 

with the increase of r/h ratios the shell frequencies diminish and this is due to the fact that the 

bending stiffness reduces as r/h ratios increases. In addition it is also observed that as the r/h 

ratio increases the lowest circumferential mode is shifted. 

 

5. Conclusions 

 

In this paper, the frequency behavior of FG magneto-electro-elastic structures is studied for 

plates and shells having different volume fractions of BaTiO3. The analysis is carried out using 

the proposed finite element formulation. The study established the following: 

(a) The frequency characteristics of magneto-electro-elastic structure are similar to those of 

homogeneous isotropic structures. 

(b) In general, the piezoelectric effect has the tendency of stiffening the plate and hence, 

increases the natural frequency of a structure. In contrast, pure magnetic effect has an inverse 

influence on the system frequency and reduces the structural natural frequency marginally.  
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Fig. 1. Variations of natural frequencies of the first axial mode 

 

(c) For FG magneto-electro-elastic structure, the volume fraction of BaTiO3 in 

BaTiO3-CoFe2O4 composite has considerable effect on the frequency of the system. As 

power-law index increases, the frequency decreases as the constituent of material reaches 

homogeneous magnetostrictive material for FGM plate model; the frequencies increases as 

exponential factor increases. 

(d) While in the case of FGM shell model ‘II’, the influence of the power law index is 

mainly to change the magnitude of the first axial mode frequency. The power law index does 

not have a significant influence to alter the associated circumferential mode number to the 

lowest of the first axial mode frequency. However, the change in the thickness of the FGM shell 

does shift the mode number of the lowest frequency. 
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