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Abstract. Article deals with definition of model of mechanical properties of polyurethane foam with lumped 

parameters. The problem is considered from the car driver vibroisolation point of view. Model definition 

comprises restoring force, damping and frictional forces. It is verified for experimental results obtained from 

measurement of PU foam specimen with open cells. Apart from empirical way of model constants setting the 

optimization method of genetic algorithms is used for more simple phenomena. 

1. Introduction 
Polyurethane (PU) foam is a very extensively used material in vibroinsulation field and it is used 
largely in the field of automobile seat cushioning production. For computer simulation of statistical or 
dynamical behavior of seat with respect to passenger’s comfort it is necessary to describe the 
properties of PU foam in sufficient degree which this paper deals with. 

Properties of polyurethane foam were investigated on opened cells PU foam specimen of cubic 
shape with size (100×100×50)mm, density 55kg/m3, made from material TDI. 

The specimen was inserted into two parallel rigid plates and deformed by means of hydraulic 
actuator. Kinematic displacement excitation x(t) has a triangle shape with constant amplitude 
A=19.5mm, constant mean value A0=A=19.5mm and frequency varied in range f=(0.01÷1.28)Hz. It is 
given by equation (1), where T=1/f is period of excitation and n=0, 1, 2, ..., ∞ means number of 
periods (see figure 1).  
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2. Definition of PU foam model 
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Figure 1. Triangle kinematic excitation of PU foam specimen. 
 
Development of material model of polyurethane foam is documented by many publications. One 

group of authors uses approach of mechanics of continuum [1, 2] while second one, more often, uses 
method of models with lumped parameters or strictly mathematical design (e.g. [3, 4, 5]). The level of 
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complexity in some cases differs considerably. 
Herein described design of lumped parameters model uses phenomenological approach. It 

comprises nonlinear restoring force
R

F , damping force 
d

F  and frictional force fF  in general force 

response F: 

 ( , ) ( ) ( , ) ( , )R d fF x x F x F x x F x x= + +ɺ ɺ ɺ    (2) 

2.1. Restoring force 

Pores of PU foam create a typical material structure which is up to a certain degree able to resist to 
pressure loading due to its buckling strength. In figure 2 there is pictured a graduating deformation of 
loaded cell. Undeformed shape of cell is in figure 2a), partially deformed in figure 2b), and figure 2c) 

corresponds with state where cells are deformed in high rate and their buckling strength marked 
0b

F  

has already been overcame and further stops to influent total restoring force
R

F . This phase is 

approximated by degressive function (3). 
b

F  is a force evoked by buckling strength of foam cells, 
b
c  

is a coefficient of the structure buckling strength. 

 ( )0
1 b

c x

b b
F F e

−

= −    (3) 

After the initial cells crush with increasing compression there comes to contact between cell walls. 
Force characteristics of this phase is very similar to course of force arising during compression of ideal 

gas in closed vessel. This is described by progressive polytrophic function (4). pS , pp , 
p

h , 
p

n  are 

constants of model, where 
p

h  means the vertical asymptote position in figure 4. Total restoring force 

is than given by equation (5). 
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 R b pF F F= +    (5) 

2.2. Viscous damping 

It can be assumed that total damping of compressed PU foam with opened cells is caused by the 
material damping of polyurethane and by the damping caused by air flow through the porous material 
structure. In which relation these two parts of damping force are it was investigated in [6]. As it 
follows from the article the influence of air flow to overall damping force is possible to neglect in case 
of specimen cut from cushioning. 

Damping of the matrix material is then described by Maxwell’s viscoelastic components with 

nonlinear spring with polytrophic characteristics (6) with constants
0i

S , 
0i
p , 

i
h , 

0i
n , and nonlinear 

damper with constant of damping 
i
c  and exponent 

i
n  defined by (7) where m=3 is a number of used 

Maxwell’s components. 

 
a) 

 
b) 

 
c) 

Figure 2. Gradual deformation of loaded cell. 
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Figure 3. Typical force response to triangle kinematic 
excitation. 
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Figure 4. Course of restoring force 
R

F  defined by (5).  Figure 5. Maxwell’s component. 
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Differential equation of this element is given by equality of forces in serially added components: 
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2.3. Friction damping 

With regard to the contact of cell-walls and struts of cells during compression and their mutual 
slipping there is logical assumption that also friction participates in PU foam damping. Friction is 

included in model with course of friction coefficient ff  defined in dependence on velocity v x= ɺ  by 

function arctan in combination with power function in equation (9) which is presented in figure 6. 

 ( ) ( )30

1 2

2
arctan sgn

kf

f

f
f k v k v v= +

π

   (9) 

The base value for friction force calculation is sum of restoring force 
R

F  and force of Maxwell‘s 

viscoelastic components
di

F : 
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Friction force then is 

 f f RdF f F=    (11) 

Total force response of PU foam model presented in figure 7 is: 

 Rd fF F F= +    (12) 

ff0

0 v

ff

  

F
  

(1
-e

  
 )

b
0

-c
x

b

Restoring force FR

Friction
force Ff Damping force Fd

Fd1 Fd2 Fd3

x

 

Figure 6. Dependence of friction coefficient ff  

on velocity v. 

 Figure 7. Scheme of PU material model for 
m=3. 

 

Table 1. Parameters of PU foam model. 

Force component Parameter Physical unit Value 

b
F   0b

F   [N] 80 

b
c  [N/m] 600 

P
F   

P
S   [m2] 0.0095 

P
p   [Pa] 100 

P
n   [1] 6.2 

P
h   [m] 0.06 

di
F   

  i=1 i=2 i=3 

0i
S   [m2] 1.2 0.03 0.8 

0i
p   [Pa] 100 

0i
n   [1] 3 3.5 2 

i
h   [m] 0.05 0.05 0.18 

i
c   [-] 50 300 300 

i
n   [1] 0.2 0.2 0.2 

fF   

0ff   [1] 0.05 

1
k   [s/m] 5000 

2
k   [-] 0.2 

3
k   [1] 1 

3. Model verification 
Model with parameters mentioned in table 1 has been verified on the same courses of excitation 
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signals as it was experimentally tested. It means triangle course of displacement x(t) given by equation 
(1) with frequency range f=(0.01÷1.28)Hz. In figure 8 and figure 9 there is a comparison of 
experimentally measured total force of loaded PU foam specimen and force response of simulating 
model. It is possible to say that total force is simulated with satisfactory accuracy. In figure 10 and 
figure 11 there is measured damping force and simulated one. Also courses of damping force 
separated from total force are simulated in very good precision. However in case of lowest frequency 
f=0.01Hz simulated damping force does not match desirable values for high rates of compression. In 

this way depicted damping force 
d

F  has slightly different definition from 
di

F  in (6) or their 

summation through m, which mentioned in [7] or [8]. 
The problem of setting of proper material constants is very complex because of their large amount 28. 
Those presented in table 1 were settled empirically. Model than was exemplified as it is shown in 
figures 8-10. For possibility to expect better results in future or verify model for wider range of 
phenomena we tried to apply genetic algorithms for setting of constants. A Monte-Carlo method 
seems to be the only way how get a solution in a adequate time. Fitness function was defined as the 
area between the experimentally obtained displacement-force curve and the same curve got by the 
model. Genetic algorithm was implemented in C++ language with continuous variables and one 
parent. The offspring mutation variance was set proportional to the fitness of the parent. We obtained 
satisfactory results with the population of hundreds individuals in order of thousands generations. An 
example of experimental data and data from the model with constants found using genetic algorithm is 
in figure 12. 
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Figure 8. Measured total force F.  Figure 9. Simulated total force F. 
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Figure 10. Measured damping force 
d

F .  Figure 11. Simulated damping force 
d

F . 
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Figure 12. Simulation result obtained by means of genetic algorithms. 

4. Conclusion 
Rheological model of polyurethane foam for uniaxial dynamical compression was derived in this 
article. It was verified for triangle kinematic excitation with constant mean and amplitude and varying 
frequency. Model constants presented in article has been set empirically. How verification shows this 
kind of model definition leads to satisfactory results. However more sophisticated procedure for 
setting of constants is being prepared using method of genetic optimization as it exemplified in one of 
experimental cases. 
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